SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD WITH SEMISYMMETRIC METRIC CONNECTIONS

ZENSHO NAKAO

Abstract

We derive the Gauss curvature equation and the CodazziMainardi equation with respect to a semisymmetric metric connection on a Riemannian manifold and the induced one on a submanifold. We then generalize the theorema egregium of Gauss.

1. Introduction. K. Yano [6] proved that a Riemannian manifold admits a semisymmetric metric connection with vanishing curvature tensor if and only if the manifold is conformally flat. Later, T. Imai [3], [4] studied some properties of hypersurfaces of a Riemannian manifold with a semisymmetric metric connection, and also obtained the Gauss curvature equation and the Codazzi-Mainardi equation with respect to a semisymmetric metric connection on a Riemannian manifold and the induced one on a hypersurface. The object of this paper is to derive the above two equations with respect to a semisymmetric metric connection on an $(n+p)$-dimensional Riemannian manifold and the induced one on an n-dimensional submanifold, and also to generalize the theorema egregium of Gauss. The notation of [5] will be used for the most part.
2. Gauss equation and Weingarten equation. Let M be an n-dimensional Riemannian manifold isometrically imbedded in an $(n+p)$-dimensional Riemannian manifold M^{\prime}. We denote by g the Riemannian metric tensor on M^{\prime} as well as the induced one on M. Since M has codimension p we can locally choose p cross sections $\xi_{i}, \quad i=1,2, \ldots, p$, of the normal bundle $T(M)^{\perp}$ of M in M^{\prime} which are orthonormal at each point of M.

A linear connection $\stackrel{\circ}{\nabla}^{\prime}$ on M^{\prime} is called a semisymmetric metric connection if $\stackrel{\circ}{\nabla}^{\prime} g=0$ (metric) and the torsion tensor $\stackrel{\circ}{T}^{\prime}$ of $\stackrel{\circ}{\nabla}^{\prime}$ satisfies $\stackrel{\circ}{T}^{\prime}\left(X^{\prime}, Y^{\prime}\right)$ $=\pi\left(Y^{\prime}\right) X^{\prime}-\pi\left(X^{\prime}\right) Y^{\prime}$ (semisymmetric) for $X^{\prime}, Y^{\prime} \in \mathcal{X}\left(M^{\prime}\right)$, where π is a 1form on M^{\prime} [6].

We now assume that a semisymmetric metric connection ∇^{\prime} is given on M^{\prime} by

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X^{\prime}}^{\prime} Y^{\prime}=\nabla_{X^{\prime}}^{\prime} Y^{\prime}+\pi\left(Y^{\prime}\right) X^{\prime}-g\left(X^{\prime}, Y^{\prime}\right) P^{\prime} \tag{1}
\end{equation*}
$$

for $X^{\prime}, Y^{\prime} \in \mathcal{X}\left(M^{\prime}\right)$, where ∇^{\prime} denotes the Riemannian connection with respect to g and P^{\prime} a vector field on M^{\prime} defined by $g\left(P^{\prime}, X^{\prime}\right)=\pi\left(X^{\prime}\right)$ for X^{\prime}

[^0]$\in \mathcal{X}\left(M^{\prime}\right)$ [6]. On M we define a vector field P and real-valued functions $\lambda_{i}, i=1,2, \ldots, p$, by decomposing P^{\prime} into its unique tangential and normal components, thus
\[

$$
\begin{equation*}
P^{\prime}=P+\sum_{i=1}^{p} \lambda_{i} \xi_{i} \tag{2}
\end{equation*}
$$

\]

If we denote by ∇ the induced Riemannian connection on M from ∇^{\prime} on M^{\prime}, then we have the Gauss equation (with respect to ∇^{\prime}),

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\nabla_{X} Y+\sum_{i=1}^{p} h_{i}(X, Y) \xi_{i} \tag{3}
\end{equation*}
$$

for $X, Y \in \mathscr{X}(M)$, where h_{i} are the second fundamental forms on $M[5, \mathrm{pp}$. 10-21]. Let a connection $\stackrel{\circ}{\nabla}$ on M be induced from the semisymmetric metric connection $\stackrel{\circ}{\nabla}^{\prime}$ on M^{\prime} by the equation which may be called the Gauss equation with respect to $\stackrel{\circ}{\nabla}^{\prime}$,

