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Summary. — Real hypersurfaces of an almost Hermitian manifold naturally admit an almost
contact metric structure and the (f, g, w, v, w, 4, u, v)-structure is defined on submanifolds
of codimension 3 of an almost Hermittan manifold. We study the so-called semi-invariant
submanifolds of a complex space form with almoest contact metric compound structure which
is a general notion of (f, g, w, v, w, 4, u, v)-structure.

0. - Introduction.

K. YANO and one of the present authors [11] have studied the notion of (f, g, u,
v, W, A, 4, v)-structure induced in a submanifold M of codimension 3 in an almost
Hermitian manifold, and studied conditions for such a structure to define an almost
contact metrie structure in M.

By the way, Y. TAsHIRO and I.-B. Kim [11] have generalized the notion of
{f, 9, u, v, w, 4, u, »)-structure recently by defining the so-called metric compound
structure in a submanifold of an almost Hermitian manifold.

On the other hand, the present authors [3] studied a submanifold of codimen-
sion 3 of a complex projective space admitting an almost contact metric structure.
The purpose of the present paper is to devote in generalizing the intrinsie character
of a submanifold of codimension 3 of a complex space form. Our main result appears
in § 5, in which, by the method of Riemannian fibre bundles, we prove that an
m-dimensional complete semi-invariant submanifold M of a complex projective
space CPm™ admitting an almost contact metric compound structure is globally
isometric to M (a,b) = #(8*"*'(a) X 8*7**(b)), where 7 is a natural projection of a
{2m -+ 1)-dimensional unit sphere 82+ onto a complex projective space CPm defined
by the Hopi-fibration, (p, ¢) is some of (n —1)/2 and a® + b*= 1.

(*) Entrata in Redazione il 1 settembre 1984.
(**) This research was partially supported by Korean Science and Engineering Foundation
Grant.
Indirizzo degli AA.: Department of Mathematics, Teachers College, Kyungpook National
University, 635 Taegu, Korea.
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In determining the submanifold, we quote the following theorem.

TaEOREM A [9]. — M} (a, b) are only complete hypersurface of a complex projective
space in which the second fundamental form A commutes with the fundamental tensor f
of the submersion sz compatible with 7.

Manifolds, submanifolds, geometric objects and mappings diseussed in this paper
are assumed to be differentiable and of 0°. We use throughout this paper the
systems of indices as follows:

2 Wy v, A =1,2,..,2m+1; «B,y,0=12,.,n-F1,
A,B,C,D=1,2,..,2m; hyi j, k=1,2,...,n,
w, k&, Y, & == 1% 2% ... p*, n--p=2m.

The summation convention will be used with respect to those systems of indices

The authors would like to express here their sincere gratitude to Professor J. 8
Pax who gave them many valuable suggestions to improve the paper.

1. — Preliminaries.

Let M be a 2m-dimensional almost Hermitian manifold eovered by a system
of coordinate neighborhoeds {U; x4} and (¥, G) the almost Hermitian structure,
where F is the almost complex structure tensor and G the almost Hermitian metric

tensor of M. We denote by Fz4 and G¢s components of F and @ respectively. Then
we have

(1.1) FBAFCB _ - 6(}4 9 FCDFBEGDE: GOB 3

8¢4 being the Kronecker delta.
If we put the covariant components of F as

(1~2) Fog= Fo4Gpy 3
then Fop is skew—symmetrie With‘ respect to the indices € and B.
Let M be an n-dimensional Riemannian manifold covered by a system of coor-

dinate neighborhoods {U;#"} and immersed isometrically in M by the immersion
i: M —> JT. We identify (M) with M itself and represent the immersion locally by

(1.3) ot = pi(a") .

We now put B4= 0,44 (d,= 8/cx’). Then B4 are n linearly independent vec-
tors of I tangent to M. And denote by C,* mutually orthogonal unit normal veetor
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field of M. Then we have Gz B,20.° = 0 and the metric tensor of the normal
bundles of M is given by ¢.,= Gz CC," = 4,,. Therefore, vector fields B,4 and
0,# span the tangent space 7,(J]) of M at every point P of M. The metric tensor g
of M induced from that of M iz given by

{1.4) 915 = G B;°B,?

since the immersion is isometric.
The transforms of the tangent vectors B;4 and the normal vectors C,4 to M
by F are expressed in the form

(1.5) FytB,? = f*By* + fijmA s

(1'6) FBAOwB —_ fthhA + facyGyA 3

where f;* are components of a tensor field of type (1, 1), f,* those of 1-form for each
fixed z, f,* vector field associated with f* given by f.*= f#¢"*¢,., {.¥ function for

fixed indices » and y. Putting f;,= f,*gu:y fio= F?8v0s fos = 1"Gn; a0d fop = f.70,y,
we can easily find

(1.7} fie=—"1u, fio==tui s fov=—"Tus.

Applying F' to (1.5) and (1.6) respectively and using (1.1) and these expressions,
we have

(1.8) fiffd = — & - {71,
(19) ,fjtfty'_fjm,fwy: 07 fxtfti"!_fmyfyi: 07
(110) fyzfzac: e 62/m “+ fytftx .

