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Summary .  - ]~eal hypersur]aces o] an almost Hermitian maul]old naturally admit an almost 

contact metric structure and the (], g, u, v, w, 2, #, v).struetu~'e is de]ined or subcrbaui/olds 

o] codimension 3 o] an almost Hermitian mani]old: We study the so-called semi-invariant 

submani]olds o] a eomplex space ]orm with almost contact metric compound structure which 

is a general notion o] (], g, u, v, w, 2, ~, v)-structure. 

O. - Introduct ion .  

K. YA~o and one of the present  authors [11] have studied the notion of (/, g, u, 

v, w, 4,/~, v)-structure induced in a submanifold M of codimension 3 in an almost 

g e r m i t i a n  manifold, and studied conditions for such a s t ructure  to define an almost 

contact  metric s t ructure  in M. 

By  the way, Y. TASn-mo and I.-B. K I~  [11] have generalized the notion of 

(], g, qz, v, w, 4,/z~ v)-structure recent ly  by  defining the so-called metr ic  compound 

s t ructure  in a submanifold of an almost Hermi t ian  manifold. 

On the other  hand,  the present  authors [3] studied a submanifold of eodimen- 

sion 3 of a complex project ive space admit t ing  an almost contact  metr ic  structure.  

The purpose of the present  paper  is to devote in generalizing the intrinsic character  

of a submanifold of codimension 3 of a complex space form. Our main result  appears 

in w 5, in which, by  the method  of Riemannian fibre bundles,  we prove tha t  an 

m-dimensional complete semi-invariant  submanifold M of a complex project ive 

space CP ~ admit t ing  an almost contact  metr ic  compound s t ructure  is globally 

isometric to  M~,~(a, b ) =  S(S2~+~(a)• where ~ is a na tura l  projection of a 

(2m + 1)-dimensional unit  sphere S ~+~ onto a complex project ive space CP ~ defined 

by  the Hopf-fibration,  (p, q) is some of ( n - - 1 ) / 2  ~nd a2-k b~= 1. 

(*) Entrata in Redazione il 1 settembre 1984. 
(**) This research was partially supported by Korean Science and Engineering Foundation 

Grant. 
Indirizzo degli AA. : Department of Mathematics, Teachers College, Kyungpook Nation~] 

University, 635 Taegu, Korea. 



3r U-~'A~-~ KI  - Y o ~  :go KI)~: Submanifolds of complex space, etc. 

I a  determining the submanifold~ we quote the following ~heorem. 

TttE01~ElVi A [9]. - M~,q(a, b) are only complete hypersurface of a complex projective 

space in which the second fundamental form A commutes with the fundamental tensor f 

of the submersion 7~ compatible with ~. 

Manifolds, submanifolds, geometric objects and mappings discussed in this paper  

are assumed to be 4ifferentiable and of C | We use throughout  this paper  the 

systems of indices ~s follows: 

~ /~, v, 2 - - 1 , 2 ~ . . . , 2 m  + 1 ;  

A, B~ C~ D : 1, 2, ...~ 2m; 

w, x~ y~ z = l*~ 2*, ... , p* 

h~i, j, / c :  l ~ 2 , . . . , n ,  

n + p : 2 m .  

The summation convention will be used with respect to those systems of indices" 

The authors would like to express here their  sincere grat i tude to Professor J.  S" 

PA~: who gave them many  valnub!e suggestions to improve the paper. 

1 .  - P r e l i m i n a r i e s .  

Let  M be a 2m-dimensional almost Hermi t ian  m~onifo]d covered by  a system 

of coordinate neighborhoo4s {U; x ~} and (F, G) the almost Hermi t ian  structure,  

where F is t h e  almost complex structcxe tensor s ad  G the almost Hermi t ian  metric 

tensor of ~r. We denote by  Fz  ~ and GoB components  of F and G respectively. Then 

we have 

(1.1) F~aFc, B : - -  ~o A , Fc" /%zG.~ : GoB , 

do ~ being the Kronecker  delta. 

If  we pa t  the covariant  components of /~ as 

(1.2) FGz :/~oaG~ , 

then  FeB is skew-symmetric with respect to the indices C and B. 

Le t  M be an n-dimensional l=~iemannian manifold covered by  a sys tem of coor- 

dinate neighborhoods {U; x ~'} and immersed isometrically in ~ by  the immersion 

i: M -~ M. We identify i (M) with M itself and represent  the immersion locally by  

(1.3) x "~ = xa(xtO " 

We now put  B~ A -  0~x x (<. := ~/Ox':). Then Bi ~ are n l inearly independent  vec- 

tors of ~r  t angent  to M. And denote by  C~ ~t mutual ly  orthogonal uni t  normal  vector  
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field of M. Then we have GcBB~SC~C= 0 and the metr ic  tensor of the normal  

bundles of M is giveu by  g~,~= G o B C ~ C f =  dz~. Therefore, vector  fields B~ ~ and 

Cx ~ span the tangent  space 2"~(2~) of M ~t every  point  P of M. The metric tensor  g 

of M induced from tha t  of 2~ r is given by  

(1.~) giJ = GcBB.~CBi B 

since the immersion is isometric. 

The t ransforms of the ~angent vectors B~ ~ and the normal  vectors C~ A to M 

by F are expressed in the form 

(1.5) FB~Bj B ---- ]/~Bh x @ ],~C~ A , 

where ]/~ are components of a tensor field of type  (1, 1), ]j~ those of 1-form for each 

fixed x, ]J~ vector  field associated with /~ given by  ]J~= ]j~gJ~ g ~  f~ function for 
y fixed indices x and y. Pu t t ing  f j~= ]/~gT,, fJ~= ]~ g,~, ]~J = 1~ ~g~,j and ] ~ - ~  ]~g~,  

~ve can easily find 

(1.7) i ,  = - -  [ ~ ,  f,~ - f~.~, ] ~  = - -  A ~ .  

Applying' F to (1.5) and (1.6) respectively and using' (1.1) and these expressions, 

we have 

(1.9) ] / / ~ v - - / T f Z  = 0 ,  / ~ ] j  + fZ]~ ~ = 0 ,  

( 1 . 1 o )  t ~ q : =  - d~ �9 + t / t ,  ~ �9 

The second equat ion of (1.1) and (1A) imply 

(1.11) t / /~.m. = g . _ / ? / ~ .  

