Submanifolds of Complex Space Forms
 Admiting an Almost Contact Metric Compound Structure $\left.{ }_{(}{ }^{(}\right)\left({ }^{(* *)}\right.$.

u-Havg Ki - Young Ho Ktm

Dedicated to professor Eulyong Pak on his 60th birthday

Abstract

Summary. - Real hypersurfaces of an almost Hermitian manifold naturally admit an almost contact metric strueture and the $(f, g, u, v, w, \lambda, \mu, v)$-structure is defined on submanifolds of codimension 3 of an almost Hermitian manifold. We study the so-called semi-invariant submanifolds of a complex space form with almost contact metric compound structure which is a general notion of ($f, g, u, v, w, \lambda, \mu, \nu$)-structure.

0. - Introduction.

K. Yano and one of the present authors [11] have studied the notion of $(f, g, u$, $v, w, \lambda, \mu, \nu)$-structure induced in a submanifold M of codimension 3 in an almost Hermitian manifold, and studied conditions for such a structure to define an almost contact metric structure in M.

By the way, Y. Tasmro and I.-B. Krm [11] have generalized the notion of $(f, g, u, v, w, \lambda, \mu, \nu)$-structure recently by defining the so-called metric compound structure in a submanifold of an almost Hermitian manifold.

On the other hand, the present authors [3] studied a submanifold of codimension 3 of a complex projective space admitting an almost contact metric structure. The purpose of the present paper is to devote in generalizing the intrinsic character of a submanifold of codimension 3 of a complex space form. Our main result appears in § 5, in which, by the method of Riemannian fibre bundles, we prove that an m-dimensional complete semi-invariant submanifold M of a complex projective space $O P^{m}$ admitting an almost contact metric compound structure is globally isometric to $M_{p, 4}^{c}(a, b)=\tilde{\pi}\left(S^{2 p+1}(\alpha) \times S^{2 a+1}(b)\right)$, where $\tilde{\pi}$ is a natural projection of a $(2 m+1)$-dimensional unit sphere $S^{2 m+1}$ onto a complex projective space $C P^{m}$ defined by the Hopf-fibration, (p, q) is some of $(n-1) / 2$ and $a^{2}+b^{2}=1$.

[^0]In determining the submanifold, we quote the following theorem.
THEOREM A [9]. - $M_{n, a}^{c}(a, b)$ are only complete hypersurface of a complex projective space in which the second fundamental form A commutes with the fundamental tensor f of the submersion π compatible with $\tilde{\pi}$.

Manifolds, submanifolds, geometric objects and mappings discussed in this paper are assumed to be differentiable and of C^{∞}. We use throughout this paper the systems of indices as follows:

$$
\begin{array}{ll}
x, \mu, \nu, \lambda=1,2, \ldots, 2 m+1 ; & \alpha, \beta, \gamma, \delta=1,2, \ldots, n+1 \\
A, B, C, D=1,2, \ldots, 2 m ; & h, i, j, k=1,2, \ldots, n \\
w, x, y, z=1^{*}, 2^{*}, \ldots, p^{*}, & n+p=2 m
\end{array}
$$

The summation convention will be used with respect to those systems of indices ${ }^{\circ}$ The authors would like to express here their sincere gratitude to Professor J. S. PaK who gave them many valuable suggestions to improve the paper.

1. - Preliminaries.

Let \tilde{M} be a $2 m$-dimensional almost Hormitian manifold covered by a system of coordinate neighborhoods $\left\{\widetilde{U} ; x^{d}\right\}$ and (F, G) the almost Hermitian structure, Where F is the almost complex structure tensor and G the almost Hermitian metric tensor of \tilde{M}. We denote by F_{B}^{A} and $G_{O B}$ components of F and G respectively. Then we have

$$
\begin{equation*}
F_{B}{ }^{4} F_{C}^{B}=-\delta_{C}^{A}, \quad F_{C}^{D} F_{B}^{E} G_{D E}=G_{C B} \tag{1.1}
\end{equation*}
$$

$\delta_{o}{ }^{A}$ being the Kronecker delta.
If we put the covariant components of F as

$$
\begin{equation*}
F_{C B}=F_{C}^{A} G_{B A} \tag{1.2}
\end{equation*}
$$

then $F_{C B}$ is skew-symmetric with respect to the indices C and B.
Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and immersed isometrically in \tilde{M} by the immersion $i: M \rightarrow \tilde{M}$. We identify $i(M)$ with M itself and represent the immersion locally by

$$
\begin{equation*}
x^{A}=x^{A}\left(x^{h}\right) . \tag{1.3}
\end{equation*}
$$

