$C R$ SUBMANIFOLDS OF A KAEHLER MANIFOLD. I

AUREL BEJANCU

Abstract

The differential geometry of $C R$ submanifolds of a Kaehler manifold is studied. Theorems about totally geodesic $C R$ submanifolds and totally umbilical $C R$ submanifolds are given.

1. Introduction. Many papers have been concerned with complex submanifolds of complex manifolds, especially of complex space forms (see [4] for a survey of results). Recently, B.Y. Chen and K. Ogiue [1] have studied totally real submanifolds of complex manifolds. Later these submanifolds were further investigated by K. Yano, M. Kon, G. D. Ludden and M. Okumura [3], [6], [7].
The purpose of this paper is to initiate a study of a new class of submanifolds of a complex manifold. In $\S 2$ we introduce the concept of $C R$ submanifold and we give its basic properties. $C R$ submanifolds have been studied, till now, only from the analytic viewpoint (i.e. concerning the complex structure). Different kinds of sectional curvature, Ricci tensor and scalar curvature of a $C R$ submanifold of a complex space form are examined in $\S \S 3$ and 4 . Also, some results on totally geodesic $C R$ submanifolds and totally umbilical $C R$ submanifolds are proved.
2. $C R$ submanifolds. Let N be a Kaehler manifold of complex dimension n and M be an m-dimensional Riemannian submanifold immersed in N. Denote by g (resp. g_{0}) the Kaehlerian metric on N (resp. the Riemannian metric on M), by J the almost complex structure on N and by φ the isometric immersion of M into N.
In order to simplify the presentation, we identify, for each $x \in M$, the tangent space $T_{x} M$ with $\varphi_{*}\left(T_{x} M\right) \subset T_{\varphi(x)} N$ by means of φ. The Riemannian metric g_{0} is identified with the restriction of g to the subspace $\varphi_{*}\left(T_{x} M\right)$. With this identification in mind we drop the sumbol g_{0}, using instead the symbol g.
Now, suppose on M a differentiable distribution $D: x \rightarrow D_{x} \subset T_{x} M$ ($\operatorname{dim} D_{x}=2 p$) is given. This distribution is assumed to be consistent with the almost complex structure on N, that is, $J\left(D_{x}\right)=D_{x}$ for each $x \in M$. Moreover, the complementary orthogonal distribution $D^{\perp}: x \rightarrow D_{x}^{\perp} \subset T_{x} M$

[^0]$\left(\operatorname{dim} D_{x}^{\perp}=q\right)$ is supposed to be totally real, that is, $J\left(D_{x}^{\perp}\right) \subset \nu_{x}$ for each $x \in M$, where ν_{x} is the normal space to M at x.

The distribution D (resp. D^{\perp}) can be defined by a projector P (resp. Q) which satisfy the well-known conditions

$$
\begin{equation*}
P^{2}=P, \quad Q^{2}=Q, \quad P Q=Q P=0, \quad g \circ(P \times Q)=0 \tag{2.1}
\end{equation*}
$$

We call the distribution D (resp. D^{\perp}) the horizontal (resp. vertical) distribution on M.

Definition. The submanifold M endowed with the above pair of distributions (D, D^{\perp}) is called a $C R$ submanifold of N.
Remarks. 1. Any real curve or real hypersurface of N is automatically a $C R$ submanifold.
2. If, in particular, $\operatorname{dim} D_{x}^{\perp}=0$ (resp. $\left.\operatorname{dim} D_{x}=0\right)$ for any $x \in M$, the $C R$ submanifold M is a complex submanifold (resp. totally real submanifold) of N.
If ξ is a vector field in the normal bundle, put

$$
\begin{equation*}
J \xi=A \xi+B \xi+C \xi \tag{2.2}
\end{equation*}
$$

where $A \xi$ (resp. $B \xi$) is the horizontal (resp. vertical) part of $J \xi$ and $C \xi$ the normal part. Thus, A (resp. B) is a horizontal (resp. vertical) valued 1-form on the normal bundle and C is an endomorphism of the normal bundle.