Now, removing the almost Hermi t ian  ambient  manifold 27I, we suppose tha t  

an n-dimensional l~iemannian manifold M admits a me~ric tensor gj~ a tensor  field 

I/~ of type  (1, 1), p vector  fields ]J~, p 1-forms ]j~ and p ( p -  1)/2 scalar fields ]~ 

satisfying the relationships (1.8)~(1.11). Such a set (]/~, gJi, ]~, ]Z) is said to be a 

metric compound structure on 2dr. 

I f  we pu t  
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t hen  the set (F~ (7) defines an a lmost  l I c r m i t i a n  s t ructure  in the  p roduc t  manifold  

M •  ~ of the  manifold  M with  a p-d imensional  Eucl idean space R ~. 

We suppose t h a t  M admits  an a lmost  contact  metr ic  compound structure.  Then 

we have 

(1.13) 

(1.14) 

(1.15) 

and 

f /J t  ~ = - -  ds~ + PjP~ , 

f / P t  = 0 ,  f /~ O, 

P i . P  i =  1 

(1.16) ]~]iSgt8 : g~i--  -PjPi  , 

where P~ is a 1-form aud P~ vector  field associated with Pj  given b y  p h =  g~jpj 

on M. 

I n  this ease we know t h a t  the  dimension n of 2/I is o4d an4  the r ank  of (f/)  is 

equal  to n - -  1. 

Compar ing (1.11) and (1.16), we have  

(1.17) ]~]~  = P~P~. 

This equat ion shows tha t  the  produc t  of the  m a t r i x  (]j~) wi th  its t ranspose  is 

of r ank  1 and hence the ma t r ix  (]j~) b y  itself is of r ank  1. 

Therefore,  we m a y  put  

(1.18) ] ~ =  ~Pr  , 

where v ~ are certain scalar fields for each x. 

Since ]?L j = P j P J  = 1, we have  

(1.19) ~ j ~ =  1 

and  hence (1.9) an4 (1.10) are reduced respect ively to 

(1.2o) 

and 

(1.21) ] s  - -  d ~  + v ~ v  ~ . 

The equations (1.19)~(1.21) fo rm an a lmost  contact  metr ic  s t ructure  on R ~ at  every 

point  of M, and consequently we see t h a t  the  dimension p of R ~ is o4d. 
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Conversely, assuming t ha t  an almost  contac t  metr ic  s t ruc ture  (]~, g~, v ~) on R~ 

is admit ted,  we can prove t ha t  ~he metr ic  compound s t r u q u r e  (] /~)g, ,  ] ) ,  ]~) 

induces an almos~ contac t  metr ic  s t ruc ture  (]~, g , ,  P~) on M. 

Thus we have 

THEOREM 1.1 ([11]). -- Let (]/~, gj~, f ) ,  ]~) be a metric compound structure on M.  

I n  order that ]/~ and gr constitute an almost contact metric structure (Jj~, g , ,  ph) on M,  

it is necessary and suJJicient that ]~ and g~  constitute an almost contact metric struc- 

ture (/,~, gv~, v ~) on Rv at every point o] M.  

From above discussions we also have 

TIIEOI~EM 1.2 ([11]). - I n  order for a metric compound structure (]/~, gj~, ]]~, ]~*) 

to be almost contact metric structure, it is necessary and suJJicient that the matrix (])) 

is o] rank 1, that is, the p vector ]ields ]J~ are all parallel to one another. 

A metric  compotmd structure  admit t ing  an almost contact  metric s t ructure is 

said to be an almost contact metric compound structure on M. 

2. - Submanlfolds of  eodimension p of  an a lmost  Hermitian manifold.  

i n  this section we assume tha t  n-dimensional submanifold M of codimension p 

of an almos~ Hermi t ian  manifold 3~ admits an almost contact  metric compound 

s t ructure  (I?, g , ,  f ) ,  ]~) and consequently (]?, g , ,  ph) defines an almost contact  

metr ic  structure.  So, (1.13)~(1.16) are valid. 

The vector  field h rA defined by  

(2.1) N x =  v~C~ ~ 

is unit  normal  to M because Gc~ C J  C ~ ' =  6~, and %v~= 1. 

I f  we t ransform the tangen~ vectors B~ x and the  uni t  normal  vector  hr~ by  xv, 

then  we have 

(2.2) 

(2.3) 

.EBXBi ~ = / ? B ~ A  + P~N "~ , 

respectively because of (1.18), (1.20) and (2.1). 

I t  is well known tha t  the submanifold M of an almos~ I te rmi t ian  manifold 

satisfying (2.2) and (2.3) is semi-invariant  with respect to N ~ and we call ~ x  the 

distinguished normal  to M ([1], [10]). 

Now, we take  N ~ as C1. ~. Then we have from (2.1) tha t  r  and r  0, 

where here and in the sequel, (x) runs over the range {2*, ..., p*}. For  the convenience 
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of no ta t ion ,  we wri te  C x in s t ead  of C~. ~. T h e n  we can  r ep re sen t  (2.2) and  (2.3) 

r e spec t i ve ly  as fol lows:  

(2.4) _V, X B 2  = ]?B,~ ~ + P ~ C  ~ , 

(2.5) 5F~ "~ C B - -  - -  Pl~Bl~X 

T a k i n g  accoun t  of (1.18), (1.20) artd the  f~ct  t h a t  ~ t * =  0 a n d  u I~)= 0, we fi~d 

f r o m  (1.6) 

( 2 . 6 )  / ~ C ( ~ )  B = i(~) (~) C(,~) ~ �9 

Then,  b y  a p p l y i n g  F to  (2.6), i t  follows 

(2.7) ](~)<~)](,~)(~) = - -  d(~} {~) �9 

Deno$ing b y  V~ the  o p e r a t o r  of v a n  der  Waerden -Bor to lo~ t i  e o v a r i a n t  different ia-  

t ion  wi th  respec~ to  t he  f u n d a m e n t a l  t ensor  g~, we h a v e  the  equa t ions  of Gauss  

for  M 

(2.8) V~P,i A = A j i  C A @ Ayi  (~) C(x) a , 

where  Aj~ and  A ~  (~) are  the  second f u n d a m e n t a l  t enso r s  wi th  r e spec t  to  n o r m a l  

vec to r  fields C ~ and  C(~ x r e spec t ive ly ,  and  those  of W e i n g a r t e u  

(2.9) V~ C ~ : - -  Aj~B,,~ x ~ 1/~) C(~) ~ , 

(2.10) V~ C(~) ~ = - -  A~(~)B~ ~ -  ~(~)C ~ + l~(~) (~) C(~) ~ , 

where  A~ ~ = g ~ A ~ ,  A ~ ( ~ ) =  g~ig(~)(~)A~(~)-- A~(~)g  ~", l, t~) and  l~(~)(~ are  ~he th i rd  fun-  

d a m e n t a l  tensors ,  l~(~) = I/~) g(~)(~). 

