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Abstract. It has been found that for a focused laser beam propagating in free-space,

there exists, surrounding the laser beam axis, a subluminous wave phase velocity region.

Relativistic electrons injected into this region can be trapped in the acceleration phase

and remain in phase with the laser field for sufficiently long times, thereby receiving

considerable energy from the field. Optics placed near the laser focus are not necessary,

thus allowing high intensities and large energy gains. Important features of this process

are examined via test particle simulations. The resulting energy gains are in agreement

with theoretical estimates based on acceleration by the axial laser field.
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For more than a decade there has been much interest in studying the interactions

of ultraintense lasers with matter [1]. Laser acceleration of charged particles has been

one of those frontier research subjects [2-5]. Concerning laser acceleration in vacuum,

there were many discussions and arguments lasting decades [6-13], and the crucial issue

in those discussions is related to wave phase velocity. For example, the so-called Lawson-

Woodward theorem [6,7] states that a relativistic electron interacting with a focused

laser beam in vacuum can not gain energy provided that (i) the electron trajectory is

a straight line with a speed ve approximately equal to the speed of light in vacuum,

ve ≈ c, which is unperturbed by the laser field, and (ii) the interaction region is infinite

in extent. The essential physics underlying this theorem is that the phase velocity of the

laser field near the focal region is greater than c. Thus, it was argued that the inevitable

phase slippage would lead the relativistic electron to experience alternatively acceleration

and deceleration phase regions as it transverses the laser field, which would result in a

cancellation of the energy gain for an unlimited interaction length. More recently it was

shown, via experiment [8] and simulation [9-11], that a focused laser pulse interacting with

low energy electrons (at rest or nearly at rest, and thereby not subject to the Lawson-

Woodward theorem) could be ponderomotively scattered and receive a net energy gain by

interacting with the nonlinear ponderomotive laser force. Simulations of ponderomotive

scattering indicate, however, that the energy gain is intrinsically limited to relatively low

values, i.e., less than 10 MeV for presently obtainable laser intensities [9-11].

In this Letter we will show that the Lawson-Woodward theorem can be circumvented

at high intensities that can be delivered by present laser systems. For a focused laser

beam propagating in vacuum, there exists a region characterized by subluminous phase

velocity. Based on this feature we are able to propose a novel vacuum laser acceleration
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scheme, the capture and acceleration scenario (CAS) [12, 13]. Previous studies of the

CAS found significant energy gains only in the regime of ultra-high intensities a0 � 100

when kw0 > 170, where a0 = eE0/(mωc) = 8.5× 10−10λI1/2 with λ the laser wavelength

in µm, I the intensity in W/cm2, E0 the electric field amplitude of the laser beam at

focus, ω = ck = 2πc/λ the laser frequency, and w0 the beam width at focus. In this

Letter, a new regime of the CAS is described in which significant energy gains (> 100

MeV) can result for presently achievable intensities (a0 > 10) and powers (> 100 TW). In

this regime (5 < a0 < 100, and kw0 < 120), the energy gain is found to scale linearly in

the laser field and is in agreement with theoretical estimates of acceleration by the axial

laser field. Simulations indicate that the electron trajectory is significantly perturbed by

the laser field as it enters the high intensity channel, which in effect limits the interaction

region, thereby circumventing the Lawson-Woodward theorem. Hence, large energy gains

are obtained without limiting the interaction distance by the use of additional optics (as

required in Ref. [14]). This allows operation at ultra high laser intensities and high energy

gains without the restriction of damaging nearby optics.