If X is a vector field on M, then $J Q X$ is a section in the normal bundle of M, and from (2.2) we have

$$
\begin{gather*}
B J Q X+Q X=0 \tag{2.3}\\
A J Q X=C J Q X=0 \tag{2.4}
\end{gather*}
$$

Applying J to (2.2) and comparing horizontal, vertical and normal parts we obtain

$$
\begin{array}{r}
C^{2} \xi+J B \xi+\xi=0 \\
J A \xi+A C \xi=0 \\
B C \xi=0 \tag{2.7}
\end{array}
$$

From (2.4) and (2.5) we get $C^{3}+C=0$ on the normal bundle, that is the structure introduced by K. Yano [5].

Let ∇ be the Kaehlerian connection on N. The Gauss and Weingarten equations are

$$
\begin{gather*}
\nabla_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.8}\\
\nabla_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \tag{2.9}
\end{gather*}
$$

where ∇ is the Riemannian connection on M, ∇^{\perp} is the connection on the normal bundle induced by ∇ and h is the second fundamental form of the immersion. A_{ξ} is an endomorphism of the tangent bundle of M, and cannot be confused with the 1 -form A defined by (2.2).

Since ∇ is a Kaehlerian connection, we have

$$
\begin{equation*}
P\left(\nabla_{X} J P Y\right)-P\left(A_{J Q Y} X\right)=J P\left(\nabla_{X} Y\right)+A h(X, Y) \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
Q\left(\nabla_{X} J P Y\right)-Q\left(A_{J Q Y} X\right) & =B h(X, Y) \tag{2.11}\\
h(X, J P Y)+\nabla_{X}^{\perp} J Q Y & =J Q\left(\nabla_{X} Y\right)+C h(X, Y) \tag{2.12}
\end{align*}
$$

for all vector fields X, Y on M.
Differentiating (2.2) and comparing horizontal, vertical and normal parts we obtain

$$
\begin{gather*}
P\left(\nabla_{X} A \xi\right)+P\left(\nabla_{X} B \xi\right)+J P\left(A_{\xi} X\right)=P\left(A_{C \xi} X\right)+A\left(\nabla_{X}^{\perp} \xi\right) \tag{2.13}\\
Q\left(\nabla_{X} A \xi\right)+Q\left(\nabla_{X} B \xi\right)=Q\left(A_{C \xi} X\right)+B\left(\nabla_{X}^{\perp} \xi\right) \tag{2.14}
\end{gather*}
$$

for each vector field X on M and normal section ξ.
3. Sectional curvature of a $C R$ submanifold. Suppose now that N is a complex space form of constant holomorphic curvature c. Then, the curvature tensor \mathbf{R} of $N(c)$ is given by

$$
\begin{align*}
\mathbf{R}(X, Y) Z=\frac{c}{4}\{g(Y, Z) X- & g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y+2 g(X, J Y) J Z\} . \tag{3.1}
\end{align*}
$$

The equation of Gauss becomes

$$
\begin{align*}
& g(R(X, Y) Z, W) \\
& =\frac{c}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& \quad+g(J P Y, Z) g(J P X, W) \tag{3.2}\\
& \quad \\
& \quad-g(J P X, Z) g(J P Y, W)+2 g(X, J P Y) g(J P Z, W)\} \\
& \quad+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{align*}
$$

The sectional curvature K_{M} of M determined by orthonormal vectors X and Y is given by

$$
\begin{align*}
K_{M}(X \wedge Y)= & \frac{c}{4}\left\{1+3 g(P X, J P Y)^{2}\right\}+g(h(X, X), h(Y, Y)) \\
& -g(h(X, Y), h(X, Y)) . \tag{3.3}
\end{align*}
$$

Definition. The holomorphic sectional curvature H of M determined by a unit vector $X \in D$ is the sectional curvature determined by $\{X, J X\}$.