P u t t i n g  l~(~)(~)= l~(~)(")g(~l(~), we can  easi ly  ve r i f y  l~(~)(~)=-/~(,)(~) since C(~) x are  

m u t u a l l y  or thogonM.  

W e  n o w  a s sume  t h a t  the  a m b i e n t  man i fo ld  ~ is a K a e h l e r i a n  mani fo ld ,  tha~ 

is, V f  = 0, where  ~7 is a c o v a r i a n t  d i f fe ren t ia t ion  in 2~. 

Di f fe ren t i a t ing  (2.4)--~(2.6) c o v a r i a n t l y  and  us ing  (2.8)~(2.10) and  these  equa-  

t ions ,  we can  eas i ly  f ind 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

V~]i h - - -  A ~ i P  ~ 4- A / ~ P i  

V j P ~  = - -  A j~] i  ~ , V j P  7~ = A / J ~  ~ , 
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(2.1~) 

~rom which 

(2.17) 

If  we t ransveot  (2.13) with f(~)c~) and take  account  of (2.7)~ then  we obtain 

where we have put A (~) = gJ~Aj~ c~). 

Also, t ransvect ing (2.14) with /(~)~) and using (2.7), we fin4 

(2.18) l~ (~) --  Aj/~)P~](~) (~) . 

The equations oi Gauss for M in a Kaehlcr ian manifold /~  are given by  

(2.19) K~ji 1~ --  KDc,~BgBj~B~"  B~,~ + A1~Aj i - -  A l kA l i  + A~(~ )A i /~ ) -  A~c~)AT,,i (~) , 

where K ,  cB A and K~5~ ~ are the RiemanmCl~'istoffel curvature  tensors of 21I and M 

respectively, and we have pu t  BT~= B~'g~G~B. 

We now assume tha t  the ambient  manifold ~]I is a Kaehler ian manifold of 

constant  holomorphic sectional curvature  and hence its curvature  tensor has the 

iorm 

(2.20) K ~ .  ,~ = ~ (~ . .~g~, . - -  ~o gD~ ~- - -  

Subst i tut ing this into (2.19) an4 using (1.4) an4 (2.4), we can see tha t  

e 
(2.21) J~kji h = "~ ((~ gj~-- 5~g~i + ] J ~ / ~ -  ~ / ' ] ~ -  2"/~]i ~) + A ~ A ~ i -  A ~ A ~ i  

@ A~o~(~IA~ f~)-  A~(~)A~/~I. 

B y taking account  of (2.4), (2.5)~ (2.6), (2.9), (2.10) an4 (2.20), we have the equa- 

tions of Codazzi: 

C 

(2.22) V~Ar V~A~i--  l~(~lA~ (~ ~- l~(~)A~ (~) = -~ (P~]~ P~]~--  2-Piing), 

(2.23) V~A~ ( ~ -  V~A~ (~) @ l~(~A~ - 1/~)A~ ~- lk(~)(~)A~i (~)- l~(~)(~)A~, ~) =- 0 , 

and those of l~icci arc given by  

(2.24) V~I~ (~)- V ~ l y  + A ~ A ~  ( ~ -  A ~ A ~  (~) ~- l~(~)(~)I/v ~ -  l~r 0 , 

(2.25) V~I~(~) (v)- V~l~(~) (v) @ A~(~)A~,(~ ~ -  A~(~IA~t(v ) @ l~r ) -  1,~)l~(, ) 

1 (v) 7 (z) = C 
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3 . -  Submanifolds of a complex space form admitting an almost contact metric 

compound strueture. 

In  this section, we assume tha t  the metric compound s t ructure  induced on an 

n-dimensional snbmanifold M of codimension p of a Kaehler ian manifold of constant 

holomorphie sectional curvature  c, t ha t  is, which is also called a complex  space 

form, defines an almost contact  metric structure.  And consequently (]?, gJi, ph) 

4efiaes an almost contact  metr ic  s t ructure  on M. 

We now suppose t ha t  the second fundamenta l  tensors and the struetm'e tensor 

]/~ commute each other,  tha t  is, 

A j ' ] ? - - f j ~ A ~ :  O, Aj%)]?-- I /A~% = O, 

(3.4) 

Transveet ion P~ gives 

(3.5) 

because of (2.7) and (2.14). 

(3.6) 

with the aid of (2.17). 

U~) _-- ( Ip)pt ) r j  

Therefore, (3.4) reduces to 

being a scalar field given by  c~ = Ajr i. 

I f  we take the symmetr ic  par t  of (2.16) in j and i and use (3.2), then  we find 

or, equivalent ly 

(3.1) A~,]~, + A,~I~= O, 

(3.2) Aj~(~)]i ~ + Ai,(~)]j~= 0 

respectively. 

Transvect ing (3.1) with ]k ~ and using (1.13), we get 

A~,(-- ~,o, + P~P,) + A,,r o,  

fl'om which, taking the skew-symmetric par t  in j and k 

(A~,P~)P,~ - (A~,P')P~ = 0 ,  

which shows tha t  

(3.3) Aj~P~ : ~P~- , 
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Differentiating (3.3) covariantly and making use of (2.12), we get 

(VT, A j t ) P  t -  A/A1, .] t  ~ : (Vk~)Pj-- ~ A k j /  , 

from which, taking the skew-symmetric part  with respect to the indices Ir and j 

and utilizing (2.22), (3.5) and (3.6), 

e 
(3.7) ~ f ~  + 2AjtAt,fTd : (V~)P~- -  (Vj~)_P~ + 2o:Akt]/ 

with the help of (1.14), (1.15) and (3.1). 