The second equation of (1.1) and (1.4) imply
(1.11) fi' 9= g F7fin -

Now, removing the almost Hermitian ambient manifold ]EZ, we suppose that
an n-dimensional Riemannian manifold M admits a metric tensor g,;, a tensor field
fi* of type (1,1), p vector fields f,» p 1-forms f* and p(p —1)/2 scalar fields f,,
satisfying the relationships (1.8)~(1.11). Such a set (f%, g,;, f.", f.*) is said to be a
metric compound structure on M.

If we put

fz‘h - ;fa:h giz‘ 0
12 — a —
(1.12) F (,fm- for and & (O 5..)
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then the set (F, &) defines an almost Hermitian strueture in the product manifold
M xR? of the manifold M with a p-dimensional Euclidean space R*.

We suppose that M admits an almost contaet metric compound structure. Then
we have

(1.13) fitfr = — 0> + P; P,
(1.14) [itPs=10, ["Pi=0,
(1.15) P, Pi=1

and

(1.16) fitf96s = gi::— PPy,

where P; is a 1-form and P* vector field associated with P; given by P*= gWPpP,
on M.

In this case we know that the dimension » of M is odd and the rank of (f;%) is
equal to »—1.

Comparing (1.11) and (1.16), we have

(1.17) fPfw= P: P, .

This equation shows that the product of the matrix (f#) with its transpose is
of rank 1 and hence the matrix (f#) by itself is of rank 1.
Therefore, we may put

(1.18) fi# =Py,

where »* are certain scalar fields for each .
Since f,f,f= P;P'= 1, we have

(1.19) per =1

and hence (1.9) and (1.10) are reduced respectively to

(1.20) frve =10, v f7=
and
(1.21) fAfe= — 0,7 +Fwyr®.

The equations (1.19)~(1.21) form an almost contact metric structure on K at every
point of M, and consequently we see that the dimension p of E” is odd.
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Conversely, assuming that an almost conbtact metric structure (7, ¢,, %) on R»
is admitted, we can prove that jhe metric compound strucjure (f) ¢;:, f.* 1,%)
induces an almost contact metric structure {f,%, g,,, P*) on M.

Thus we have

THEOREM 1.1 {[111). — Leét (f, g;s, 1" 1,%) e a metric compound structure on M.
In order that f,» and g,; constitute an almost contact metric structure (f#, g;;, P*) on M,
it is mecessary and sufficient that {,° and g,, constitute an almost contact metric struc-
ture (f,%, uz, v*) on R? at every point of M.

From above discussions we also have

THEOREM 1.2 ([11]). — In ovrder for a metric compound structure (f, g;:, f.% 1)
to be almost confact metric structure, it is necessary and sufficient that the matriz (f.%)
is of ramk 1, that is, the p vector fields f,» are all parallel to one another.

A metric compound structure admitting an almost contact metric structure is
said to be an almost contact metric compound structure on M.

2. — Submanuifolds of codimension p of an almost Hermitian manifold.

In this section we assume that n-dimensional submanifold M of codimension p
of an almogt Hermitian manifold # admits an almost contact metric compound
structure (f ¢::, f", f,*) and consequently (f*, ¢,;, P*) defines an almost contact
metrie structure. So, (1.13)~(1.16) are valid.

The vector field N4 defined by

(2.1) N4— (4

is unit normal to M because Gy 0,° 0, 8= §,, and v,»*= 1.

If we transform the tangent vectors B,4 and the unit normal vector N4 by F,
then we have

(2'2) FBABiB: fihBhA+ Pi-NAy
(2.3) FpaNB8= — PtB,4

respectively because of (1.18), (1.20) and (2.1).

It is well known that the submanifold M of an almost Hermitian manifold
satisfying (2.2) and (2.3) is semi-invariant with respeet to N4 and we call N4 the
distinguished normal to M ([1], [10]).

Now, we take N4 as (.4 Then we have from (2.1) that »*’ =1 and »@ =0,
where here and in the sequel, () runs over the range {2%, ..., p*}. For the convenience
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of notation, we write C4 in stead of C.4 Then we can represent (2.2) and (2.3)
respectively as follows:

(2.4) FptB = {rB,* + P, 04,
(2.5) Byt (5= — PB4

Taking aeccount of (1.18), (1.20) and the fact that =0 and ¥ = 0, we find
from (1.6)

(26) FBA O(w)B == f(w)(y) C('y)A .
Then, by applying F to (2.6}, it follows
(2.7) far? f'® = — 0™ .

Denoting by V; the operator of van der Waerden-Bortolotti covariant differentia-
tion with respect to the fundamental tensor g;;, we have the equations of Gauss
for M

(2.8) ViBA= 4,04+ 4,20*,

where A4;, and A4, are the second fundamental fensors with respect to normal
vector fields €4 and (4 respectively, and those of Weingarten

(2.9) V;04= — AP Byt + ;'@ Oy*
(2.10) Vi Ot = — A Byt — L 04 + L™ Ow*

where A= g"Ad,,, Alm= 0" Guyw A = A;g, L™ and l;,,? are the third fun-
damental tensors, L= L;% guiw .

Putting Lwiwm = liw® guw, we can easily verify lww= — Luw since Cy* are
mutually orthogonal.

We now assume that the ambient manifold M is a Kaehlerian manifold, that
is, VF = 0, where ¥ is a covariant differentiation in 7.