Hence from (3.3) we have

$$
\begin{equation*}
H(X)=c+g(h(X, X), h(J X, J X))-g(h(X, J X), h(X, J X)) \tag{3.4}
\end{equation*}
$$

From (2.12) we have

$$
\begin{equation*}
h(X, J Y)=J Q\left(\nabla_{X} Y\right)+\operatorname{Ch}(X, Y) \tag{3.5}
\end{equation*}
$$

for any two vector fields on M which lie in D (i.e. $X_{x}, Y_{x} \in D_{x}, \forall x \in M$). As a consequence of (3.5) and (2.4) we obtain

$$
\begin{equation*}
h(J X, J Y)=J Q\left(\nabla_{J X} Y\right)+C^{2} h(X, Y) \quad \forall X, Y \in D \tag{3.6}
\end{equation*}
$$

Therefore, the holomorphic sectional curvature H of M determined by a unit vector $X \in D$ is given by

$$
\begin{align*}
H(X)= & c+\|B h(X, X)\|^{2}-\|h(X, X)\|^{2}-\|C h(X, X)\|^{2} \\
& -\left\|Q \nabla_{X} X\right\|^{2}+g\left(h(X, X), J Q \nabla_{J X} X\right) \tag{3.7}\\
& -2 g\left(\operatorname{Ch}(X, X), J Q \nabla_{X} X\right) .
\end{align*}
$$

Remark. If, in particular, M is a complex submanifold of N (i.e. $Q=0$, $J=C$), then we get the known formula for its holomorphic sectional curvature [4]:

$$
H(X)=c-2\|h(X, X)\|^{2}
$$

Definition. The horizontal distribution D is called parallel with respect to the Riemannian connection ∇ on M if $\nabla_{X} Y \in D$ for any two vector fields X, $Y \in D$.

Theorem 1. If M is a CR submanifold of a complex space form $N(c)$ and D is an involutive distribution, then the holomorphic sectional curvature verifies $H(X) \leqslant c \forall X \in D$.

Proof. Since ∇ is the Levi-Civita connection on M and D is involutive, from (3.5) we have

$$
h(X, J Y)-h(J X, Y)=J Q\left(\nabla_{X} Y-\nabla_{Y} X\right)=J Q([X, Y])=0
$$

Hence $h(J X, J Y)=-h(X, Y)$, and the assertion follows from (3.4).
Remarks. 1. The distribution D is involutive, if and only if, $h(X, J Y)=$ $h(J X, Y) \forall X, Y \in D$.
2. If D is parallel with respect to ∇, then it is involutive and Theorem 1 is also valid.

Definition. The $C R$ submanifold M is called D-totally geodesic (resp. D^{\perp}-totally geodesic) if $h(X, Y)=0$ for each $X, Y \in D$ (resp. $X, Y \in D^{\perp}$).

Then from (3.4) we have
Theorem 2. A CR submanifold M of a complex space form $N(c)$ is D-totally geodesic if and only if the following conditions are fulfilled:

1. The horizontal distribution is involutive.
2. $H(X)=c$ for each $X \in D$.

Now, let $\left\{E_{1}, \ldots, E_{m}\right\}$ be a local field of orthonormal frames on M such that $\left\{E_{1}, \ldots, E_{p}, E_{p+1}=J E_{1}, \ldots, E_{2 p}=J E_{p}\right\}$ (resp. $\left\{E_{2 p+1}, \ldots, E_{2 p+q}\right\}$) is a local field of frames in D (resp. D^{\perp}).

Definition. The $C R$ submanifold M is called D-minimal (resp. D^{\perp}-minimal , if $\left.\sum_{i=1}^{2 p}\left\{h\left(E_{i}, E_{i}\right)\right\}=0\right)\left(\mathrm{resp} . \sum_{i=1}^{q}\left\{h\left(E_{2 p+i}, E_{2 p+i}\right)\right\}=0\right)$.

Remark. Every $C R$ submanifold with involutive horizontal distribution is D-minimal.