We now put $B_{i}{ }^{4}=\partial_{i} x^{4}\left(\partial_{i}=\partial / \partial x^{i}\right)$. Then $B_{i}{ }^{4}$ are n linearly independent vectors of \widetilde{M} tangent to M. And denote by $C_{x}{ }^{4}$ mutually orthogonal unit normal vector
field of M. Then we have $G_{C B} B_{i}{ }^{B} C_{x}{ }^{C}=0$ and the metric tensor of the normal bundles of M is given by $g_{z y}=G_{C B} C_{z}{ }^{C} C_{y}{ }^{B}=\delta_{z y}$. Therefore, vector fields $B_{i}{ }^{A}$ and $O_{x}{ }^{4}$ span the tangent space $T_{p}(\tilde{M})$ of \tilde{M} at every point P of $M /$. The metric tensor g of M induced from that of \tilde{M} is given by

$$
\begin{equation*}
g_{i j}=G_{C B} B_{i}^{c} B_{i}^{B} \tag{1.4}
\end{equation*}
$$

since the immersion is isometric.
The transforms of the tangent vectors $B_{j}{ }^{A}$ and the normal vectors $C_{x}{ }^{4}$ to M by F are expressed in the form

$$
\begin{align*}
& F_{B^{A}} B_{j}^{B}=f_{j}^{h} B_{h}^{A}+f_{j}^{x} C_{x}^{A} \tag{1.5}\\
& F_{B}^{A} C_{x}^{B}=-f_{x}^{h} B_{h}^{A}+f_{x}^{y} C_{y^{A}} \tag{1.6}
\end{align*}
$$

where $f_{j}{ }^{h}$ are components of a tensor field of type (1, 1$), f_{j}{ }^{x}$ those of 1 -form for each fixed $x, f_{x}{ }^{h}$ vector field associated with $f_{j}{ }^{x}$ given by $f_{x}{ }^{h}=f_{j}{ }^{y} g^{j h} g_{y x}, f_{x}{ }^{y}$ function for fixed indices x and y. Putting $f_{i i}=f_{j}{ }^{h} g_{h i}, f_{j x}=f_{j}{ }^{y} g_{y x}, f_{x j}=f_{x}{ }^{h} g_{h j}$ and $f_{x y}=f_{x}{ }^{z} g_{x y}$, we can easily find

$$
\begin{equation*}
f_{i i}=-f_{i j}, \quad f_{i x}=f_{x j}, \quad f_{x y}=-f_{y x} \tag{1.7}
\end{equation*}
$$

Applying F to (1.5) and (1.6) respectively and using (1.1) and these expressions, we have

$$
\begin{gather*}
f_{j}^{t} f_{t}^{h}=-\delta_{j}^{h}+f_{j}^{x} f_{x}^{h} \tag{1.8}\\
f_{j}^{t} f_{t}^{y}-f_{j}^{x} f_{x}^{y}=0, \quad f_{x}^{t} f_{t}{ }^{i}+f_{x}^{y} f_{y}^{i}=0 \tag{1.9}\\
f_{y}^{z} f_{z}^{x}=-\delta_{y}^{x}+\dot{f}_{y}{ }^{t} f_{t}^{x} \tag{1.10}
\end{gather*}
$$

The second equation of (1.1) and (1.4) imply

$$
\begin{equation*}
\hat{f}_{j}^{t} f_{i}^{s} g_{t s}=g_{j i}-f_{j}^{x} f_{i x} \tag{1.11}
\end{equation*}
$$

Now, removing the almost Hermitian ambient manifold \tilde{M}, we suppose that an n-dimensional Riemannian manifold M admits a metric tensor $g_{j i}$, a tensor field $f_{j}{ }^{h}$ of type $(1,1), p$ vector fields $f_{x}{ }^{h}, p 1$-forms $f_{j}{ }^{x}$ and $p(p-1) / 2$ scalar fields $f_{x y}$ satisfying the relationships (1.8) $\sim(1.11)$. Such a set $\left(f_{j}{ }^{h}, g_{j i}, f_{x^{h}}, f_{x^{v}}\right)$ is said to be a metric compound structure on M.

If we put

$$
F=\left(\begin{array}{cc}
f_{i}^{h} & -f_{x}^{h} \tag{1.12}\\
f_{x i} & f_{x y}
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{ll}
g_{i i} & 0 \\
0 & \delta_{x y}
\end{array}\right)
$$

then the set (F, G) defines an almost Hermitian structure in the product manifold $M \times R^{p}$ of the manifold M with a p-dimensional Euclidean space R^{p}.

