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CR SUBMANIFOLDS OF A KAEHLER MANIFOLD. I

AUREL BEJANCU

Abstract. The differential geometry of CR submanifolds of a Kaehler

manifold is studied. Theorems about totally geodesic CR submanifolds and

totally umbilical CR submanifolds are given.

1. Introduction. Many papers have been concerned with complex submani-

folds of complex manifolds, especially of complex space forms (see [4] for a

survey of results). Recently, B.Y. Chen and K. Ogiue [1] have studied totally

real submanifolds of complex manifolds. Later these submanifolds were

further investigated by K. Yano, M. Kon, G. D. Ludden and M. Okumura

[3], [6], [7].
The purpose of this paper is to initiate a study of a new class of submani-

folds of a complex manifold. In §2 we introduce the concept of CR submani-

fold and we give its basic properties. CR submanifolds have been studied, till

now, only from the analytic viewpoint (i.e. concerning the complex structure).

Different kinds of sectional curvature, Ricci tensor and scalar curvature of a

CR submanifold of a complex space form are examined in §§3 and 4. Also,

some results on totally geodesic CR submanifolds and totally umbilical CR

submanifolds are proved.

2. CR submanifolds. Let N be a Kaehler manifold of complex dimension n

and M be an /«-dimensional Riemannian submanifold immersed in N.

Denote by g (resp. g0) the Kaehlerian metric on N (resp. the Riemannian

metric on M), by / the almost complex structure on N and by <p the isometric

immersion of M into N.
In order to simplify the presentation, we identify, for each x E M, the

tangent space TXM with <p„(TxM) c T^x)N by means of (¡p. The Riemannian

metric g0 IS identified with the restriction of g to the subspace <p^(TxM). With

this identification in mind we drop the sumbol g0, using instead the symbol g.

Now, suppose on M a differentiable distribution D: x-*DxcTxM

(dim Dx = 2p) is given. This distribution is assumed to be consistent with the

almost complex structure on N, that is, J(DX) = Dx for each x E M.

Moreover, the complementary orthogonal distribution D^: x -* D^ c TXM
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(dim D¿- = q) is supposed to be totally real, that is, J(Dj-) c vx for each

x E M, where vx is the normal space to M at x.

The distribution D (resp. Z)x) can be defined by a projector P (resp. Q)

which satisfy the well-known conditions

(2.1) P2 = P,   Q2=Q,   PQ = QP = 0,   g°(PxQ) = 0.

We call the distribution D (resp. D2-) the horizontal (resp. vertical)
distribution on M.

Definition. The submanifold M endowed with the above pair of

distributions (D, D x) is called a CR submanifold of N.

Remarks. 1. Any real curve or real hypersurface of N is automatically a
CR submanifold.

2. If, in particular, dim Dxx = 0 (resp. dim Dx = 0) for any x E M, the CR

submanifold M is a complex submanifold (resp. totally real submanifold) of
N.

If | is a vector field in the normal bundle, put

(2.2) Jt = A£+Bt+ Ci

where Ai (resp. BÇ) is the horizontal (resp. vertical) part of J$ and C£ the

normal part. Thus, A (resp. B) is a horizontal (resp. vertical) valued 1-form on

the normal bundle and C is an endomorphism of the normal bundle.

If X is a vector field on M, then JQX is a section in the normal bundle of

M, and from (2.2) we have

(2.3) BJQX + QX = 0,

(2.4) AJQX = CJQX = 0.

Applying J to (2.2) and comparing horizontal, vertical and normal parts we
obtain

(2-5) c2£ + m + £ = 0,
(2.6) JAÍ + AC£ = 0,

(2.7) BC£ = 0.

From (2.4) and (2.5) we get C3 + C = 0 on the normal bundle, that is the
structure introduced by K. Yano [5].

Let V be the Kaehlerian connection on N. The Gauss and Weingarten
equations are

(2.8) VxY=VxY + h(X, Y),

(2-9) V3rt«<-4*+*&

where V is the Riemannian connection on M, Vx is the connection on the

normal bundle induced by V and A is the second fundamental form of the

immersion. Ai is an endomorphism of the tangent bundle of M, and cannot

be confused with the 1-form A defined by (2.2).