For a laser beam of Hermite-Gaussian (0, 0) mode polarized in the x-direction and

propagated along the z-axis, the transverse electric field component is [15]

Ex(x, y, z, t) = E0
w0

w(z)
exp

[
− r2

w(z)2
− i(ϕ+ ϕ0)

]
, (1)

where w(z) = w0(1 + α2)1/2 is the beam width, α = z/ZR, ZR = kw2
0/2 is the Rayleigh

length, r2 = x2 + y2, ϕ0 is the initial phase, and with phase

ϕ = kz − ωt− tan−1 α+
kr2

2z(1 + 1/α2)
. (2)

The effective phase velocity of the wave along a particle trajectory, (vϕ)J , is given by

∂ϕ/∂t+ (vϕ)J · (�ϕ)J = 0, (3)
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where (�ϕ)J is the gradient of the phase field along the trajectory. In particular, the the

effective phase velocity along a trajectory parallel to the z-axis is vϕz = ck/(∂ϕ/∂z), and

the minimum phase velocity is vϕm = ck/ |∇ϕ|, which occurs at the angle θm (relative to

z-axis) given by tan θm = |∂ϕ/∂r| / |∂ϕ/∂z|, where ∂ϕ/∂z = k − (1− fϕ)Z
−1
R (1 + α2)−1,

∂ϕ/∂r = krαZ−1
R (1 + α2)−1, fϕ = r2(1− α2)w−2

0 (1 + α2)−2. From these equations, it is

straightforward to find the subluminous phase velocity regions. The condition vϕz < c

requires fϕ > 1, which can only occur in the region z < ZR. Moreover, at z = 0, fϕ > 1

occurs only for r > w0. As for the minimum phase velocity, the condition vϕm < c requires

approximately r > w(z), which extends to a region much larger than that for vϕz < c. In

the subluminous phase velocity region, the magnitude of the minimum phase velocity is

of the order vϕm ∼ c[1− 1/(kw0)
2], and θm ∼ 1/(kw0). The distribution of vϕm on the

plane y = 0 is shown in Fig. 1.

Notice that the effective phase velocity along the z-axis is superluminous, i.e.,

(vϕz)r=0 = c/{1 − 1/[kZR(1 + α2)]}. This indicates that the near-axis region of the

beam is not suitable for accelerating charged particles. This is because the phase velocity

in this region is the highest, which leads to fast phase slippage. Also, in the near-axis

region the longitudinal component of the accelerating electric field is very small.

For accelerating particles, in addition to the subluminous phase velocity of the field,

the acceleration field strength, i.e., the amplitude of the longitudinal electric field, is also

an important factor. We hereby introduce a quantity Q that combine these two factors

together to represent the ability of the laser field for accelerating charged particles. We

call it acceleration quality factor, which is defined by

Q = Q0(1− vϕm/c) [x/w(z)] exp[−(x2 + y2)/w(z)2], (4)
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for vϕm ≤ c and Q = 0 for vϕm > c. Here Q0 is a normalization constant chosen to make

Q in the order of unity. In Eq. (7), (1−vϕm/c) represents the contribution from the phase

velocity, and the remaining factor is proportional to the amplitude of the longitudinal

electric field. Also, we simply assume that for vϕm > c, Q ≡ 0 because in that case no

particle can remain trapped in (i.e., synchronous with) the accelerating phase region of

the laser field.

The distribution of the acceleration quality factor Q on the plane y = 0 for a focused

laser beam with kw0 = 60 is given in Fig. 2. It is apparent, judging from Fig. 2, that

there is an acceleration channel in the field of the focused laser beam propagating in

vacuum, which shows similar characteristics to that of a wave guide tube of conventional

accelerators: a subluminous phase velocity in conjunction with a strong longitudinal

electric field component. Consequently, if one can inject fast electrons into this channel,

then these electrons can remain synchronous with the accelerating phase for sufficiently

long times such that they receive considerable energy from the field.

To study the detailed dynamics of electrons in this laser acceleration channel, 3D test

particle simulations are utilized that solve the relativistic Newton-Lorentz equations of

motion, dP/dt = −e(E + v × B), where v is the electron velocity in units of c, P = γv

is the electron momentum in units of mc, and γ = (1 − v2)−1/2 the Lorentz factor. To

describe the laser field, in addition to Ex given by Eq.(1), the other electric and magnetic

components are obtained by solving analytically (to leading order in 1/kZR) Maxwell’s

equations in vacuum [15], Ez  (i/k)(∂Ex/∂x) and B  −(i/ω)∇× E.