Differentiating (2.4)~(2.6) covariantly and using (2.8)~(2.10) and these equa-
tions, we can easily find

(2.11) V= — A, PP A)P,
(2.12) V,P,=— A;ft, V;Pr= A;jf,
(2.13) A @D f = A, 0 ft - WP, ,
(2.14) iA“m)Pt = W )@

(2.15) Vifu® = Lip? ™ — [P L™ .
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Tt we transvect (2.13) with f,,¥ and take account of (2.7), then we obtain

(2.16) 4,0 = — 4, 0F o — LOP f,@
from which
{2.17) AW = — Pt W@

where we have put A® = gi?4 .
Also, transvecting (2.14) with f,,*¥ and using (2.7), we find

{2.18) 1@ = A,;@ Ptf,@

The equations of Gauss for M in a Kaehlerian manifold I are given by
(219) K./= Kpu'B,PBB2B" + A0 4;,— AP Ay + Ajn A0 — A d, ™,
where Kpepd and K, are the Riemann-Christoffel curvature tensors of M and M
respectively, and we have put B, = B2 g"G ;.

We now assume that the ambient manifold # is a Kaehlerian manifold of

constant holomorphic sectional curvature and hence its curvature tensor has the
form

. 4 )
(2-20> Kpopt = Z (6DAgoB“ 50‘*!]1)3 T FDAFCB“ Pt Fyp— 2FDCFBA) .

Substituting this into (2.19) and using (1.4) and (2.4), we can see that

(2.21) Kyr= (6khg;‘i'_ ajhgki 4 i — [ fei— 2fusf®) + A Ay — A Ay,

4 At AP — Afry Ay .

B o

By taking account of (2.4), (2.5), (2.6), (2.9), (2.10) and (2.20), we have the equa-
tions of Codazzi:

. ¢ .

(2'22) VkAJ‘L_ VJAkz_ lk(m)Aiiu) + ZJ'(ar:)léki(m) == Z (-thjz— nykz_ 2-Pz,fk7) 9
(2.28) VA @ — VA, + L@ A — 1,9 Ay + L A0 — 1@ 4,9 = 0
and those of Ricei are given by

(2.24) V29—V, 1@ A2 4,9 — 44,9+ 1y 19 — 1)@ = 0,
(2.25) Vil — Viliy® + Aty AV — Aty A3 4 i 1P — Ly 1,9

e
[
T Lo i — L L™ = E,fiif(w)(y) .
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3. — Submanifolds of a complex space form admitting an almest contact meiric
compound structure.

In this section, we assume that the metric compound structure induced on an
n-dimensional submanifold M of codimension p of a Kaehlerian manifold of constant
holomorphic sectional curvature ¢, that is, which is also called a complex. space
form, defines an almost contact mefric structure. And consequently (f, g;;, P?)
defines an almost contact metric structure on M,

We now suppose that the second fundamental tensors and the structure tensor
{* commmute each other, that is,

Aitfth““fjt = 9 Ajt(ac)fth*‘fngth(w): 0 ’
or, equivalently
(8.1) Ajefdt+ Aufit=0 ’
(3-2) Aﬁtmfit T Ait(”)fjt =

respectively.
Transvecting (3.1) with f,’ and using (1.13), we get

Aj(— 0 + P PY) + Aufi’f' =0,
from which, taking the skew-symmetric part in j and %
‘ (4, PYP,— (A, PYP,= 0,

which shows that
(3.3) A Pt= aP;,

o being a scalar field given by « = A4;,PiP:.
If we take the symmetric part of (2.16) in j and ¢ and use (3.2), then we find

(3.4) ' 24,0 = — (IOP, + LOP)fin'® .
Transvection P! gives

(3.5) 1,0 = (I Pt P,

because of (2.7) and (2.14). Therefore, (3.4) reduces to
(3.6) A0 = AP, P,

with the aid of (2.17).
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Differentiating (3.3) covariantly and making use of (2.12), we get

(Vid; ) Pt— A At = (Vi) Py— ol ft,

from which, taking the skew-symmetric part with respect to the indices % and j
and utilizing (2.22), (3.5) and (3.6),

3.7 g‘fﬂc + 241 A, f = (Vo) Py— (Vo) Py 4~ 2004,,f,¢

with the help of (1.14), (1.15) and (3.1).
If we transvect (3.7) with P’ and use (1.14), (1.15) and (3.3), then we have

(3.8) Via = Py,
where § = PtV,x. Thus, (3.7) becomes
et At Aufi = ad it
Transvection f* yields
Ajed = 0l 41 (g — P,PY)

with the aid of (1.13) and (3.3).
Thus we have

LeMMA 3.1. — Let M be a semi-invariant submanifold of a complex space form with
the almost contact metric compound struciure. If the second fundamental tensors of M
are commutative with the structure tensor | induced on M, then an eigenpolynomial
of a second fumdamental tensor is given by

(3.9) A A= ad; z (95— P;Py),

where o is a certain scalar field on M.

We now assume that the ambient manifold is & complex projective space CP™
of real dimension 2m. Then (3.9) reduces to

(3.10) A A= ol + gi— P, P,
Differentiating (3.8) covariantly, it follows

Vjvk“ = (Vgﬂ)Pk + ﬁV,Pk 3
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from which, taking the skew-symmetric part in § and %,
(Vi) Pr— (Vip) P; + B(V, P, — V.. P;) = 0,

or, using (2.12) and (3.1),

(3.11) (Vi) Pro— (Vi) P; + 2845.' = 0.