We suppose that M admits an almost contact metric compound structure. Then we have

$$
\begin{gather*}
f_{j}^{t} f_{t}^{h}=-\delta_{j}^{h}+P_{j} P^{h}, \tag{1.13}\\
f_{j}{ }^{t} P_{t}=0, \quad f_{j}^{h} P^{j}=0 \tag{1.14}
\end{gather*}
$$

$$
\begin{equation*}
P_{i} P^{i}=1 \tag{1.15}
\end{equation*}
$$

and.

$$
\begin{equation*}
f_{j}{ }^{t} f_{i}{ }^{s} g_{t \mathrm{~s}}=g_{j i}-P_{i} P_{i} \tag{1.16}
\end{equation*}
$$

where P_{j} is a 1-form and P^{h} vector field associated with. P_{j} given by $P^{h}=g^{h j} P_{j}$ on M.

In this case we know that the dimension n of M is odd and the rank of ($f_{i}{ }^{i}$) is equal to $n-1$.

Comparing (1.11) and (1.16), we have

$$
\begin{equation*}
f_{j}^{x} f_{i x}=P_{j} P_{i} \tag{1.17}
\end{equation*}
$$

This equation shows that the product of the matrix $\left(f_{j}{ }^{x}\right)$ with its transpose is of rank 1 and hence the matrix $\left(f_{j}{ }^{x}\right)$ by itself is of rank 1.

Therefore, we may put

$$
\begin{equation*}
f_{j^{x}}=v^{x} P_{j} \tag{1.18}
\end{equation*}
$$

where $\nu^{\text {a }}$ are certain scalar fields for each x.
Since $f_{j}{ }^{x} f_{w}{ }^{j}=P_{j} P^{j}=1$, we have

$$
\begin{equation*}
v_{x_{x}} \nu^{n}=1 \tag{1.19}
\end{equation*}
$$

and hence (1.9) and (1.10) are reduced respectively to

$$
\begin{equation*}
f_{x}^{y} v^{x}=0, \quad v_{y} f_{x}^{y}=0 \tag{1.20}
\end{equation*}
$$

and.

$$
\begin{equation*}
f_{y}^{z} f_{z}^{x}=-\delta_{y}^{x}+v_{y} v^{x} \tag{1.21}
\end{equation*}
$$

The equations (1.19) $\sim(1.21)$ form an almost contact metric structure on R^{p} at every point of M, and consequently we see that the dimension p of R^{p} is odd.

Conversely, assuming that an almost contact metric structure $\left(f_{y^{x}}, g_{x}, \nu^{x}\right)$ on R^{x} is admitted, we can prove that qhe metric compound strucqure ($\left.f_{j}{ }^{h}\right) g_{j i}, f_{x}{ }^{h}, f_{y}{ }^{x}$) induces an almost contact metric structure ($f_{j}{ }^{h}, g_{i i}, P^{h}$) on M.

Thus we have

Theorem $1.1([11])$. - Let $\left(f_{j}{ }^{h}, g_{j i}, f_{x}{ }^{h}, f_{y}{ }^{x}\right)$ be a metric compound structure on M. In order that $f_{j}{ }^{h}$ and $g_{i i}$ constitute an almost contact metric structure $\left(f_{j}{ }^{h}, g_{i i}, P^{h}\right.$) on M, it is necessary and sufficient that $f_{y}{ }^{x}$ and $g_{y x}$ constitute an almost contact metric structure $\left(f_{y^{x}}, g_{y x}, \nu^{x}\right)$ on R^{p} at every point of M.

From above discussions we also have

Theorem 1.2 ([11]). - In order for a metric compound structure ($f_{j}{ }^{h}, g_{j i}, f_{x}{ }^{h}, f_{y}{ }^{x}$) to be almost contact metric structure, it is necessary and sufficient that the matrix $\left(f_{x}{ }^{h}\right)$ is of rank 1, that is, the p vector fields $f_{x}{ }^{h}$ are all parallel to one another.

A metric compound structure admitting an almost contact metric structure is said to be an almost contact metric compound structure on M.

2. - Submanifolds of codimension p of an almost Hermitian manifold.