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X}^{\prime} Y=\stackrel{\circ}{\nabla}_{X} Y+\sum_{i=1}^{p} \dot{\circ}_{i}(X, Y) \xi_{i} \tag{4}
\end{equation*}
$$

for $X, Y \in \mathfrak{X}(M)$, where \dot{h}_{i} are tensors of type $(0,2)$ on M.
From (1), using (2), (3) and (4), we obtain

$$
\begin{align*}
\stackrel{\circ}{\nabla}_{X} Y+\sum_{i=1}^{p} \stackrel{\circ}{h}_{i}(X, Y) \xi_{i}= & \nabla_{X} Y+\sum_{i=1}^{p} h_{i}(X, Y) \xi_{i} \tag{5}\\
& +\pi(Y) X-g(X, Y)\left(P+\sum_{i=1}^{p} \lambda_{i} \xi_{i}\right),
\end{align*}
$$

from which we get

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} Y=\nabla_{X} Y+\pi(Y) X-g(X, Y) P \tag{6}
\end{equation*}
$$

for $X, Y \in \mathfrak{X}(M)$, and we also have

$$
\begin{equation*}
\grave{h}_{i}=h_{i}-\lambda_{i} g \tag{7}
\end{equation*}
$$

Using (6), we get $\dot{\nabla}_{X}\{g(Y, Z)\}=\left(\dot{\nabla}_{X} g\right)(Y, Z)+\nabla_{X}\{g(Y, Z)\}$, from which follows $\left(\dot{\nabla}_{X} g\right)(Y, Z)=0$ for $X, Y, Z \in \mathscr{X}(M)$, i.e.,

$$
\begin{equation*}
\stackrel{\circ}{\nabla} g=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\circ}{T}(X, Y)=T(X, Y)+\pi(Y) X-\pi(X) Y=\pi(Y) X-\pi(X) Y \tag{9}
\end{equation*}
$$

for $X, Y \in \mathcal{X}(M)$, where $\stackrel{\circ}{T}$ and T denote the torsion tensors of connections $\stackrel{\circ}{ }$ and ∇, respectively. Then from (8) and (9) we have [4]

Theorem 1. The induced connection on a submanifold of a Riemannian manifold with a semisymmetric metric connection is also a semisymmetric metric

The Weingarten equation (with respect to ∇^{\prime}) is given by

$$
\begin{equation*}
\nabla_{X}^{\prime} \xi_{i}=-A_{i}(X)+D_{X} \xi_{i} \tag{10}
\end{equation*}
$$

for $X \in X(M)$, where A_{i} are tensors of type (1,1) on M and D is a (metric) connection in the normal bundle $T(M)^{\perp}$ with respect to the fibre metric induced from $g[5, \mathrm{pp} .10-21]$.

Note that from (3) and (10) we have $h_{i}(X, Y)=g\left(Y, A_{i}(X)\right)$, and thus we get

$$
\begin{equation*}
h_{i}(X, Y)=g\left(X, A_{i}(Y)\right)=g\left(A_{i}(X), Y\right) \tag{11}
\end{equation*}
$$

for $X, Y \in \mathcal{X}(M)$ since h_{i} are symmetric. While from (1) and (2) we have $\stackrel{\circ}{\nabla}_{X}^{\prime} \xi_{i}=\nabla_{X}^{\prime} \xi_{i}+\lambda_{i} X$, which together with (10) implies $\stackrel{\circ}{\nabla}_{X}^{\prime} \xi_{i}=-\left(A_{i}-\lambda_{i} I\right)$ - $(X)+D_{X} \xi_{i}$, where I is the identity tensor. Defining tensors \AA_{i} of type $(1,1)$ on M by $A_{i}=A_{i}-\lambda_{i} I$, we get a more concise expression,

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X}^{\prime} \xi_{i}=-\AA_{i}(X)+D_{X} \xi_{i} \tag{12}
\end{equation*}
$$

for $X \in \mathfrak{X}(M)$, which may be called the Weingarten equation with respect to ∇^{\prime}.

We obtain, using (7) and (11), the following result which will be used later [1], [5, pp. 10-21]:

Lemma. The induced linear transformations, also denoted by A_{i} and \AA_{i}, of the tangent space $T_{m}(M)$ at $m \in M$ defined by (10) and (12) satisfy, respectively, $h_{i}(X, Y)=g\left(A_{i}(X), Y\right)$ and $\check{h}_{i}(X, Y)=g\left(\AA_{i}(X), Y\right)$ for $X, Y \in T_{m}(M)$, and thus are symmetric with respect to g, i.e., $g\left(A_{i}(X), Y\right)=g\left(X, A_{i}(Y)\right)$ and $g\left(\AA_{i}(X), Y\right)=g\left(X, \AA_{i}(Y)\right)$ for $X, Y \in T_{m}(M)$.