Transveeting this with P*, we find

Vi = yP;
for some scalar field y. Thus (3.11) becomes f4,.f;*= 0. This yields
(3.12) By — oaPp Py = 0.

Let My= {Pe M: f(P)+ 0}. Then M, is an open subset of M and 4,; = «P,P,
on. M,. But it can never occur by considering (3.10). Thus M 5 18 empty and hence
f =0 on M. Therefore o is a congtant.

We now compute the covariant derivative of a second fundamental tensor 4,
with respect to the distinguished normal €4 whieh will be useful in § 5.

Differentiating (3.10) covariantly, we get

(3.13) (VkAjt)Ait + A,-thA”w fkaA“- = - (Vk.P])Pz—" ngk-Pz
= -AktfitPi + -Aktfit-Pj

because of (2.12), from which, taking the skew-symmetric part with respect to the
indices k and j,

AV A, — AV A= 2AktfjtPi + “(Pkfn'— b, fm)

with the aid of (2.22) with ¢ = 4, (3.1), (3.3), (3.5) and (3.6). If we exchange the
indices k¥ and ¢ in the above equation, then we get

AV A— APV A= 24,14 P, + P foe— Pifa) -
Substituting (2.22) with (3.5) and (3.6) into this, we find
AV Ady— AV Ay = (Au ) Pi— (A F) Py -+ a{Pifae— Pifin) -
Adding (3.13) and above equation, we obtain

(3.14:) 2.Ajtvait'— OCVkA“ = 2.A.ktfjt-Pi + OC(.Pj fzk_ .P.L fjk)
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with the aid of (3.1). Differentiating (3.3) covariantly and making use of (2.12),
{3.1) and (3.10), we have

(3.15) (Vid; ) Pt= ofy
Transveeting (3.14) with 4, and using (3.3), (3.10) and (3.15), we get
(3.16) ad Vi Ay -+ 2Ved; = (@ + 2) [0 Py — 2f1; Pi— ad i [P Py .
Then we have from (3.14) and (3.16) that
Viedi= fali + f2P;.
Thus, we have

LeMMA 3.2. — Let M be an n(> 1)-dimensional semi-invariant submanifold with
the distinguished normal C4 of a complex projective space CPm™ admitting an almost
contact metric compound structure. If the second fundamental forms are commautative
with the structure tensor f induced on M, then we have

(3-17) VI;:-AJ'Z‘ = fz‘lcPf - mez' .

4. — Submanifolds of an even-dimensional Euclidean space admitting an almost
contact metric compound structure.

In this section we assume that the metric compound structure (1% g,., 1%, 1,%)
induced on a submanifold M of an even-dimensional Euclidean space E*» defines
an almost contact metric structure (f, g,;, P*) and the second fundamental tensors
of M commute with f, that is, (3.1) and (3.2) hold. Then (2.21) ~ (2.25) with ¢ = 0
are valid because the ambient manifold is Euclidean. As is already shown in § 3
under the assumption (3.1) and (3.2) hold, we get

@ = (@PYP;, and A= A®DP,.
Substituting these equations into (2.22) with ¢ — 0, we find
(4.1) Vid,,—V,4,=0.
Also, (3.9) reduces to

(4.2) A A= ad,

Jjz

because of ¢ = 0.
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Differentiating (3.8) covariantly, it follows that
V, Vo = (V5 P, + BV Py,
from which, taking the skew-symmetric part in j and k,
(ViB) Po— (VeB) Py + ﬂ(V,-P,,,.— ViPy) =0,

or, using (2.12) and (3.1)

(4-3) (V,-ﬁ)Ph—- (Vicﬁ)Pf + 2,8Am;fﬁ: 0.
Transvecting P* gives

Vip = yP;,

v being a certain scalar field. Thus (4.3) reduces to f4;,f,*= 0. Transvecting this
with. 7, we have

(4.4) BlAy,— PPy =0

with the aid of (1.13) and (3.3).

We now assume that M is locally irreducible.

Let M, be a subset of M such that M,= {Pe M: f(P)= 0}. Then M, is an
open subset of M and A;,= o«P,P, on M,. By considering (2.12), P; is parallel
on M,. It contradicts the fact that M is locally irreducible. Consequently M, is a
void set and hence 8 is identically zero on M. Therefore we can see from (3.8)
that o is constant.

Differentiating (4.2) covariantly, we get

(4.5) (Vied; A+ AV Adyy = aVi A,

from which, by taking the skew-symmetric part in & and j and using (4.1),
(4.6) A,V Ay — AV A,=0.

Exchanging the indices ¥ and ¢ in (4.6), we can write down

4.7) AV A, — ARV A,=0.