I f  we transvect  (3.7) with P~ and use (1.14), (1.15) and (3.3), then we have 

(3.8) Vk~ = / ~ / ~ ,  

where fi = P*V~. Thus, (3.7) becomes 

Transvection /~k yields 

e 
A j t A i  ~ = ~Aji + ~ (g~i -- P j P i )  

with the aid of (1.13) and (3.3). 

Thus we have 

L E ~  3.1. - Let M be a semi-invariant submani]old o] a complex space ]orm with 

the almost contact metric compound structure. I]  the second /undamental tensors o] M 

are commutative with the structure tensor ] induced on M, then an eigenpolynomial 

o] a second [undamental tensor is given by 

e 
(3.9) 

where o~ is a certain scalar ]ield on M. 

We now assume tha t  the ambient  manifold is a complex projective space CP ~ 

of real dimension 2m. Then (3.9) reduces to 

A ] t A i * =  o~Aj~ + g J i - - P J P i  �9 (3.10) 

Differentiating (3.8) covariantly, it  follows 
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from which, taking the skew-symmetric part in j and k, 

(Vjfl)P~-- (V~fl)Pj + fl(%P~-- V~Pj) = O, 

or, using (2.12) and (3.1), 

(3.11) (Vjfi)P,~-- (V~fl)Pj + 2f lAk , f /= O. 

Transveeting this with pk, we find 

Vjfi = 7Pj 

for some scalar fiel4 7. Thus (3.11) becomes fiAk~]/= O. This yields 

(3.12) ~(A~j-- eP~Pj) = 0.  

Let fff~ = {P e M: fi(P) # 0}. Then M~ is an open subset of M and A~j = ~PkPj 

on Mp. But  it can never occur by considering (3.10). Thus Mp is empty  aa6 hence 

fl = 0 on M. Therefore ~ is a constant. 

We now compute the covariant derivative of a second fundamental  ~ensor Aj~ 

with respect to the distinguished normal C a which will be useful in w 5. 

Differentiating (3.10) covariantly, we get 

(3.13) (V,~Aj~)A~ ~ + A~tV~A,--  o~VkAj~ = -- (VkPj)P~-- PjV~-P~ 

= AT~J/Pi + A~Ji~-Pj 

because of (2.12), from which, taking the skew-symmetric part  with respect to the 

indices k and j, 

A,*V~Ai~-- A~'V~A,--- 2Akt]/P, + .(P~],.,-- P,  ]~,) 

with the aid of (2.22) with c = 4, (3.1), (3.3), (3.5) and (3.6). I f  we exchange the 

indices k and i in the above equation, then we get 

A/V ,A , , , - -  A , 'V ,A , ,  = 2A,J/.P~ + c~(Pj,,-- P,J,,) . 

Substi tuting (2.22) with (3.5) and (3.6) into this, we find 

Adding (3.13) and above equation, we obtain. 

(3.1~) 2 A / V ~ A , - -  zr = 2A~JJP~ + ~(P~ J~- -  P~ J~) 



U-HANG KI - Y o v ~ a  H o  IT~T~Z: Submani/olds o] complex space, etc. 349 

with the aid of (3.1). Differentiating (3.3) eovar iaa t ly  and making use of (2.12), 

(3.1) and (3.10), we have 

(3.15) (V~Aj~)P~ = ~]j,~. 

Transveet ing (3.14) with A~J and using (3.3), (3.10) and (3.15), we get 

(3.16) ~Aj~V~A~ ~- 2V~A~ = (~  q- 2) ]~7~PJ- 217~sP~-- ~Aj~]~Pi .  

Then we have from (3.1~) and (3.16) tha t  

VT:A-~i = fi,~P~ + fJkPi. 

Thus, we have 

LE~3~A 3.2. - Let M be an n ( >  1)-dimensional semi-invariant submanifoId with 

the distinguished normal C ~ o] a eompIex projective space CP ~ admitting an almost 

contact metric compound structure. I] the second ]undamental ]orms are commutative 

with the structure tensor ] induced on M, then we have 

(3.17) 

4. - Submanifolds of  an even-dlmensional Euclidean space admitting an almost 

contact metric compound structure. 

In  this section we assume tha t  the metric compound s t ructure  (]j~, gj~ ]j~, ]~) 

induced on a submanifol4 M of an even-dimensional Euclidean space E 2"~ defines 

an almost  contact  metr ic  s t ructure  (f/~, gs~ ph) and ~he second fundamenta l  tensors 

of M commute  with ], t ha t  is, (3.1) and (3.2) hold. Then (2.21) ~ (2.25) with e ~ 0 

are valid because t h e  ambient  manifold is Euclidean. As is already shown in w 3 

under  the assumption (3.1) an4 (3.2) hold, we get 

1/~) = (lt(~)Pt)Pj and Aii (~) = A(~)_PsPi. 

Subst i tut ing these equations into (2.22) with e =- 0, we find 

(~.1) V k A ~ - -  VjATc i z 0 . 

Also, (3.9) reduces to 

(4.2) Aj tA~ t=  c~Aj~ 

because of c ~ 0. 
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Differentiating (3.8) covariantly, it follows that 

v ~ v ~  = (v~)P~ + ~v~P~, 

from which, taking the skew-symmetric part in j and /q 

(V,r (V~fi)P~ + f l ( V ~ - -  V~P,) = O, 

or, using (2.12) an4 (3.1) 

(Vsfi)P~-- (V~fl)Pj + 2 f i A z ~ d / =  O. (4.3) 

Transvecting /~  gives 

7 being a certain scalar field. Thus (4.3) reduces to f l A k d / =  O. Transvecting this 

with ]d', we have 

(4.4) t3(A~i- gPI~Pi) = 0 

with the aid of (1.13) and (3.3). 

We now assume that  M is locally irreducible. 