Results of these simulations indicate that there exists a regime in which relativistic

electrons can be injected into the acceleration channel of a very intense laser beam and

receive substantial energy gains. We call this the CAS [12,13]. The basic conditions
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for CAS to occur have been found as follows. (i) The laser intensity should be very

strong (a0 � 5). (ii) The electron injection energy should be in the range 5-15 MeV,

depending on the beam width. (iii) The electron incident crossing angle (relative to

the beam direction) should be small (typically tan θ ∼ 0.1). Figure 3 shows typical

CAS trajectories at different laser intensity. These CAS trajectories have in common

the following interesting dynamic characteristics. (i) The CAS electrons are trapped in

and move along the acceleration channel, which are different from the ponderomotively

scattered (PS) electrons. The later are quickly expelled from the intense field region

(Fig.3(a)). (ii) The effective wave phase velocity along the CAS electron trajectories are

less than c in the region near the beam waist (can even be less than the particle velocity,

see Fig.3(e)). (iii) The CAS electrons are phase synchronous with the laser field over

a significant distance (Fig.3(d)), which results in substantial net energy gains from the

laser field (Fig.3(b)). The acceleration occurs primarily in the focus region with effective

interaction lengths on the order of the Rayleigh range (Fig.3(c)) and acceleration gradients

on the order of a few GeV/cm (Fig.3(b)).

Figure 4 shows the variation of γfm as a function of the laser intensity a0. Here, γf is

the final value of γ after the interaction, and γfmdenotes the maximum value of γf as the

initial laser phase ϕ0 is varied over the range 0 to 2π. Various values of ϕ0 correspond

to electrons impinging on the laser beam at different delay time. We note the dynamic

trajectories in Fig. 4 can generally be divided into two groups: CAS for a0 � 8, and

PS electrons for a0 � 3 . The CAS electrons are greatly accelerated by the laser field,

and the net energy gain scales approximately as γfm ∝ an
0 with n ∼ 1. This feature is

consistent with the mechanism underlying CAS, namely the acceleration occurs primarily

in the acceleration channel. In contrast to that, the PS electrons have only small amount
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of net energy exchange with the laser field [12,13].

The above simulation results are in approximate agreement with the following simple

theory of laser acceleration. The energy gain is given by W = −e
∫
dt(v · E). Assuming

a small electron trajectory angle, θ  |vx/vz| � |Ez/Ex| ∼ (x/ZR)(w2
0/w

2), i.e., small

compared to the diffraction angle (see, e.g., Fig.3(a)), then the energy gain is primarily

due to the axial electric field Ez  (2ix/kw2)(1 + iz/ZR)Ex. In this case

W = −mc2a0kw0

∫
dz

ZR

xw2
0

w3

(
i− z

ZR

)
exp

(
− r2

w2
− iϕ

)
. (5)

The magnitude of the energy gain can be estimated by assuming that the effective ac-

celeration length is a Rayleigh length and by approximating w and ϕ as constants. This

gives W [MeV]  0.51a0kw0x exp(−r2/w2
0). Assuming x  r  w0 gives W [MeV] 

0.19a0kw0 = 8.1(P [TW])1/2, where P = 0.54(a0kw0)
2 GW is the laser power. For the

parameters of Fig. 4 (kw0 = 60), W  110 MeV (1.1 GeV) for a0 = 10 (100), in ap-

proximate agreement with those from the simulation W  100 MeV (1.5 GeV). A more

accurate calculation of the energy gain can be obtained by performing the integration in

Eq. (5) numerically using the exact orbits, including effects due to the difference between

the electron and phase velocities, as well as contributions from the transverse laser field.