Remebering (4.1), we get

(4:.8) AjthA”"" -A'itvk-A-jt —_ O .
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Adding two equations (4.5) and (4.8), we have
(4.9) 24V, A= «V, Ay,
Transvecting this with 4,7, we find
(4.10) oAtV d,; =0
with. the aid of (4.2). Since « is constant, we think of two cases whether « is zero
or not. If o is zero, A,,= 0 on M because of (4.2). And consequently P, is parallel

along M, which is a contradiction. Then, « is a nonzero constant and hence we
obtain from (4.10)

A,V 4, = 0.
After all, this reduces to
(4.11) Vid;i=0
with. the aid of (4.2) and « 5= 0. Since M is locally irreducible, we have
(4.12) Aji= 04,

for a certain nonzero constant o. Also, it is easily proved from (4.2) and (4.12) that
o == oe. Thus, (4.12) becomes

(4.13) A= ag;,; .
Substitution this info (2.12) gives
(4.14) V, P = af;; .
On the other hand, (2.18) and (3.6) yield
(4.15) L = AWf,@P,
Substituting this into (2.24) and using (3.6) and (4.13), we get
Vi(AW [ @ Py) — V(AW f @ Py) + AD [0 (L)@ Py— Ly P,) = 0 ,
or, using (2.15) and (4.13),
{(V; A9) P, — (V,AD) P} )@ + AW (L)@ fo® Py — L)@ fo® P,) F20f;; AW )@ = 0

23 ~ Annali di Malemalico
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Transvection with f,"? gives
(4.16) (V; AP, — (V, AP, ++ AV (L Py— L) Py) + 2af;, A = 0
with the aid of (2.7). Transveeting this with P* and using (1.13), we obtain
V,A® = QU P, - RwP,— AW,
where we have put
Q= PV, A R = AW], ) Pt
Thus, (4.16) reduces to
of; AW = 0,
This means that
(4.17) AW =0 .

Therefore, we can see that M is totally umbilical by means of (4.13) and 4, = 0.
Summing up these facts, we have

THEOREM 4.1. — Let M be a locally irreducible complete n-dimensional semi-invariant
submamnifold of an even-dimensional Buclidean space E*" with almost contact melric
compound structure. If the second fundamenial tensors commute with the structure
tensor f, then M is an n-dimensional sphere S»,

We now assume that the normal vectors Cy 4 are parallel in the subnormal
bundle spanned by C4, that is, l;,y=0 and ly® =0, and M does not admit a
cosympletic structure. Then we can easily find that M iy contained as a real hyper-
surface of an (n + 1)-dimensional Euclidean space Ert'c E?" by virtue of 4, =0
induced from (2.17) and (3.6).

On the other hand, the scalar field « defined by (3.3) is proved to be a nonzero
constant by the similar method used in Theorem 3.1 by considering that M does
not admit a cosymplectic structure. Algo, we can prove that A,, is parallel. There-
fore M has two constant principal curvature 0 and x. Moreover, their multiplicities
are constant. So the distributions D, = {X: AX = 0} and D= {X: AX = oX} are
parallel, completely integrable, totally geodesic in M and totally umbilical in E»+1,
Thus we have

THEOREM 4.2. — Let M be an n-dimensional complete semi-invariant submanifold
without cosymplectic struciure of an even-dimensional Euclidean space E** admitting
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an almost contact metric compound structure. If the second fundamental tensors and
the structure temsor commute and the normal vectors Ciy4 ave parallel in the subnormal
bundle spanned by C,y4, then M is a product of @ sphere and o plane 87 X B+ (0 < r < n).

COROLLARY 4.3. — Let M be an n-dimensional complete minimal semi-invariont
submanifold of an even-dimensional Buclidean space E* admitling an almost contact
metric compound structure. If the same assumption as that of Theorem 3.2 is satisfied,
then M is-an n-dimensional plane E».

5. — Submersion &: 82! — (P and immersion ¢: M — CPm,

In this section, we assume that M iz an n(> 1)-dimensional submanifold of a
complex projective space CP~. As is well known, the unit sphere 8§27+ ig a prinecipal
circle bundle over a complex projective space CP™, which is characterized by the
Hopf-fibration #: §2m+1— OP», We consider a Riemannian submersion n: M — M
compatible with 7: 82t — (Pm M being #YM). If we speak more precisely,
m: M — M is a Riemannian submersion with totally geodesic such that the following
diagram commute:

i 1
M v S Semt
7
)
4 7
¢ Y
M 7 OPn

where i: M — 8>+t and 4: M -> OP™ are isometric immersions. Let 827! be cov-
ered by a system of coordinate neighborhoods {ﬁy”} such that &(U) = U are
coordinate neighborhoods of CP» with local coordinate system (x4). We then
represent the projection 7#: §2#+1 — CPm locally by

(5.1) = wA(y)
and we put
(5.2) .E;:A: a%mA ) ax: a/ay” ]

where the matrix (#,4) has the maximal rank 2m.

Let &% be the components of the unit Sasakian structure vector & defined on
S#n+1, Bince & iy the vertical vector with respect to each fibre #-(P), VP & CPm,
{Ex4, &} constitutes a local coframe in 8?1, where we have put & = gxu&* and
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¢xu denotes the fundamental metric tensor of S*++1, We denote by {Ex,, &} the
frame corresponding this coframe. Then we get

(5.3) BABy= 0,4, BA&r=0, EBy,=0.