Let M~ be a subset of M such that M s =  {P e M: fl(P) ~: 0). T h e n  M ,  is an 

open subset of M and Aj~ = ~PjP,  on M,. By considering (2.12), Pj is parallel 

on M,. I t  contradicts the fact that  M is locally irreducible. Consequently Ms is a 

void set and hence fi is identically zero on M. Therefore we can see from (3.8) 

that ~ is constant. 
Differentiating (4.2) covariantly, we get 

(4.5) (VT~Aj~)Ai ~ "~- Aj~VkAi~ = o~V~A~i , 

from which, by taking the skew-symmetric part in k and j and using (4.1), 

(4.6) A j t V ~ A i , - -  A # V j A ,  = 0 . 

Exchanging the indices k and i in (4.6), we can write down 

(4.7) 

l~emebering (4.1), we get 

{4.8) 

A / V ~ A ~ - -  A ~ V j A ~  = 0 . 

A j * V k A i ~ - -  Ai~VkA~,  = 0 . 
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Adding' two equations (4.5) and (4.8), we have 

(4.9) 2 A / V ~ A i ~ - ~ V k A ~ i .  

Transvect ing this with A~ j, we find 

(4.10) o~AatVT~Ait = 0 

with the aid of (4.2). Since = is constant ,  we th ink of two cases whether  c~ is zero 

or no.% If  ~ is zero, Aj~ = 0 on M because of (4.2). And consequently Pj  is parallel 

along M, which is a contradict ion.  Then, ~ is a nonzero constant  and hence we 

obtain f rom (4.10) 

After  all, this reduces to 

(4.11) 

with the aid of (4.2) and ~ 0. 

(4.~2) 

A~*V~:A, = O. 

V~Asi ~ 0 

Since M is locally irreducible, we have 

Aj i  ~ o~gji 

for a certain nonzero constant  ~. Also, it is easily proved f rom (4.2) and (4.12) tha t  

= ~. Thus, (4.12) becomes 

(4.13) Aj~ = ~ g , .  

Subst i tut ion this into (2.12) gives 

(4.14) Vj .Pi -~  ot/ji. 

On the  other  hand, (2.18) and (3.6) yield 

Subst i tut ing this into (2.2;) and using (3.6) and (4.13), we get 

Vj ( A  (u)/(v)(z)Pi) - -  V i (A .  (y)/(v)(z).Pj) - f -  A (z)/(z)(y)(~j(y)(x) P i -  ~i(y)(~).~]) ~ 0 , 

or, using" (2.15) and (4.13), 

{ ( V ~ A ( v ) ) P i - -  (ViA-(v))e]} /(v)(z) @ -A-(u)(~J(v)(z) /(z)(z) P i - -  li(u)(z) /(z)(x)-P~) @-2czLil(v)/(v)(x) = O . 

2 3  - Annall di Matemallca 
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Transvcct ion  with ](J~) gives 

(4.16) (VjA(u))P~ - (ViA(~))P~ + A(Y)(ljI~)(~)P~ - l~(~)(~)Pj) + 2~]j~A (~) = 0 

with the  aid of (2.7). Tr~nsvect ing this with P~ and using (1.15), we obtain  

V~A(w) = Q(~)p~ + R(~)P~ - A(v)l~<~>(~), 

where we have  pu t  

Q(~) = P~V~A(') , R (w) = A(~)It(~)(~)P ~ . 

Thus ,  (4.16) reduces to 

~fj~A (~) = O. 

This means t ha t  

(4.17) A (~) = 0 .  

Therefore,  we can see tha t  M is to ta l ly  umbilical  by  means of (4.13) and A ~ i  (~) = O. 

Summing  up these facts,  we have  

THn0~E)~ 4.1. - Let M be a locally irreducible complete n-dimensional  semi-invariant  

submani]old o] an even-di~nensional Eucl idean space E TM with a~most contact metric 

compound structure. I]  the second ]undamental  tensors commute with the structure 

tensor /, then M is an n-dimensional  sphere S n. 

We now assume tha t  the normal  vectors  C(~) a are parallel  in the subnormal  

bundle spanned by  C(~) ~, t ha t  is, l~(~)= 0 and t5(~) (~) = 0, and M does not  admi t  a 

cosymplet ic  structure.  Then we can easily find tha t  M is contained as a real hyper-  

sm'face of ~n (n + 1)-dimensional Euclidenn space E"+~c E 2~ by  vir tue  of Aj~ (*)= 0 

induced f rom (2.17) nnd (3.6). 

On the  other  hand,  t he  scalar field ~ defined b y  (3.3) is p roved  to be a nonzero 

cons tan t  by  the similar me thod  used in Theorem 3.1 by  considering t ha t  M does 

not  admi t  a cosymplect ic  s tructure.  Also, we can prove  t ha t  Aj, is p~ralleh There-  

fore M h~s two cons*ant pr incipal  curvature  0 and ~. Moreover,  thei r  multiplicit ies 

are constant .  So the distributions ~)o = {X: A X  = O} and D~---- {X: A X  = ~X}  are 

parallel,  complete ly  integrable,  to ta l ly  geodesic in M ~nd to ta l ly  umbil ical  in E "~+z. 

Thus we have  

THEO:~EH 4.2. -- Let M be an n-dimensional  complete semi-invariant  submani]old 

without eosymp~eetic structure o] an even-dimensional Eucl idean space E ~ admit t ing 
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an almost contact metric compound structure. I f  the second fundamental tensors and 

the structure tensor commute and the normal vectors C(~) ~ are parallel in the subnormal 

bundle spanned by C(~) ~, then M is a product o /a  sphere and a plane S ~ • E ~-~ (0 < r < n). 

(~OROL~At{Y 4.3. - Let M be an n-dimensional complete minimal  semi-invariant 

submani]old el an even-dimensional Euclidean space E ~ admitting an almost contact 

metric compound structure. I]  the same assumption as that of Theorem 3.2 is satis]ied, 

then M is a n  n-dimensional plane E ~. 

5.  - S u b m e r s i o n  5r: S~-'~+~-~ CP TM a n d  i m m e r s i o n  i:  M ->  C P  ~. 