Theorem 3. If M is a D^{\perp}-minimal $C R$ submanifold of a complex space form $N(c)$, then M is D^{\perp}-totally geodesic, if and only if,

$$
\begin{equation*}
K_{M}(X \wedge Y)=c / 4 \quad \forall X, Y \in D^{\perp} \tag{3.8}
\end{equation*}
$$

Proof. Substitute X and Y from (3.3) by $Q X$ and $Q Y$ and obtain

$$
\begin{align*}
K_{M}(X \wedge Y)= & c / 4+g(h(Q X, Q X), h(Q Y, Q Y)) \\
& -g(h(Q X, Q Y), h(Q X, Q Y)) \tag{3.9}
\end{align*}
$$

Supposing (3.8) valid and taking into account the D^{\perp}-minimality of M, from (3.9) we have

$$
g\left(h\left(E_{2 p+i}, E_{2 p+j}\right), h\left(E_{2 p+i}, E_{2 p+j}\right)\right)=0 \quad \forall 1 \leqslant i, j \leqslant q
$$

Therefore $h(X, Y)=0$ for each vector field X, Y which lies in D^{\perp}. Of course, if M is D^{\perp}-totally geodesic, (3.8) follows from (3.9).

Definition. A $C R$ submanifold M is called $C R$ totally geodesic, if $h(X, Y)$ $=0$ for any $X \in D$ and $Y \in D^{\perp}$. The sectional curvature determined by orthonormal vectors $X \in D$ and $Y \in D^{\perp}$ is called $C R$ sectional curvature.

Theorem 4. If the $C R$ sectional curvature of M is given by

$$
K_{M}(X \wedge Y)=c / 4 \quad \forall X \in D, Y \in D^{\perp},
$$

and one of the following conditions is fulfilled:
(a) M is D-minimal;
(b) M is D^{\perp}-minimal;
then M is $C R$ totally geodesic.
The proof follows the same idea as in Theorem 3.
4. Ricci tensor and scalar curvature of a $C R$ manifold. If $\left\{E_{1}, \ldots, E_{m}\right\}$ is a local field of orthonormal frames on M such that $\left\{E_{1}, \ldots, E_{p}, E_{p+1}=\right.$ $\left.J E_{1}, \ldots, E_{2 p}=J E_{p}\right\}$ (resp. $\left\{E_{2 p+1}, \ldots, E_{2 p+q}\right\}$) is a local field of frames on D (resp. D^{\perp}), then by straightforward computation we have

$$
\begin{equation*}
\sum_{i=1}^{m}\left\{g\left(J P E_{i}, Y\right) g\left(J P X, E_{i}\right)\right\}=-g(P X, P Y) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
\sum_{i=1}^{m}\left\{g\left(J P E_{i}, E_{i}\right)\right\} & =0 \tag{4.2}\\
\sum_{i=1}^{m}\left\{g\left(E_{i}, J P X\right) g\left(E_{i}, J P Y\right)\right\} & =g(P X, P Y) \tag{4.3}
\end{align*}
$$

for any vector fields X, Y on M. If one uses (4.1)-(4.3), one establishes the following expression for the Ricci tensor of M :

$$
\begin{align*}
S(X, Y)= & \frac{m+2}{4} c g(P X, P Y)+\frac{m-1}{4} c g(Q X, Q Y) \\
& +\sum_{i=1}^{m}\left\{g\left(h(X, Y), h\left(E_{i}, E_{i}\right)\right)-g\left(h\left(E_{i}, Y\right), h\left(E_{i}, X\right)\right)\right\} . \tag{4.4}
\end{align*}
$$

In this way the scalar curvature of M is given by

$$
\begin{align*}
\rho= & \frac{m^{2}-m+6 p}{4} c \tag{4.5}\\
& +\sum_{i, j=1}^{m}\left\{g\left(h\left(E_{j}, E_{j}\right), h\left(E_{i}, E_{i}\right)\right)-g\left(h\left(E_{i}, E_{j}\right), h\left(E_{i}, E_{j}\right)\right)\right\} .
\end{align*}
$$