The mean curvature normal H of M (with respect to ∇) is given by $H=(1 / n) \sum_{i=1}^{p}\left(\operatorname{trace} A_{i}\right) \xi_{i}$ [5, pp. 29-42]. We define similarly the mean curvature normal $\stackrel{H}{\circ}$ of M with respect to ∇ by $\stackrel{\circ}{H}=(1 / n) \sum_{i=1}^{p}\left(\right.$ trace $\left.\AA_{i}\right) \xi_{i}$. Let $X_{j}, j=1,2, \ldots, n$, be n orthonormal local vector fields on M. Then H and H can be expressed as

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{p}\left\{\sum_{j=1}^{n} h_{i}\left(X_{j}, X_{j}\right)\right\} \xi_{i}, \quad \stackrel{\circ}{H}=\frac{1}{n} \sum_{i=1}^{p}\left\{\sum_{j=1}^{n} \stackrel{\circ}{h}_{i}\left(X_{j}, X_{j}\right)\right\} \xi_{i} \tag{13}
\end{equation*}
$$

If $h_{i}=k_{i} g$, where k_{i} are real-valued functions on M, then M is said to be totally umbilical (with respect to ∇). Similarly, if $\dot{h}_{i}=k_{i} g$, then M is said to be totally umbilical with respect to $\stackrel{\circ}{\nabla}[4],[7, \mathrm{pp} .91-93]$.

We get from (2), (7) and (13) the following results [4]:
Theorem 2. The mean curvature normal of M and that of M with respect to the semisymmetric metric connection ∇ coincide if and only if the vector field P^{\prime} is tangent to M.

Theorem 3. A submanifold M of a Riemannian manifold M^{\prime} is totally
3. Gauss curvature equation and Codazzi-Mainardi equation. We denote by $R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}=\nabla_{X^{\prime}}^{\prime} \nabla_{Y^{\prime}}^{\prime} Z^{\prime}-\nabla_{Y^{\prime}}^{\prime} \nabla_{X^{\prime}}^{\prime} Z^{\prime}-\nabla_{\left[X^{\prime}, Y^{\prime}\right]}^{\prime} Z^{\prime} \quad$ for $\quad X^{\prime}, Y^{\prime}, Z^{\prime}$ $\in \mathscr{X}\left(M^{\prime}\right)$ and $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \quad$ for $\quad X, Y, Z$ $\in \mathfrak{X}(M)$ the curvature tensors of ∇^{\prime} and ∇, respectively. Then the Gauss curvature equation (with respect to ∇^{\prime} and ∇) is given by

$$
\begin{align*}
R^{\prime}(W, Z, X, Y)= & R(W, Z, X, Y) \\
& +\sum_{i=1}^{p}\left\{h_{i}(X, Z) h_{i}(Y, W)-h_{i}(Y, Z) h_{i}(X, W)\right\} \tag{14}
\end{align*}
$$

for $X, Y, Z, W \in \mathscr{X}(M)$, where

$$
R^{\prime}\left(W^{\prime}, Z^{\prime}, X^{\prime}, Y^{\prime}\right)=g\left(R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}, W^{\prime}\right)
$$

for $X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime} \in \mathcal{X}\left(M^{\prime}\right)$ and

$$
R(W, Z, X, Y)=g(R(X, Y) Z, W)
$$

for $X, Y, Z, W \in \mathcal{X}(M)$ are, respectively, the Riemann-Christoffel curvature tensors of M^{\prime} and M (with respect to ∇^{\prime} and ∇), and the Codazzi-Mainardi equation (with respect to ∇^{\prime} and ∇) is given by

$$
\begin{align*}
R^{\prime}\left(\xi_{i}, Z, X, Y\right)= & \left(\nabla_{X} h_{i}\right)(Y, Z)-\left(\nabla_{Y} h_{i}\right)(X, Z) \\
& +\sum_{j=1}^{p} g\left(\left\{h_{j}(Y, Z) D_{X} \xi_{j}-h_{j}(X, Z) D_{Y} \xi_{j}\right\}, \xi_{i}\right) \tag{15}
\end{align*}
$$