In the case of injecting an electron bunch of duration long compared to the laser pulse

duration, the output of the acceleration mechanism is a high-energy electron macro-pulse,

which consists of many micro-pulses. The macro-pulse duration is that of the laser pulse,

and the micro-pulse duration corresponds to the periodicity of the laser field. The energy

spread of the electrons is large, since the electrons are injected over all phases within

a single laser period, thus some electrons are accelerated and others ponderomotively

scattered, depending on the phase when the electron impinges on the laser field. The

7



CAS electrons undergoing favorable acceleration can be as high as 30% of the incident

electrons intersecting with the laser pulse.

Following are two examples that show the output beam properties in quantitative

detail. An electron bunch was synchronously injected to interact with a laser pulse with

kw0 = 80, duration ωτ = 300, and a0 = 10 (and 30). Initially, the bunch had momenta

pxi = 1.2, pyi = 0, pzi = 12, (crossing angle ϑ =tan−1(0.1)), emittance 0.1 π mm-mrad,

and impact parameter b = 0, and a transverse size equal to that of the laser pulse. After

the interaction, the maximum energy was 130 MeV (625 MeV), and 8% (21%) of the

injected electrons had energies above 80 MeV (400 MeV). Futhermore, there is an energy-

angle correlation that can allow for energy selection using a collimator. For electrons

in the energy range 104 MeV ±15% (500 MeV ±15%), which contained 22% (37.6%)

of the accelerated electrons and emerged with angles θ = 2◦ ± 0.16◦, (0.99◦ ± 0.15◦),

the emittances (mm-mrad) in the x and y directions were 0.046 (0.037) and 0.37 (0.45),

respectively. Details on these simulations will be a subject of a future publication.

In summary, we report a new regime of laser acceleration in vacuum in which the

energy gain is found to increase approximately linear in a0, and in which substantial

energy gains (> 100 MeV) can be obtained for present day lasers (� 100 TW). Finite

energy gains are possible because (i) the electron orbit is significantly perturbed by the

laser as it enters the high intensity region, and (ii) there exists a subluminous phase

velocity region in which the electrons can become captured and accelerated. The resulting

energy gains are in agreement with theoretical estimates based on acceleration in the axial

laser field. Furthermore, optical components are not needed near the laser focus, which

greatly simplifies the experimental interaction geometry and removes constraints due to

laser damage, thus allowing ultra-high intensities and large energy gains.
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Captions

Fig. 1: The distribution of the minimum phase velocity vϕm in the y = 0 plane of a

focused laser beam with kw0 = 60. The value vϕm is given in units of c. β = x/w0 and

α = z/ZR.

Fig. 2: The acceleration quality factor (Eq. (7)) for a focused laser beam of kw0 = 60

in the plane of y = 0. Again, β = x/w0 and α = z/ZR.

Fig. 3: Typical CAS dynamic trajectories at different laser intensities. (a) CAS

dynamic trajectories in the x-z coordinate space for a0 = 100 (solid line), 60 (dashed

line), and 30 (fine-dotted line). The other parameters used are kw0 = 60, Pxi = 1.2,

Pyi = 0, Pzi = 12.0. In the figure, the dash-dotted line shows the beam width w(z). As

a contrast, three typical ponderomotively scattered electron trajectories corresponding to

the same parameters as that of the CAS’s are also presented. (b) Same parameters as

in (a) but for γ vs. z-coordinate. (c) Same parameters as in (a) but for the longitudinal

force experienced by the electrons vs. z-coordinate. (d) Same parameters as in (a) but

for the phase experienced by the CAS electrons vs. z-coordinate. (e) Same parameters

as in (a) but for the electron velocity (solid line) and the phase velocity of the laser wave

along the electron dynamic trajectory (dotted line) vs. z-coordinate at a0 = 30.

Fig. 4: The maximum final energy γfm as a function of the laser intensity a0. γfm

denotes the maximum value of γf as the initial laser phase ϕ0 is varied over the range 0

to 2π. The other parameters used are the same as in Fig. 3.
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