If $\left\{\xi_{1}, \ldots, \xi_{2 n-m}\right\}$ is a local basis of normal sections and $A_{\alpha}=A_{\xi_{\alpha}}$, then we have

$$
\begin{equation*}
h(X, Y)=\sum_{\alpha=1}^{2 n-m} g\left(A_{\alpha} X, Y\right) \xi_{\alpha} \tag{4.6}
\end{equation*}
$$

Thus, (4.4) and (4.5) become

$$
\begin{align*}
S(X, Y)= & \frac{m+2}{4} \operatorname{cg}(P X, P Y)+\frac{m-1}{4} \operatorname{cg}(Q X, Q Y) \\
& +\sum_{\alpha=1}^{2 n-m}\left\{\left(\operatorname{tr} A_{\alpha}\right) g\left(A_{\alpha} X, Y\right)-g\left(A_{\alpha} X, A_{\alpha} Y\right)\right\} \tag{4.7}\\
\rho= & \frac{m^{2}-m+6 p}{4} c+\sum_{\alpha=1}^{2 n-m}\left(\operatorname{tr} A_{\alpha}\right)^{2}-\|h\|^{2} . \tag{4.8}
\end{align*}
$$

Therefore we have
Theorem 5. Let M be a minimal CR submanifold of the complex space form $N(c)$. Then
(a)

$$
S-\frac{m+2}{4} c g \circ(P \times P)-\frac{m-1}{4} c g \circ(Q \times Q)
$$

is negative semidefinite.
(b) $\rho \leq\left(\left(m^{2}-m+6 p\right) / 4\right) c$.

Also, the following two theorems on totally geodesic $C R$ submanifolds can be easily proved.

Theorem 6. A minimal CR submanifold M of a complex space form $N(c)$ is totally geodesic, if and only if, one of the following conditions is satisfied:
(a)

$$
S=\frac{m+2}{4} c g \circ(P \times P)+\frac{m-1}{4} c g \circ(Q \times Q)
$$

(b) $\rho=\left(\left(m^{2}-m+6 p\right) / 4\right) c$.

Theorem 7. A CR submanifold M of a complex space form $N(c)$ is totally geodesic, if and only if:

1. M is D^{\perp}-minimal.
2. The horizontal distribution D is involutive.
3. $H(X)=c$ for any vector field $X \in D$.
4. $K_{M}(X \wedge Y)=c / 4$ for any two vector fields X, Y on M such that $Y \in D^{\perp}$.
5. Totally umbilical $C R$ submanifolds. Suppose M is totally umbilical, that is,

$$
\begin{equation*}
h(X, Y)=g(X, Y) L \tag{5.1}
\end{equation*}
$$

where L is a normal vector field. Then we have
ThEOREM 8. If M is a totally umbilical CR submanifold of a Kaehler manifold $N, m+q=2 n, m \geqslant 3$, and the horizontal distribution D is parallel, then M is totally geodesic.

Proof. From (2.10) and (2.11) we have

$$
\begin{align*}
g\left(\nabla_{X} J P Y\right. & \left.-A_{J Q Y} X, Z\right) \\
& =g\left(J P \nabla_{X} Y+A h(X, Y)+B h(X, Y), Z\right) \tag{5.2}
\end{align*}
$$

for arbitrary vector fields on M. Using (5.2) and the fact that $g\left(h\left(X, Y^{\eta}\right), \xi\right)=$ $g\left(A_{\xi} X, Y\right)$, we get the following relation:

$$
\begin{aligned}
& g\left(\nabla_{X} J P Y, Z\right)-g(L, J Q Y) g(X, Z) \\
& \quad=g\left(J P \nabla_{X} Y, Z\right)+g(A L, Z) g(X, Y)+g(B L, Z) g(X, Y)
\end{aligned}
$$