for $X, Y, Z \in X(M)$ [1], [5, pp. 22-29].
Next we shall find the Gauss curvature equation and the Codazzi-Mainardi equation with respect to the semisymmetric metric connections $\stackrel{\circ}{\nabla}^{\prime}$ and ${ }_{\nabla}^{\circ}$. The curvature tensors of $\stackrel{\circ}{ }^{\prime}$ and ∇° are defined, respectively, by

$$
R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}=\stackrel{\circ}{\nabla}_{X^{\prime}}^{\prime} \stackrel{\circ}{\nabla}_{Y^{\prime}}^{\prime} Z^{\prime}-\stackrel{\circ}{\nabla}_{Y^{\prime}}^{\prime} \stackrel{\circ}{\nabla}_{X^{\prime}}^{\prime} Z^{\prime}-\stackrel{\circ}{\nabla}_{\left[X^{\prime}, Y^{\prime}\right]}^{\prime} Z^{\prime}
$$

for $X^{\prime}, Y^{\prime}, Z^{\prime} \in \mathcal{X}\left(M^{\prime}\right)$ and $\dot{R}(X, Y) Z=\stackrel{\circ}{\nabla}_{X} \stackrel{\circ}{\nabla}_{Y} Z-\stackrel{\circ}{\nabla}_{Y} \stackrel{\circ}{\nabla}_{X} Z-\stackrel{\circ}{\nabla}_{[X, Y]} Z$ for $X, Y, Z \in \mathcal{X}(M)$. Then from (4), (9) and (12) we get

$$
\begin{align*}
& \stackrel{\circ}{R}^{\prime}(X, Y) Z=\stackrel{\circ}{R}(X, Y) Z+\sum_{i=1}^{p}\left\{\circ_{i}(X, Z) \AA_{i}(Y)-\stackrel{\circ}{h}_{i}(Y, Z) \AA_{i}(X)\right\} \\
& +\sum_{i=1}^{p}\left\{\left(\stackrel{\circ}{\nabla}_{X} \stackrel{\circ}{h}_{i}\right)(Y, Z)-\left(\stackrel{\circ}{\nabla}_{Y} \stackrel{\circ}{h}_{i}\right)(X, Z)\right. \tag{16}\\
& \left.+\grave{h}_{i}(\pi(Y) X-\pi(X) Y, Z)\right\} \xi_{i} \\
& +\sum_{i=1}^{p}\left\{\circ_{i}(Y, Z) D_{X} \xi_{i}-\grave{h}_{i}(X, Z) D_{Y} \xi_{i}\right\}
\end{align*}
$$

for $X, Y, Z \in X(M)$.
We define the Riemann-Christoffel curvature tensors of M^{\prime} and M with respect to $\stackrel{\circ}{\nabla}^{\prime}$ and $\stackrel{\circ}{\nabla}$, respectively, by $\AA^{\prime}\left(W^{\prime}, Z^{\prime}, X^{\prime}, Y^{\prime}\right)=g\left(\AA^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}, W^{\prime}\right)$ and $\AA(W, Z, X, Y)=g(\stackrel{\circ}{R}(X, Y) Z, W)$ for $X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime} \in \mathcal{X}\left(M^{\prime}\right)$ and X, Y,
 curvature equation with respect to ∇^{\prime} and ∇° [4]:

$$
\begin{align*}
R^{\prime}(W, Z, X, Y)= & \stackrel{\circ}{R}(W, Z, X, Y) \\
& +\sum_{i=1}^{p}\left\{\dot{\circ}_{1}(X, Z) \stackrel{\circ}{h}_{i}(Y, W)-\stackrel{\circ}{h}_{i}(Y, Z) \dot{\circ}_{i}(X, W)\right\} \tag{17}
\end{align*}
$$

for $X, Y, Z, W \in \mathscr{X}(M)$. We also have from (16) the Codazzi-Mainardi equation with respect to $\dot{\circ}^{\prime}$ and ∇° [4]:

$$
\dot{R}^{\prime}\left(\xi_{i}, Z, X, Y\right)=\left(\dot{\nabla}_{X} \dot{h}_{i}\right)(Y, Z)-\left(\dot{\nabla}_{Y} \dot{h}_{i}\right)(X, Z)+\grave{h}_{i}(\pi(Y) X-\pi(X) Y, Z)
$$

$$
\begin{equation*}
+\sum_{j=1}^{p} g\left(\left\{\grave{h}_{j}(Y, Z) D_{X} \xi_{j}-\grave{h}_{j}(X, Z) D_{Y} \xi_{j}\right\}, \xi_{i}\right) \tag{18}
\end{equation*}
$$