Since V is a Kaehlerian connection, we have

(2.10) P(^1XJPY) - P{AJQYX) = JP(VXY) + Ah(X, Y),
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(2.11) Q(VXJPY) - Q(AJQYX) = Bh(X, Y),

(2.12) h(X,JPY) + VpQY = JQ(VXY) + Ch(X, Y)

for all vector fields X, Y on M.
Differentiating (2.2) and comparing horizontal, vertical and normal parts

we obtain

(2.13) P{VXAÇ) + P(VXBÇ) + JP(AiX) = P(ACÍX) + A{Vfö,

(2.14) Q{VXA® + Q{VXB§ = Q(ActX) + *(V¿É),

(2.15) h(X,AÍ) + h(X, BÇ) + V¿C£ + J(QAiX) = C(V¿É)

for each vector field X on M and normal section £.

3. Sectional curvature of a CR submanifold. Suppose now that N is a

complex space form of constant holomorphic curvature c. Then, the curva-

ture tensor R of N(c) is given by

R(X, Y)Z = \{g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX
(3.1) -g(JX,Z)JY + 2g(X,JY)JZ).

The equation of Gauss becomes

g(R(X, Y)Z, W)

= j{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)

(3.2) +g(JPY,Z)g(JPX, W)

-g(JPX, Z)g(JPY, W) + 2g(X,JPY)g(JPZ, W)}

+ g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)).

The sectional curvature Ku of M determined by orthonormal vectors X

and Y is given by

KM(X A Y) = | (1 + 3g(PX,JPY)2} + g(h(X, X), h(Y, Y))

(33) -g(h(X,Y),h(X,Y)).

Definition. The holomorphic sectional curvature H of M determined by a

unit vector X E D is the sectional curvature determined by {A', JA'}.

Hence from (3.3) we have

(3.4) H(X) = c + g(A(A\ X), h(JX, JX)) - g(A(*-, JX), h(X, JX)).

From (2.12) we have

(3.5) A(A\/y) = JQ(VXY) + Ch(X, Y)

for any two vector fields on M which lie in D (i.e. Xx, Yx E Dx, Vx E M). As

a consequence of (3.5) and (2.4) we obtain

(3.6) h(JX, JY) = JQ(VJXY) + C2h(X, Y)   VA", Y E D.
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Therefore, the holomorphic sectional curvature H of M determined by a

unit vector X E D is given by

H(X) = c + \\Bh(X, X)\\2 - \\h(X, X)\\2 - \\Ch(X, X)\\2

(3.7) - ||ß V^ll2 + g{h(X,X),JQ VJXX)

-2g(Ch(X,X),JQVxX).

Remark. If, in particular, M is a complex submanifold of N (i.e. (2 = 0,

J = C), then we get the known formula for its holomorphic sectional curva-
ture [4]:

H(X) = c-2\\h(X,X)\\2.

Definition. The horizontal distribution D is called parallel with respect to

the Riemannian connection V on M if VXY E D for any two vector fields X,
Y E D.

Theorem I. If M is a CR submanifold of a complex space form N (c) and D

is an involutive distribution, then the holomorphic sectional curvature verifies

H(X) < c\/X E D.

Proof. Since V is the Levi-Civita connection on M and D is involutive,
from (3.5) we have

h(X,JY) - h(JX, Y) = JQ(VXY- VYX) = JQ([X, Y]) = 0.

Hence h(JX, JY) = - h(X, Y), and the assertion follows from (3.4).

Remarks. 1. The distribution D is involutive, if and only if, h(X, JY) =
h(JX, Y) MX, Y ED.

2. If D is parallel with respect to V, then it is involutive and Theorem 1 is
also valid.

Definition. The CR submanifold M is called Z)-totally geodesic (resp.

D x-totally geodesic) if h(X, Y) = 0 for each X, Y E D (resp. X,Y E DL).