Substitute Y by $B L$ and Z by X and obtain

$$
\begin{align*}
& g(X, X) g(L, J B L)+g\left(J P \nabla_{X} B L, X\right) \\
& \quad+g(A L, X) g(X, B L)+g(X, B L)^{2}=0 . \tag{5.3}
\end{align*}
$$

Now, choose X as a unit vector field on D (i.e. $X_{x} \in D_{x}$). Hence $g(X, B L)$ $=g(J X, B L)=0$. Differentiating the last relation we have $g\left(\nabla_{X} J X, B L\right)+$ $g\left(J X, \nabla_{X} B L\right)=0$. Since D is parallel $g\left(\nabla_{X} J X, B L\right)=0$, hence $g(X, J P$ $\left.\nabla_{X} B L\right)=0$. Then from (5.3) we have

$$
0=g(L, J B L)=-g(J L, B L)=-g(B L, B L)
$$

hence $B L=0$. Since $q=2 n-m$ we have $J L \in D^{\perp}$ which implies $L=0$ and the proof is done.

Remark. Theorem 8 has been proved by G. D. Ludden, M. Okumura and K. Yano [3] for the particular case of totally real submanifolds of a complex manifold.

Theorem 9. A totally umbilical CR submanifold M of a complex space form $N(c)$ is a space of constant curvature, if and only if, N is a flat complex space.

Proof. For any plane of the tangent space the sectional curvature of a totally umbilical $C R$ submanifold is either
(5.4) $K_{M}=c / 4+\|L\|^{2}$ or
(5.5) $H=c+\|L\|^{2}$.

Then the theorem follows from (5.4) and (5.5).
Theorem 10. If $M(m \geqslant 2)$ is a totally umbilical compact $C R$ submanifold of a hyperbolic complex space form $N(c)$ and if the $C R$ sectional curvature of M is negative, then the group of isometries of M is finite.

Proof. Using in (4.4) the hypotheses of the theorem, we have

$$
\begin{align*}
S(X, Y)= & \left((m+2) / 4 c+(m-1)\|L\|^{2}\right) g(P X, P Y) \tag{5.6}\\
& +(m-1)\left(c / 4+\|L\|^{2}\right) g(Q X, Q Y)
\end{align*}
$$

From (5.4) follows $c / 4+\|L\|^{2}<0$ and $((m+2) / 4) c+(m-1)\|L\|^{2}<0$. Hence the Ricci tensor given by (5.6) is negative definite. M is compact, therefore the theorem follows from [2, Corollary 5.4, p. 251].

Remark. From (5.6) we see that Ricci tensor of a totally umbilical $C R$ submanifold of an elliptic or flat complex space form is always positive definite.

In a forthcoming paper we shall given pinching theorems for $C R$ submanifolds.

References

1. B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1973), 257-266. MR 49 \# 11433.
2. S. Kobayashi and K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1963. MR 27 \#2945.
3. G. D. Ludden, M. Okumura and K. Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 346-353.
4. K. Ogiue, Differential geometry of Kaehler submanifolds, Advances in Math. 13 (1974), 73-114. MR 49 \#11444.
5. K. Yano, On a structure defined by a tensor field f of type (1.1) satisfying $f^{3}+f=0$, Tensor 14 (1963), 99-109. MR 28 \#2513.
6. K. Yano and M. Kon, Totally real submanifolds of complex space forms, Tôhoku Math. J. 28 (1976), 215-225.
7. \qquad Totally real submanifolds of complex space forms. II, Ködai Math. Sem. Rep. 27 (1976), 385-399.
[^1]
[^0]: Received by the editors June 1, 1977 and, in revised form, August 26, 1977 and September 15, 1977.

 AMS (MOS) subject classifications (1970). Primary 53C40, 57D30; Secondary 53C55, 53C10.
 Key words and phrases. CR submanifolds, sectional curvature, scalar curvature, Ricci tensor, totally geodesic and totally umbilical $C R$ submanifolds.

[^1]: Mathematics Institute of iasi University, iasi, Romania