In  this section, we assume tha t  M is gn n ( >  1)-dimensional submanifold  of a 

complex  project ive  space C_P ~. As is well known, the  unit  sphere S ~+~ is a pr incipal  

circle bundle over  a complex project ive  space CP% which is chargcter ized by  the 

Hopf- f ibra t ion  ~: S 2~+~ --~ CP "~. We consider ~ Riemannign  submersion ~: M -~ M 

computible  wi th  7~: S2~+~->CP% M being 7~-l(M). ~[f we speak more precisely, 

~: ~-f -~ M is a Riemanniun  submersion with to ta l ly  geodesic such t ha t  the ~ollowing 

d iagram com m ut e :  

~2m+1 

1- 1 
t i 

where ~: 37 -~ S 2~+~ and i: M -+ CP ~ ~re isometric immersions.  Le t  S 2~+x be cov- 

ered b y  s~ sys tem of coordingte neighborhoods {0:y~} such tha t  ~ ( ~ 7 ) =  ~ are 

coordinate neighborhoods of CP ~ with local coordinate sys tem (x~). We then  

represent  the  project ion ~: $2~+~-+ CP ~ locally b y  

(5.1) x : t=  x~(y~) 

and we pu~ 

(5.2) E ~ a =  ~ x  ~ , a~. = D/ay~, 

where the  ma t r ix  (E~ ~) has the max ima l  r ank  2m. 

Let  ~ be the  components  of the  uni t  Sasakian s t ruc ture  vector  ~ defined on 

S 2~+1. Since $ is the  ver t ical  vector  with respec~ to each f b r e  ~-x(p),  v p  e Cp~, 

{E~ ~, $~} const i tutes  a local coframe in S ~+1, where we have  pu t  $~ : g ~  and 
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g~, denotes the fundamental metric tensor of S ~+~. We denote by {E~u, ~} the 

frame corresponding this coframe. Then we get 

(5.3) E~AE% = ~ , ~ , ~ - -  0 ,  ~,E~.~ = 0 . 

We now take coordinate ~eighborhoods {U:y~} of 2~ such that n ( U ) =  U are 

coordinate neighborhoods of M with local coordinate system (x~). Let the isometric 

immersion ~ and i are locally expressed by y~= y~(y~) and x-~= x~(x h) respectively. 

The eommutativity of the preceding diagram implies 

where z is expressed locally by x~= x~(y~). Which induces 

(5A) B ~ E ~  1~ = E~.aB~ ~ , 

where B~x= 0~y ~ and E~h= ~ x  ~. 

For each point _P e M, we can choose the nlutually orthogonal unit normal vector 

fields C~ a defined in a neighborhood U of P such that {B~ x, C~ a} generates the tan- 

gent space of CP "~ at i (P) .  L e t  P be an arbitrary point of the fibre J~-~(P) over P~ 

then the horizontal lifts CJ  of C~ ~ are mutual!y orthogonal unit normal to M defined 

in the tubular neighborhood of P over U because of (5A). 

Taking account of this f~,~et, (5.3) and (5A), we find 

(5.5) ,~,,-- ~B~ ~ 

and 

(5.6) ~/~2~ = o ,  

where ~ is a vector field on .~. Then (4.5) implies 

(5.7) $ ~  = 

because of ~ =  1, where $~= $~gr g~ being the fundamental metric tensor of .M 

induced from g~ in such a way that g ~ =  g ~ B ~ B ~ .  Therefore, {E2 ~, ~} forms a 

locaI coframe in 2g corresponding {E~ x, ~.} in S 2"~+1. Denoting by {E%, ~} the frame 

corresponding this coframe, we have 

(5.8) E ~ E % -  d~ ~ , ~ E %  = 0 , ~ E , ~ =  0 . 

Then,  (5.4) and (5.8) imply that 

(5.9) E~ aBI~ x : B~ 'E% . 
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Since the metric tensors g~, and g~ are both invariant with respect to the sub- 

mersion ~ and ~ respectively, the va~ der Waerden-Bortolotti covariant derivatives 

of Ez ~, E ~  and E~ ~, E% are given by 

(5.10) 

(5.11) 

DuEzA = h z x E u ~  z -  h f f  ~uE% , 

{ V~E2~= h/~(Ey~ + ~ ) ,  

respectively, where D~ and V~ are the operators of the covariant differentiation 

o~ S ~'~+~ and M respectively~ h~ x =: gACh~c, h/~= g~ h ~  h~c and h~ are the structure 

tensors induced from the submersions ~ and z respectively (see IsgI~Ans [7]). 

On the other hand, the equations of Gauss for M are given by 

(5.12) V a B ~ =  Az~C ~ + AaJ~)C(~) ~ , 

where A ~  and A ~  (~) are the second fundamental tensors with respect to the normals 

C~-~ C X E ~  and C(J. = C(~)~E,~ respectively, and those of Weingarten by 

(5.13) 

(5.14) 

where A ~ =  g w A ~ ,  A~(~)= ~ A (~)= b(~) �9 g7 g(~)(x)~ g~Apv(~), and i~(~)(~) the third funda- 

mental tensors and b(~)= l#~)g(v)(~). 

On the other hand, (5.4) and (5.9) imply that  Vj = E% V~. We now put _ ~  

~ - .D~  ~.. From the definition of a Sasakian structure it follows that 

(5.15) 2 , ~  = - -  d~,. + ~ , .  , ~ . ~ ,  = o ,  ~ . 2 2 .  = o ,  2 ~  + P~,. = o 

and 

(5.16) 

where we have put _P/~ = F,~g,~.. Denoting by L the lie differentiation with respect 
to ~, we find 

(5.17) L_F~ = 0 

because of (5.16). Putting 
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we can see tha t  / ~ a  defines a global tensor field of the same type  as tha t  of .~u z 

because of (5.17), LEz~ = 0 and /)E). A-~ O (see [7]). 

Differentiating ~ E ~  x =  0 covariant ly  along S ~'~+~ and using (5.10), (5.16) and 

(5.18), we find 

(5.19) N ~x =  - -  h~ ~ , 

which implies 

(5.20) 

with the aid of (5.4) and (5.15). 
Differentiating (5.18) covariant ly  along C P  "~, and using (5A) and (5.10), we find 

(5.21) ~Tc i~  =- 0 , 

where V denotes the projection of D given by  V~=-E,~D~.. Therefore, the base 

space C P  ~ for S ~+~ admits  a K~ehler s t ructure  (/~B ~, G.c) represented by  the struc- 

ture  tensor hB a of the submersion ~: S ~+~ -~ CP ~'~ defined by  the IIopf-fibration. 