In this section we assume that n-dimensional submanifold M of codimension p of an almost Hermitian manifold \tilde{M} admits an almost contact metric compound structure ($f_{j}^{h}, g_{j i}, f_{x^{h}}, f_{y}^{x}$) and consequently $\left(f_{j}{ }^{h}, g_{j i}, P^{h}\right.$) defines an almost contacti metric structure. So, (1.13)~(1.16) are valid.

The vector field N^{4} defined by

$$
\begin{equation*}
N^{A}=\nu^{x} C_{x}{ }^{4} \tag{2.1}
\end{equation*}
$$

is unit normal to M because $G_{C B} C_{x}^{c} C_{y}^{B}=\delta_{x y}$ and $\nu_{x} \nu^{x}=1$.
If we transform the tangent vectors $B_{i}{ }^{4}$ and the unit normal vector N^{4} by F, then we have

$$
\begin{gather*}
F_{B}^{A} B_{i}^{B}=f_{i}{ }^{n} B_{h}^{A}+P_{i} N^{A}, \tag{2.2}\\
F_{B}^{A} N^{B}=-P^{h} B_{h}^{A} \tag{2.3}
\end{gather*}
$$

respectively because of (1.18), (1.20) and (2.1).
It is well known that the submanifold M of an almost Hermitian manifold satisfying (2.2) and (2.3) is semi-invariant with respect to N^{A} and we call N^{A} the distinguished normal to $M([1],[10])$.

Now, we take N^{A} as $C_{1^{*}}{ }^{A}$. Then we have from (2.1) that $v^{1^{*}}=1$ and $v^{(x)}=0$, where here and in the sequel, (x) runs over the range $\left\{2^{*}, \ldots, p^{*}\right\}$. For the convenience
of notation, we write C^{A} in stead of $C_{1^{*}}{ }^{A}$. Then we can represent (2.2) and (2.3) respectively as follows:

$$
\begin{gather*}
F_{B}^{A} B_{i}^{B}=\hat{f}_{i}^{h} B_{h}^{A}+P_{i} C^{A}, \tag{2.4}\\
F_{B}^{A} C^{B}=-P^{h} B_{h}^{A} . \tag{2.5}
\end{gather*}
$$

Taking account of (1.18), (1.20) and the fact that $\nu^{t^{*}}=0$ and $\nu^{(x)}=0$, we find from (1.6)

$$
\begin{equation*}
F_{B}^{A} C_{(x)}{ }^{B}=f_{(x)^{(y)}}{ }^{(y)} C_{(y)}{ }^{A} . \tag{2.6}
\end{equation*}
$$

Then, by applying F to (2.6), it follows

$$
\begin{equation*}
f_{(x)^{(y)}} f_{(y)^{(z)}}=-\delta_{(x)^{(z)}} \tag{2.7}
\end{equation*}
$$

Denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation with respect to the fundamental tensor $g_{i i}$, we have the equations of Gauss for M

$$
\begin{equation*}
\nabla_{j} B_{i}^{A}=A_{j i} C^{A}+A_{j i}^{(x)} C_{(x)^{A}} \tag{2.8}
\end{equation*}
$$

where $A_{j i}$ and $A_{j i}{ }^{(x)}$ are the second fundamental tensors with respect to normal vector fields C^{A} and $C_{(x)^{A}}$ respectively, and those of Weingarten

$$
\begin{gather*}
\nabla_{j} C^{A}=-A_{j}^{h} B_{h}^{A}+l_{j}^{(x)} U_{(x)^{A}} \tag{2.9}\\
\nabla_{j} O_{(x)^{A}}=-A_{j}{ }^{h}(x) \tag{2.10}\\
B_{h}^{A}-l_{j(x)} C^{A}+l_{j(x)^{(y)}} O_{(y)^{A}}
\end{gather*}
$$

where $A_{j}^{h}=g^{h i} A_{j i}, A_{j}{ }^{h}(x)=g^{h i} g_{(y)(x)} A_{j i}{ }^{(y)}=A_{j i(x)} g^{h i}, l_{j}^{(x)}$ and $l_{j(x)}{ }^{(y)}$ are the third fundamental tensors, $l_{j(y)}=l_{j}^{(y)} g_{(y)(x)}$.

Putting $l_{j(x)(y)}=l_{j(x)}{ }^{(z)} g_{(z)(y)}$, we can easily verify $l_{j(x)(y)}=-l_{j(y)(x)}$ since $C_{(x)^{A}}$ are mutually orthogonal.

We now assume that the ambient manifold \tilde{M} is a Kaehlerian manifold, that is, $\tilde{\nabla} F=0$, where $\tilde{\nabla}$ is a covariant differentiation in \tilde{M}.