for $X, Y, Z \in \mathscr{X}(M)$.
Now we suppose the Riemannian manifold M^{\prime} is conformally flat and that the submanifold M is totally umbilical, then we can assume $R^{\prime}=0$ [6], and we also have $\dot{\circ}_{i}=k_{i} g$, since M is totally umbilical with respect to $\stackrel{\circ}{\nabla}$ by Theorem 3. Then from (17) we get

$$
\begin{equation*}
\stackrel{\circ}{R}(W, Z, X, Y)=\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \sum_{i=1}^{p}\left(k_{i}\right)^{2} \tag{19}
\end{equation*}
$$

for $X, Y, Z, W \in \mathcal{X}(M)$, which implies that M is also conformally flat ($n>$ 3) [3]. Thus we have [4]

Theorem 4. A totally umbilical submanifold in a conformally flat Riemannian manifold is conformally flat.
4. Theorema egregium. We obtain a generalization of the theorema egregium of Gauss with respect to semisymmetric metric connection by the method of N. Hicks [1].

From the Gauss curvature equation (17) and the Lemma, we get

$$
\begin{aligned}
\AA^{\prime}(X, Y, X, Y)= & \stackrel{\circ}{R}(X, Y, X, Y) \\
& +\sum_{i=1}^{p}\left\{g\left(\AA_{i}(X), Y\right)^{2}-g\left(\AA_{i}(X), X\right) g\left(\AA_{i}(Y), Y\right)\right\}
\end{aligned}
$$

for $X, Y \in \mathfrak{X}(M)$. Therefore we have
Theorem 5. Let \mathscr{P} be a 2-dimensional subspace of $T_{m}(M)$, and let $R^{\prime}(\mathscr{P})$ and $\dot{R}(\mathscr{P})$ be, respectively, the sectional curvatures of \mathscr{P} in M^{\prime} and M with respect to the semisymmetric connections $\stackrel{\circ}{\nabla}^{\prime}$ and ∇°. If X and Y form an orthonormal base of \mathfrak{P}, then

$$
\begin{equation*}
\stackrel{\circ}{R}^{\prime}(\mathscr{P})=\stackrel{\circ}{R}(\mathscr{P})+\sum_{i=1}^{p}\left\{g\left(\AA_{i}(X), Y\right)^{2}-g\left(\AA_{i}(X), X\right) g\left(\AA_{i}(Y), Y\right)\right\} . \tag{20}
\end{equation*}
$$

As immediate consequences of Theorem 5 we get [6]
Corollary 1. If $\operatorname{dim} M^{\prime}=3$ and M is a surface in M^{\prime}, then the determinant of \AA_{i} (where there is now only one such map) is independent of \AA_{i} but depends only
 $\stackrel{\circ}{\nabla}$ and $\stackrel{\circ}{\nabla}$.

Corollary 2. If M^{\prime} is a conformally flat Riemannian manifold of dimension 3 and M is a surface in M^{\prime}, then there exists a semisymmetric metric connection $\nabla \circ$ on M for which $\operatorname{det} \AA_{i}$ is an intrinsic invariant of M, and, when P^{\prime} is tangent to M, $\operatorname{det} \AA_{i}(=\stackrel{\circ}{R}(\mathscr{P}))$ is equal to $\operatorname{det} A_{i}$ which is the Gaussian curvature of M.

References

1. N. J. Hicks, Submanifolds of semi-Riemannian manifolds, Rend. Circ. Mat. Palermo (2) 12 (1963), 137-149. MR 29 \# 1601.
2. -, Notes on differential geometry, Van Nostrand Math. Studies, no. 3, Van Nostrand, Princeton, N. J., 1965. MR 31 \# 3936.
3. T. Imai, Notes on semi-symmetric metric connections, Tensor 24 (1972), 293-296.
4. -, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor 23 (1972), 300-306.
5. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Appl. Math., no. 15, Vol. II, Interscience, New York, 1969. MR 38 \#6501.
6. K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586. MR 43 \# 1078.
7. -, Integral formulas in Riemannian geometry, Pure and Appl. Math., no. 1, Dekker, New York, 1970. MR 44 \#2174.

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069

[^0]: Received by the editors August 27, 1973 and, in revised form, December 30, 1974.
 AMS (MOS) subject classifications (1970). Primary 53B15, 53B25; Secondary 53C05.
 Key words and phrases. Codazzi-Mainardi equation, conformally flat space, Gauss curvature equation, mean curvature normal, sectional curvature, semisymmetric metric connection, totally umbilical submanifold.