On the other  hand, by  taking account  of the co-Gauss equat ion for the sub- 

mersion ~: S 2"+~ -~ C P  "~ and (5.19), we can see tha t  the base space CP ~ is a Kaehle- 

rian manifold of constant  holomorphie sectional curvature  4 given by  (2.20). 

As to t ransforms of B~, and C~ by  /~Z', we h~ve 

(5.22) 

where ]~  is a tensor field of type  (1, 1), f~ 1-form for fixed x, ]~z a vector  field asso- 

ciated with ]~ defined by  ]z~= ] ~ g ~ g ~  and 9~ a scalar field for fixed x and y 

on M. 
Now we suppose tha t  n-dimensionM submanifold M of C P  "~ is semi-invariant  

with respect to the distinguished normal  C< Then we can have the algebraic rela- 

tionships (1.13)~(1.16) and (..~) and the s tructure equations (2.11).-~(2.15). 

If  we m a k e  use oi (2.4), (2.5), (5.4), (5.9) and (5.22), then  we obtain 

(5.23) ]?  = fz~ES/~ ~ , / 'J --  ] J / ~ % ,  = 

Thus ,  (5.22) reduces to 

where we have pu t  ] J =  P~ nnd f~.~-----P~. 
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(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Applying _P to (5.24) and using (5.15) and these expressions, we easily find 

L e P ~ -  0 ,  L ~ P ~  = 0 ,  

P~ P~ : i, 

P ~  = 0 , P ~ &  = 0 , 

~/e~= o, L ~  ~= o, 

If  we apply the operator of the covm'iant differentiation Vv = Bv~D, to (5.24) 

and using (5.5), (5.12), (5.13), (5.1r and (5.16), then we have 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

V~P~ = - -  A ~ v L  v , V ~ P  ~ = A~'/]v ~ , 

A~v(~) P ,  = - -  l~(y) ](,j)(~) , 

Differentiating (5.5) covariantly along _/~ and utilizing (5.12), 

first equation of (5.24), we find 

(5.36) V ~  ~ = ] ~ ,  

(5.37) A,e~,~ = P~,  

(5.38) A;~>%~ = 0 .  

(5.16) and the 

On the other hand, by  differentiating (5.6) eovariantly and taking account o! 

(5.11), the first relationship of (5.23) and (5.36), it follows tha t  

(5.39) ]/' = --  h/~ . 

If  we apply the operator Vj == B / V ~  = E % V ~  == B j ~ E % D ~  to  (5.4) and use (2.8), 

(5.10), (5.11), (5.12), (5.19) and (5.39), then we get 

(Aj~C a + Air(x) C(,)A)E~ + Bi-~E~j{ - -  ] , / ( E j ' ~  -1- ~zE~I:)} 

- -  - - F c ,  a ( E , ~  + E ~ c ~ ) B j ' E % B / ~  + ( A ~  C" + A ~  ~) Cv~)~).E,?E~j , 
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or using (5.3), (5.8) and the first equat ion of (5.24), 

Trausvecting these equations with Ev ~ respectively and using (5.8), (5.23) and 

(5.37), we have 

(5.40) Av~-- AjiEvJE~ i 4- Pv~ @ P~v 

(5.41) Av~ (~) --~ A]i(x) EvJ E~  i . 

Since the ambient  manifold S ~'+~ for 2~ is a space of constant curva ture  1, the 

equations of Gauss for M are given by  

(5.42) K~v~ ~ =  ~ g v ~ - -  d/ 'go~ 4- A ~ A v z  - Av~Aoz ~- A~(~)Avp(~) - A~(~)Aoz(~) , 

where Kov~ ~ is the l~iemann-Chris+ooffel curvature  tensor of M, those of Codazzi by  

(5.43) V v A ~ - - V ~ A v ~ - -  " ~ (~) 

(5.44) V v A ~  ~ ) - -  V ~ A w  (~) 4- lv(:~)A~, - ~(~)Aw 4- lv(~)(~)A~ {~)-  l~(~)(~)Aw (~) : 0 , 

and those of tgicci by  

' (y) ~ (y) 
(5A6) Vfl~(~)(~)-- V~/~(~) (~) 4- A.J(~)A~v (~ ) -  A~'(~)A~v ('~) T l~(,,)l~ - -  l~(~,)~ 

4- l~(,) (v) t~(~) (~) - -  l~(~) (v) l~(~) (~) : 0 .  

We now assume tha t  the second fundamenta l  tensor  of the base space M for 2~ 

commu~e with the s t ructure  tensor ]~ of the submersion z ,  t ha t  is, (3.1) and (3.2) 

hold. Then we can easily ver i fy  t h a t  t h e  second fundamenta l  tensors of the to ta l  

space 2~ r also commute  with fz~ because of (5.23)~ (5.26), (5.29), (5.40) and (5.41), 

that is, 

or, equivalent ly 

(5.47) 

(5.4s) 
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Transvect ing  (5.40) wi th  Pv and tak ing  account  of (3.3), (5.23)~ (5.27) and (5.28), 

we get 

(5.49) A~vP "~ = ~P~ + ~ . 

I f  we subst i tu te  (3.6) into (5.41) and make  use of (5.23), we then  have  

(5.50) A ~  (~) = A(~)-P~-P~, 

which implies t ha t  the mean  curvatures  of M an4 2~ are the  same with  the aid 

of (5.27). 

On the other  hand,  t ransvec t ion  (5.34) wi th  ](~)(~) yields 

(5.51) l~ (~) = A(~)/(~)(~)P~ 

with the  aid of (5.30) and  (5.50). 

We first p rove  

L E ~ A  5.1. - Let M be an n ( >  1)-dimensional semi-invariant submani]old with 

distinguished normal C ~ o/ a complex projective space CP ~ o/ real dimension 2m. I] 

the second ]undamental tensors o/ M are commutative with the structure tensor o/ the 

submersion 7~, then we have 

(5.52) A ~ A v  ~ = ~Aav @ ga.~. 