Then from (3.4) we have

Theorem 2. A CR submanifold M of a complex space form N(c) is D-totally

geodesic if and only if the following conditions are fulfilled:

1. The horizontal distribution is involutive.

2.H(X) = c for each X E D.

Now, let {£,,..., Em) be a local field of orthonormal frames on M such

that {Ex, ...,Ep,Ep + l= JEX, . . ., E2p = JEp) (resp. {E2p+X, ..., E2p+q))

is a local field of frames in D (resp. D x).

Definition. The CR submanifold M is called D-minimal (resp. D -"--mini-

mal, if 22'=I{A(/T„ £,)} = 0) (resp. 2?.,{A(¿^+/, E2p+i)} = 0).

Remark. Every CR submanifold with involutive horizontal distribution is
Z)-minimal.

Theorem 3. If M is a D x -minimal CR submanifold of a complex space form

N(c), then M is D x-totally geodesic, if and only if,
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(3.8) KM(X/\Y) = c/4   VX,YED±.

Proof. Substitute A" and Y from (3.3) by QX and QY and obtain

KM (Xf\Y) = c/4 + g(A(ÖA-, ÖA-), h(QY, QY))

-g(h(QX,QY),h(QX,QY)).

Supposing (3.8) valid and taking into account the D 1-minimality of M, from

(3.9) we have

*(A(£V + /, E2p+j), h(E2p+l, E2p+J)) = 0   Vl< i,j < q.

Therefore h(X, Y) = 0 for each vector field X, Y which lies in D±. Of

course, if M is D -"--totally geodesic, (3.8) follows from (3.9).

Definition. A CR submanifold M is called CR totally geodesic, if h(X, Y)

= 0 for any X E D and feö1. The sectional curvature determined by

orthonormal vectors X E D and Y E D± is called CR sectional curvature.

Theorem 4. // the CR sectional curvature of M is given by

KM(X f\Y) = c/4     VlEöjeö1-

and one of the following conditions is fulfilled:

(a) M is D-minimal;

(b) M is D x -minimal;

then M is CR totally geodesic.

The proof follows the same idea as in Theorem 3.

4. Ricci tensor and scalar curvature of a CR manifold. If {£,,..., Em) is a

local field of orthonormal frames on M such that [Ex, . . . , Ep, Ep+X =

JEX,. . ., E2p = JEp) (resp. {E2p + X,. . ., E2p+q}) is a local field of frames on

D (resp. /)-"-), then by straightforward computation we have

m

(4.1) 2 { g(JPE„ Y)g(JPX, E,)} = -g(PX, PY),
/=i

(4-2) fJ{g(JPEi,El)}=0,
/=i

m

(4.3) 2 {g(£„ypA)g(£„ypy)} = g(px, py)
i=i

for any vector fields X, Y on M. If one uses (4.1)—(4.3), one establishes the

following expression for the Ricci tensor of M:

S(X, Y) = ^p- cg(PX, PY) + ^i cg(QX, QY)

(4.4) 4 4

+ 2 UM*, Y),h(Ei,Ei))-g(h(E„ Y),h(E„X))}.
t= 1

In this way the scalar curvature of M is given by
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m2 — m + 6p
P =-2-c

(4.5) 4
m

+ 2  {g{h(Ej,EJ),h(Ei,Ei))-g(h(Ei,Ej),h(Ei, £,))}.
•J= i

If {£,,. . ., £2n-m} is a local basis of normal sections and Aa = A^, then we
have

2n — m

(4-6) AíAf, F)=   2    SK*. >%■
a=l

Thus, (4.4) and (4.5) become

S(X, Y) = ^+1 cg<px, PY) + £f± cg(QX, QY)

(4.7) 2n-m

+   2   {(trAa)g(AaX, Y)-g(AaX,AaY)},
«=i

(a st\ m2 - m + 6p        2n~m 2 ,

(4.8) p=-£c+   2    (tr/la)2-||A||2.
H « = i

Therefore we have

Theorem 5. Let M be a minimal CR submanifold of the complex space form
N(c). Then

(a)

S _ »L+2 cgo(PxP)- »ULI cgo{QX Q)

is negative semidefinite.