Differentiating (2.4) $\sim(2.6)$ covariantly and using (2.8) $\sim(2.10)$ and these equations, we can easily find

$$
\begin{align*}
& \nabla_{j} \dot{f}_{i}{ }^{h}=-A_{j i} P^{h}+A_{j}{ }^{h} P_{i}, \tag{2.11}\\
& \nabla_{j} P_{i}=-A_{j t} f_{i}{ }^{t}, \quad \nabla_{j} P^{h}=A_{j}{ }^{t} f_{t^{h}}, \tag{2.12}\\
& A_{j i}{ }_{i}^{(x)} f_{(x)}{ }^{(y)}=A_{i t}{ }^{(y)} f_{i}{ }^{t}+l_{j}^{(y)} P_{i}, \tag{2.13}\\
& A_{j}{ }^{(x)} P^{t}=-l_{j}{ }^{(y)} f_{(3)^{(x)}}, \tag{2.14}\\
& \nabla_{j} f_{(y)^{(z)}}^{(x)}=l_{j(y)^{(z)}}^{(z)} f_{(z)}^{(x)}-f_{(y)^{(z)} l_{j(z)}^{(x)}} . \tag{2.15}
\end{align*}
$$

If we transvect (2.13) with $f_{(y)}^{(z)}$ and take account of (2.7), then we obtain

$$
\begin{equation*}
A_{j i}{ }^{(z)}=-A_{j t^{(y)} f_{i}{ }^{\dagger} f_{(y)^{(z)}}-l_{j}{ }^{(y)} P_{i} f_{(y)^{(z)}}, ~}^{\text {(z) }} \tag{2.16}
\end{equation*}
$$

from which

$$
\begin{equation*}
A^{(z)}=-P^{i} l_{t}^{(y)} f_{(y)}^{(z)}, \tag{2.17}
\end{equation*}
$$

where we have put $A^{(z)}=g^{j i} A_{j i}{ }^{(z)}$.
Also, transvecting (2.14) with. $f_{(x)}^{(z)}$ and using (2.7), we find

$$
\begin{equation*}
l_{j}{ }^{(z)}=A_{j t}{ }^{(x)} P^{t} f_{(x)}{ }^{(z)} . \tag{2.18}
\end{equation*}
$$

The equations of Gauss for M in a Kaehlerian manifold \tilde{M} are given by

$$
\begin{equation*}
K_{k j i}^{h}=K_{D C B}{ }^{A} B_{k}{ }^{D} B_{j}{ }^{c} B_{i}{ }^{B} B^{h}{ }_{A}+A_{t_{i}}{ }^{n} A_{j i}-A_{j}{ }^{h} A_{k i}+A_{k}{ }_{k}{ }^{h}(x) A_{j i}{ }^{(x)}-A_{j}{ }^{h}(x) A_{k i}{ }^{(x)}, \tag{2.19}
\end{equation*}
$$

where $K_{D C B}^{A}$ and $K_{k j i}^{h^{h}}$ are the Riemann-Christoffel curvature tensors of \tilde{M} and M respectively, and we have put $B^{n}{ }_{A}=B_{i}{ }^{B} g^{n i} G_{A B}$.

We now assume that the ambient manifold \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature and hence its curvature tensor has the form

$$
\begin{equation*}
K_{D C B}^{A}=\frac{c}{4}\left(\delta_{D}^{A} g_{C B}-\delta_{C}^{A} g_{D B}+F_{D}^{A} F_{C B}-F_{C}^{A} F_{D B}-2 F_{D C} F_{B}^{A}\right) \tag{2.20}
\end{equation*}
$$

Substituting this into (2.19) and using (1.4) and (2.4), we can see that

$$
\begin{align*}
& K_{k j i}{ }^{h}=\frac{c}{4}\left(\delta_{k}{ }^{h} g_{j i}-\delta_{j}{ }^{h} g_{k i}+f_{k i}{ }^{h} f_{j i}-f_{j}{ }^{h} f_{k i}-2 f_{k j} f_{i}{ }^{h}\right)+A_{k^{h} A_{j i}-A_{j}{ }^{h} A_{k i}} \tag{2.21}\\
&+A_{l^{h}(x)} A_{i i}{ }^{(x)}-A_{j}{ }^{h}(x) \\
& A_{k i}{ }^{(x)}
\end{align*}
$$