PROOF. -- Transvect ing  (5.40) with A~v = A/E~/E~'~ + P~,~' @ P , ~ ,  and taking ac- 

count  of (3.3), (5.8), (5.23), (5.27) and (5.28), we obtain  

A : v A ~  = A j , A / E a J E ~  ~ + ~(P~$~ + P=$a) + PaPs + $~$~, 

or, using (3.9) with e = 4, 

A~,A~,~ = ~Az~, @ g ~  

with the aid of (5.8), (5.23) and (5.40). Thus, the l e m m a  is proved.  

Next ,  we prove  

J~EN2~A 5.2. - -  Under the same assumptions as those stated in Lemma 5.1, we have 

(5.53) Aa~ (~) = 0 and As~ ~)= O. 

PnooF. - Differentiat ing (5.50) covar iant]y  and using (5.32), we get 

VvA~J ~) = (VvA(~))P~P~-- A(~)(A~/~P~ @ Av~f~P~) , 
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from which, taking ~he skew-symmetric part  with respect to the indices y and fi 

and using (5A4), 

= {(V~ A(~)) P~ - -  (Y~ A~)) Pv} P~, - -  A(~)(2Aw ]~P~, + A w  ]r - -  A ~  ]c,~Pv) 

because of (5A7). Substituting (5.50) and (5.51) into this equation, we find 

Transvection P~P~ gives 

with the aid of (5.26)~ (5.27), (5.28) and (5.29)~ where we have put  L(~)= A:~)l~(,)(~)_P~ + 

+ P ~ V ~ A  (~). Hence (5.54) reduces to 

= A(~)f(~)(~)(~vP~ - ~ P v )  P ~ - -  A(~)(2Awf~P~ + Av~]a~-P~ - A~]~,~.P,~) . 

Transvection P~ yields 

(5.55) 

because of (5.26), (5.3"/) and (5.49). 

Transveeting this with f ~  and using (5.25), we find 

A(~)(-- Av~, T P~,~ + - P ~  + ~P~P~) = 0 

because of (5.27) and (5.49). If  we transveet  this with gw and make use of (5.27) 

and (5.28), tkeI~ we have 

(5.56) A(~)(A --o:) : -  0 ,  

where A - :  ga~Aa~,. B y  computing the sqnare of norm of (5.55), we obtain A (~) ~ 0 

with the ai4 of (5.56) and n > 1. Therefore, it follows tha t  Aj,(~) -~ 0 an4 AaJ ~) ~ 0 

because of (3.6) and (5.50). Thus~ Lemma 5.2 is completely proved. 

If  the normal vectors C(~) ~ are parallel in the subnormal bundle spanned by 

C(,,) ~, we can easily prove from (2.25) and Lemma 5.2 tha t  M is a real hypersurface 

of ~ complex projective space C/)% Therefore, by Theorem A in  w 0, we have 
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TttEORE~I 5.3. - Let M be an n (>  ])-dimensional semi-invariant submani]old with 

distinguished normal C -~ o] CP ~'~. I] the second ]undamental tensors o] M are commu- 

tative with the structure tensor of the submersion ~ and the normal vectors C(~) ,~ are 

parallel in the subnormal bundle spanned by C(~ ~, then M is the model space M~,~(a, b), 

where (p, q) is some portion o] ( n - - 1 ) / 2  and a 2 @ b~= 1. 

LE~r 5.4. - Under the same assumptions as those stated in Zemma 5.1, we obtain 

(5.57) V~A~ = 0.  

P~oo~. - Applying the operator  V ~=  E J V v  to bo th  sides of (5.40), we have  

E J V v A , s ~ =  (V~A~)Es~E~ ~ - A~Ev~:(VvE~)E~ ~ @ A ~ E ~ E ~ : V v E ~  ~ 

+ E,~(V,-~) ~ + P~,~ v,~r + ( ~  V~t)~)$~ + P~E~ V,~.  

Substi tut ing (5.11) with h j ~ = - / / ~ ,  (5.32) and (5.36) into tiffs equation,  we get 

because of (5.23) and (5.40), f rom which, using (3.1) and (3.17), 

(5.58) E~: V ~ A ~ - -  O . 

Ou the o~her hand, by  Lemma 5.2, we can have from (5.43) 

(5.59) V v A ~ - -  V ~ A ~ =  0 .  

Transvect ing (5.58) with E~ k, we get 

V~A~ = (~  V , A ~ ) ~ .  

Differentiating (5.37) and making use of (5.32), (5.37), (5.47) and (5.59), we have 

~7~A~= 0. Therefore Lemma 5.4 is proved. 

We consider the ident i ty :  

�89 = (VvVvAz~)Az% +/ [VvA~[I  ~ , 

where A ---- g'~Vv Vs and AzS---- As~, = A ~ .  

F rom this ident i ty  we can see tha t  the second fundamenta l  tensors A~a �9 are parallel 

because of (5.53) and (5.57). Thus the first normal  space NI(P) defined to be tile 

orthogonal complem~nt of { c : ~  T~(~f/): A ~  = o} m T~(M) is invariant under par- 
nllel transla~J.on with respect to the connection in the normal bundle and of constant  

dimension _ 1, where A%~ are the second fundamenta l  tensors associated with C~ 

and T-~(M) is the normal  space s t  ~b 6 .@. Thus, by  the reduction theorem ([2]), 
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we conclude  the  t o t a l  spsce M for M is con~Mned in  an  (n + 2 ) -d imens iona l  u n i t  

sphere S ~+~ (c S ~'~+~) a n d  c o n s e q u e n t l y  the  base spsce M is c o n t a i n e d  as a hype r -  

surface of a complex  pro jec t ive  space CP  I~+~//~ of real  d i me ns i on  n + i (see [2]). 

A n d  hence  the  d i s g r s m  in  the  b e g i n n i n g  ill w 5 reduces  to 

M ~ CP(,,+~)/~ c 6 ' P  m 

Therefore~ t a k i n g  ~ccount  o f  T he o r e m A in  w 0, we have  

THE0~E~ 5.5. -- Let M be an n (> 1)-dimensional complete semi-invariant sub- 

mani]old with the distinguished normal C ~ el a complex pro~ective space CP TM of real 

dimension 2m. I]  the second pt~ndamental te~sors are commutative with the structure 

tensor el the submersion ~, then M is the model space M~,~(a, b), where (p, q) is some 

portion el ( n - - 1 ) / 2  and a 2 + b ~ -  1. 
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