We now take coordinate neighborhoods {U:ys} of M sueh that n(U) = U are
coordinate neighborhoods of M with local coordinate system (z*). Let the isometrie
immersion ¢ and ¢ are locally expressed by y#= y«(y>) and x4 = x4{z") respectively.
The commutativity of the preceding diagram implies

vy (y») = a4(@"y*)) ,
where 7 is expressed locally by a*= #"(y*). Which induces
(54) BhAEah — E%ABax ,

where Byt= 0,y% and H,*= 22"

For each point P € M, we can choose the mutually orthegonal unit normal vector
fields O,4 defined in a neighborhood U of P such that {B4, C,4} generates the tan-
gent space of 0P at i(P). Let P be an arbitrary point of the fibre z-'(P) over P,
then the horizontal lifts C,* of €4 are mutually orthogonal unit normal to M defined
in the tubular neighborhood of P over U because of (5.4).

Taking aecount of this fact, (5.3) and (5.4), we find

(5.5) Erz EaB
and
(5.6) B — 0,

where £ is a vector field on M. Then (4.3) implies

(5.7) EOCE(X: 1

because of &.&#= 1, where &y = £Pgss, gs. Deing the fundamental metric tensor of M
induced from g., in such a way that gss= gxuBs*Bs*. Therefore, {H,", &} forms a
local coframe in M corresponding {E.4, &} in §2»*1. Denoting by {E%,, & the frame
corresponding this coframe, we have

(5.8) nghszk_—_— 6kh 3 EaEwh: 0 3 E“.szh -

Then, (5.4) and (5.8) imply that

(5.9) E#,B,4= BB, .



U-Hane K1 - Youxe Ho Kivi: Submanifolds of complex space, ete. 355

Since the metric tensors gu, and ¢s. are both invariant with respect to the sub-
mersion & and 7z respectively, the van der Waerden-Bortolotti covariant derivatives
of E,4, B’, and H,*, B>, are given by

Dy Bt = hy! (B P& - BiPEy)
(5.10)

Dy B = hp BB — h,BE, By ’

VﬁEah = hMB s+ Eajfﬁ) y
(5.11) —

VﬂEah == h’jhEﬁif{x— h}zjfﬁEaﬂ'

respectively, where D, and V; are the operators of the covariant differentiation

of 82+1 and M respectively, g4 == g4hgc, k' = g h;;, hpo and by, are the structure

tensors induced from the submersions % and 7 respectively (see ISHIHARA-KONISHI [7]).
On the other hand, the equations of Gauss for M are given by

(5.12) VeBar= Apo 0%+ A0y ,

where Ag, and A are the second fundamental tensors with respect to the normals
Or= C4E*, and Oy*= C,*E*, respectively, and those of Weingarten by

(5.13) VaOr= — AgBy* + 140 Cpyt,

(5.14) VO = — A% Bo#— Lo 0% -+ Loy® Oy,

where Ag*= gv*dpy, As%m= §"*Juimdsy™ = 9%V Appar, 15 and fgy the third funda-
mental tensors and lse) = 139 ¢y -

On the other hand, (5.4) and (5.9) imply that V, = E% V,. We now put F2=
= D,&% From the definition of a Sasakian structure it follows that

(5.18) FpFup=—80 4 Ebr, Fpin=0, HFP=0, Fu+Fu—=0
and
(5.16) DMFA”: — Y é* + 0#én,  Dubt= Fp y

where we have put F,;= F,*g... Denoting by L the lie differentiation with respect
to &, we find

(5.17) LFpr=0
because of (5.16). Putting

(5.18) Fpt= F BB A,



356 U-Have K1 - Youne Ho Kim: Submanifolds of complex space, efc.

we can see that Fy4 defines a global tensor field of the same type as that of F,z
because of (5.17), LE*, = 0 and LE4==0 (see [7]).

Differentiating &#Ey4= 0 covariantly along 8***! and using (5.10), (5.16) and
(5.18), we find

(5.19) Fpd= — hgt,
which implies
(5.20) FAF B = — §4

with the aid of (5.4) and (5.13).
Differentiating (5.18) covariantly along CP», and using (5.4) and (5.10), we find

(5.21) VeFgi=0,

where V denotes the projeetion of D given by V.= B*,D.. Therefore, the base
space CPm for 8! admits a Kaehler structure (Fz4, Gzc) represented by the struc-
ture tensor hy4 of the submersion #: 821 — (P defined by the Hopi-fibration.
On the other hand, by taking account of the co-Gauss equation for the sub-
mersion #: §¥+tt — OP and (5.19), we can see that the base space CP™ is a Kaehle-
rian manifold of constant holomorphic seetional curvature 4 given by (2.20).
As to transforms of B¢ and C,¢ by F,#, we have

F’M%B“M —— f“ﬁB[j% T faw(]wy, )
(5.22) B
PG = — 1.0 Byt 92O

where f.8 is a tensor field of type (1, 1), fs* 1-form for fixed #, . a vector field asso-
ciated with fs* defined by fs* = f,”gssg* and ¢,’ a scalar field for fixed # and y
on M.

Now we suppose that n-dimensional submanifold M of P is semi-invariant
with respect to the distinguished normal 4. Then we can have the algebraic rela-
tionships (1.13)~(1.16) and (2.7) and the structure equations (2.11)~(2.15).