(b) p < ((w2 - m + 6p)/4)c.

Also, the following two theorems on totally geodesic CR submanifolds can
be easily proved.

Theorem 6. A minimal CR submanifold M of a complex space form N(c) is

totally geodesic, if and only if, one of the following conditions is satisfied:
(a)

S = ^p eg » (P X P) + ZLf± cg°(QX Q),

(b) p = ((m2 - m + 6p)/4)c.

Theorem 7. A CR submanifold M of a complex space form N(c) is totally
geodesic, if and only if:

1. M is D x-minimal.

2. The horizontal distribution D is involutive.

3. H(X) = cfor any vector field X E D.

4. KM(X f\Y) = c/4 for any two vector fields X,  Y on M such that
Y E D1.
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5. Totally umbilical CR submanifolds. Suppose M is totally umbilical, that

is,

(5.1) h(X, Y) = g(X, Y)L,

where L is a normal vector field. Then we have

Theorem 8. // M is a totally umbilical CR submanifold of a Kaehler

manifold N, m + q = 2n, m > 3, and the horizontal distribution D is parallel,

then M is totally geodesic.

Proof. From (2.10) and (2.11) we have

(5 2) g(VxJPY-AJQYX,Z)

= g(JP V^y + Ah(X, Y) + Bh(X, Y), Z)

for arbitrary vector fields on AÍ. Using (5.2) and the fact that g(h(X, Y*)', £) =

g(A(X, Y), we get the following relation:

g(VXJPY,Z) - g(L,JQY)g(X,Z)

= g(JP VXY, Z) + g(AL, Z)g(X, Y) + g(BL, Z)g(X, Y).

Substitute Y by BL and Z by X and obtain

g(X, X)g(L, JBL) + g(JP VXBL, X)
(5.3)

+ g(AL, X)g(X, BL) + g(X, BL)2= 0.

Now, choose lasa unit vector field on D (i.e. Xx E Dx). Hence g(X, BL)

= g(JX, BL) = 0. Differentiating the last relation we have g(VxJX, BL) +

g(JX, VXBL) = 0. Since D is parallel g(VxJX, BL) = 0, hence g(X, JP

VXBL) = 0. Then from (5.3) we have

0 = g(L, JBL) = -g(JL, BL) = -g(BL, BL),

hence BL = 0. Since q = 2n - m we have JL E D x which implies L = 0

and the proof is done.

Remark. Theorem 8 has been proved by G. D. Ludden, M. Okumura and

K. Yano [3] for the particular case of totally real submanifolds of a complex

manifold.

Theorem 9. A totally umbilical CR submanifold M of a complex space form

N(c) is a space of constant curvature, if and only if, N is aflat complex space.

Proof. For any plane of the tangent space the sectional curvature of a

totally umbilical CR submanifold is either

(5.4)*M-c/4 + ||L||2or

(5.5)/7 = c + ||L||2.

Then the theorem follows from (5.4) and (5.5).

Theorem 10. // M (m > 2) is a totally umbilical compact CR submanifold of

a hyperbolic complex space form N (c) and if the CR sectional curvature of M is

negative, then the group of isometries of M is finite.
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Proof. Using in (4.4) the hypotheses of the theorem, we have

S(X, Y) = ((m + 2)/4c + (m - \)\\L\\2)g(PX, PY)

+ (m-\){c/4 + \\L\\2)g(QX,QY).

From (5.4) follows c/4 + ||L||2 < 0 and ((m + 2)/4)c + (m - \)\\L\\2 < 0.

Hence the Ricci tensor given by (5.6) is negative definite. M is compact,

therefore the theorem follows from [2, Corollary 5.4, p. 251].

Remark. From (5.6) we see that Ricci tensor of a totally umbilical CR

submanifold of an elliptic or flat complex space form is always positive
definite.

In a forthcoming paper we shall given pinching theorems for CR submani-
folds.
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