If we make use of (2.4), (2.5), (5.4), (5.9) and (5.22), then we obtain

(5.23) fit= fso B8, Byt , P;= fo B, Pi=fulEs,  @u® = fu?.
Thus, (5.22) reduces to

F#Boys == 58 Bgx + P, 0%,
(5.24) 2 Ol = — Po By,

Fx Oy = f® Oy

where we have put fit" = Ps and f.f= P
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Applying F to (5.24) and using (5.15) and these expressions, we easily find

(5.25)
(5.26)
(5.27)
(5.28)
(5.29)
(5.30)

farfyf = — 08+ £a8 + P,
fafPg= 0, fufP*=0,
PPr=1,
Pybo=10, Paf=0,
Eaf=10, fsEe=0,

f(ac)(y) f(m(z) [ a(w)(z) .

If we apply the operator of the covariant differentiation V,= B,#Dy to (5.24)
and using (5.5), (5.12), (5.13), (5.14) and (5.16), then we have

(5.31)

(5.32)

Vofa?=— goak? — 0g%6s— ApaP? + Ag7Ps,
VePs=— Apfar, VoPo= Agrfy,
Apa? fip = Ay f7 -+ 1@ Py |

Apg@ Py = — g0, @

Vafin® = lsw@ f'¥ — lpen'™ fin®? .

Differentiating (5.5) covariantly along M and utilizing (5.12), (5.16) and the
first equation of (5.24), we find

(5.36)
(5.37)

(5.38)

On the other hand, by differentiating (5
(5.11), the first relationship of (5.23) and (

(5.39)

Vﬁf“: fﬁ“ ’
Apub®= Py,
A/m(z)go;: 0.

.6) covariantly and taking account of
5.36), it follows that

fjh [ kjh .

If we apply the operator V, == B;4 V.= E*V,= BBE"; D, to (5.4) and use (2.8),
(5.10), (5.11), (5.12), (5.19) and (5.39), then we get

(A, 04+ 4,204 By + BAES{— f,/(Bg &y -+ EgBot)}

= — Fo*(BuoE: + B.°8) B2 Bty Bo# + (Apo O + Apa' C) Bt BE;
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or using (5.3), (5.8) and the first equation of (5.24),

Aa‘z'E’zxi - Aﬁszﬁj~ Pan, 3
Aﬂﬁx(w)Eﬁj - Aji(M)E(xi .

Transvecting these equations with F,/ respectively and using (5.8), (5.23) and
{6.37), we have

(5.40) Ayﬁ = A-jiE?jEﬁi + nyﬁ + PﬁSv 3
(5.41) Ay = A, DB, By .

Since the ambient manifold 82+ for M is a space of constant curvature 1, the
equations of Gauss for M are given by

(5.42)  Kops*= 8s%gyg— 0y* Gos + As*Apg— Ay Asp - As*D Aypiy— A Aspy

where Ksys® is the Riemann-Christoffel eurvature tenser of M, those of Codazzi by

(5.43) VyApa— vﬂAWﬁ— Loty Apa'™ + lgaAya'™ = 0,
(3.44)  Vydpa®— Vo dyo® + 19 Apa— I Aya + Ly Apa — gy Aya® = 0,

and those of Ricei by

(5.43)  TVola® — Tulg® + Ay Ay — Ap? Apfo + Ty @ a9 — L@ 10 = 0,
(5.468)  Valaw® — Valsw® + A% Aar® — Aoy Apy™ + ey la® — la 16®

+ lon™® Loty — Lo lpsy® = 1

We now assume that the second fundamental tensor of the base space M for M
commutbe with the structure tensor f,* of the submersion =z, that is, (3.1) and (3.2)
hold. Then we can easily verify that the second fundamental tensors of the total
space M also commute with fs* because of (5.23), (5.26), (5.29), (5.40) and (5.41),
that is,

A fr— [ A =0, Agwfr— [P 4y =10,
or, equivalently

(5.47) Agy fo7 -+ o7 =0,
(5'48) Aﬁvm f'ocv + Aocv<“) fﬁv = 0.
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Transvecting (5.40) with P? and taking account of (3.3), (5.23), (5.27) and (5.28),
we get

(5.49) Agy P? = aPp + &5 .

If we substitute (3.6) into (5.41) and make use of (5.23), we then have
{5.50) Apgs® = AD PP, ,
which implies that the mean curvatures of M and M are the same with the aid
of (5.27).

On the other hand, trapsvection (5.34) with f,®@ yields

{5.51) 149 = A@f @ Py

with the aid of (5.30) and (5.50).
We first prove

LeMMA b5.1. ~ Let M be an n(> 1)-dimensional semi-invariant submanifold with
distinguished normal C4 of a complex projective space CP™ of real dimenston 2m. If
the second fundamental tensors of M are commuiative with the structure tensor of the
submersion m, then we have

(5.52) Apady= adgy + Gpv -

Proow. — Transvecting (5.40) with 4, = A H, E?, + Pu&v + P7£, and taking ac-
count of (3.3), (5.8), (5.23), (5.27) and (5.28), we obtain

ABvAsz: AthitEﬁjE“i ‘?‘ 91(Pﬁ§zx ‘i‘ Pocfﬁ) + PﬁPtx + 5/35@ 5
or, using (3.9) with ¢ = 4,
Apy Aoy = adpa + Gpa

with the aid of (5.8), (5.23) and (5.40). Thus, the lemma is proved.
Next, we prove

LeEMMA 5.2. — Under the same assumptions as those stated in Lemma 5.1, we have
(6.53) Ap® =0 and A4;®=0.
Proor. ~ Differentiating (5.50) covariantly and using (5.32), we get

Vi dsa® = (Vy A®) PpPy— A@(AyefsPo + AyefotPg)
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from which, taking the skew-symmetric part with respect to the indices y and fp
and using (5.44),

@ Ayo— 1™ Aps -+ Lo Aya® — Ly A gs®

= {(V,A®) Pg— (V5 A©) Py} Pa— AD(2 Ay fs# P + Ayefot Pa— Age f2¢ P,)
because of (5.47). Substituting (5.50) and (5.51) into this equation, we find
(8.54) AW )\? Py Ays— [y Py Ags - 1a@ Py Py — Loy ® Pg Py)

= {(VpAd) Py— (Vs A@) Py} Py — AD2Aye [ Po + Ayefst Py— Age[sPy) .
Transvection P6P> gives

VyA® = A9 (@ Ey— lyy®@) + LD P,

with the aid of (5.26), (5.27), (5.28) and. (5.29), where we have put L@ = AW g, @ P8 |
+ P8VgA®, Hence (5.54) reduces to

AW [\ (Pg Aya— Py Apa)
= AW fi) &y Pp— E.Py) Po— AW (2 Ay fot Po + Ave fa? Pp— Apefot Py) .

Transvection P+ yields
(5.55) AD Ay fee= 0

because of (5.26), (5.37) and (5.49).
Transvecting this with f,# and using (5.25), we find

A — Ays + Pybo + Paby + aPyPs) = 0

because of (5.27) and (5.49). If we transvect this with gv* and make use of (5.27)
and (5.28), then we bave

(5.56) ADA —a) =0,

where A = ghrA4ds,. By computing the square of norm of (5.55), we obtain A® =
with the aid of (5.56) and »n > 1. Therefore, it follows that 4, = 0 and A4z, =0
because of (3.6) and (5.50). Thus, Lemma 5.2 is completely proved.

If the normal vectors ()4 are parallel in the subnormal bundle spanned by
U4, we can easily prove from (2.25) and Lemma 5.2 that M is a real hypersurface
of a complex projective space CP”. Therefore, by Theorem A in § 0, we have
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THEOREM 5.3. — Let M be an n(> 1)-dimenstonal semi-invariant submanifold with
distinguished normal C4 of OPm. If the second fundamental tensors of M are commu-
tative with the structure temsor of the submersion m and the normal vectors O ,4 are
parallel in the subnormal bundle spanned by U4, then M is the model space M; (a,b),
where (p, q) is some portion of (n—1)/2 and a® -~ b2 =1,

LeMMA 5.4. — Under the swime assumptions as those stated in Lemma 5.1, we obtain
(8.57) Vydsa=0.
PROOF. — Applying the operator V,= E,V, to both sides of {6.40), we have
By VyAsa= (Vod;) By Byl -+ A, 87V, By) Es' + A, By BV, B¢
+ BV Po)éa + Pyl Noka+ (B, V, Pa) s + PuBn V8, .
Substituting (5.11) with k= —7,*, (5.32) and (5.36) into this equation, we get
B Vydpa= (Vidy + Py + P fu) By Ba'— (A ft + Ao b)) (Bo's + Eaiép)

because of (5.23) and (5.40), from which, using (3.1) and (3.17)

J

(5.58) ' BV, Ag=0.
On the other hand, by Lemma 5.2, we can have from (5.43)
(5.59) YV, Apa— Vodya=0.
Transvecting (5.58) with Hs*, we get
Vodpn=(&V, Aps)s .

Ditferentiating (5.37) and making use of (5.32), (6.37), (5.47) and (5.59), we have
Vedgs= 0. Therefore Lemma 5.4 is proved.
We consider the identity:

$A(ApoAPo,) = (V7V, Ag,7) ABo, - |V, Apae]?

where 4 = g'*’ﬁ_ﬁy §ﬁ and Aﬁal* = Aﬁal* = Ags.

From this identity we can see that the second fundamental tensors 44 are parallel
because of (5.53) and (5.57). Thus the first normal space N,(P) defined to be the
orthogonal complement of {C,xe T+(H): Ac = 0} in T2(M) is invariant under par-
allel translation with respect to the connection in the normal bundle and of constant
dimension 1, where Aczx are the second fundamental tensors associated with ¢,*

and T2(M) is the normal space at pe M. Thus, by the reduction theorem (21,
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we conclude the total space M for M is contained in an (n + 2)-dimensional unit
sphere S=*t2 (c §2»+1) and consequently the base space M is contained as a hyper-
surface of a complex projective space OP+v/2 of real dimension » + 1 (see [2]).
And hence the diagram in the beginning in § 5 reduces to

W v o 8rte o Gemtt
rd
7 7
’ ~
M P> Ptz 0P

Therefore, taking aceount of Thecrem A in § 0, we have

THEOREM 5.5. — Let M be an (> 1)-dimensional complete semi-invariant sub-
manifold with the distinguished normal C4 of a complex projective space OP™ of real
dimension 2m. If the second fundamental tensors are commutative with the structure
tensor of the submersion m, then M is the model space M, (a,b), where (p, q) is some
portion of (n —1)/2 and a® - b*=1.
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