By taking account of (2.4), (2.5), (2.6), (2.9), (2.10) and (2.20), we have the equations of Codazzi:

$$
\begin{align*}
& (2.22) \quad \nabla_{k} A_{j i}-\nabla_{j} A_{k i}-l_{k(x)} A_{j i}{ }^{(x)}+l_{j(x)} A_{k i}{ }^{(x)}=\frac{c}{4}\left(P_{k} f_{j i}-P_{j} f_{k i}-2 P_{i} f_{k j}\right), \tag{2.22}\\
& (2.23)
\end{align*} \quad \nabla_{k} A_{j i}{ }^{(x)}-\nabla_{j} A_{k i}{ }^{(x)}+l_{k}{ }^{(x)} A_{j i}-l_{j}{ }^{(x)} A_{k i}+l_{k(y)}{ }^{(x)} A_{j i}{ }^{(y)}-l_{j(v)}{ }^{(x)} A_{k i}{ }^{(y)}=0, ~ l
$$

and those of Ricci are given by

$$
\begin{align*}
& \nabla_{i} l_{i}^{(x)}-\nabla_{i} l_{j}{ }^{(x)}+A_{j}{ }^{t} A_{t i}{ }^{(x)}-A_{i}{ }^{t} A_{j t}{ }^{(x)}+l_{j(y)}{ }^{(x)} l_{i}^{(y)}-l_{i(y)}{ }^{(x)} l_{j}^{(y)}=0, \tag{2.24}\\
& \nabla_{j} l_{i(x)^{(y)}}-\nabla_{i} l_{j(x)}{ }^{(y)}+A_{j}{ }^{t}(x) A_{i t}{ }^{(y)}-A_{i}{ }^{t}(x) A_{j t}{ }^{(y)}+l_{j(x)} l_{i}{ }^{(y)}-l_{i(x)} l_{j}{ }^{(y)} \\
& +l_{f(z)^{(y)}} l_{i(x)}{ }^{(z)}-l_{i(z)}{ }^{(y)} l_{j(x)}{ }^{(z)}=\frac{e}{2} f_{i j} f_{(x)}{ }^{(y)} .
\end{align*}
$$

3. - Submanifolds of a complex space form admitting an almost contact metric compound structure.

In this section, we assume that the metric compound structure induced on an n-dimensional submanifold M of codimension p of a Kaehlerian manifold of constant holomorphic sectional curvature c, that is, which is also called a complex space form, defines an almost contact metric structure. And consequently ($\dot{j}_{j}{ }^{h}, g_{j i}, P^{h}$) defines an almost contact metric structure on M.

We now suppose that the second fundamental tensors and the structure tensor $f_{j}{ }^{h}$ commute each other, that is,

$$
A_{j}{ }^{t} f_{t}^{h}-f_{j}{ }^{t} A_{t^{h}}=0, \quad A_{j}{ }^{t}(x) f_{t}^{h}-f_{j}{ }^{t} A_{t^{h}(x)}=0
$$

or, equivalently

$$
\begin{align*}
& A_{j t} f_{i}^{t}+A_{i t} f_{j}^{t}=0, \tag{3.1}\\
& A_{j t}{ }^{(\alpha)} f_{i}{ }^{t}+A_{i t}{ }^{(x)} f_{j}{ }^{t}=0 \tag{3.2}
\end{align*}
$$

respectively.
Transvecting (3.1) with $f_{k}{ }^{i}$ and using (1.13), we get

$$
A_{i t}\left(-\delta_{k}^{t}+P_{k} P^{t}\right)+A_{i t} f_{k}^{i} \dot{f}_{j}^{t}=0
$$

from which, taking the skew-symmetric part in j and k

$$
\left(A_{j t} P^{t}\right) P_{k}-\left(A_{k t} P^{t}\right) P_{j}=0
$$

which shows that

$$
\begin{equation*}
A_{j t} P^{t}=\alpha P_{j} \tag{3.3}
\end{equation*}
$$

α being a scalar field given by $\alpha=A_{j i} P^{i} P^{i}$.
If we take the symmetric part of (2.16) in j and i and use (3.2), then we find

$$
\begin{equation*}
2 A_{j i}^{(z)}=-\left(l_{j}^{(x)} P_{i}+l_{i}^{(x)} P_{j}\right) f_{(x)}^{(z)} . \tag{3.4}
\end{equation*}
$$

Transvection P^{i} gives

$$
\begin{equation*}
l_{j}^{(z)}=\left(l_{t}^{(z)} P^{t}\right) P_{j} \tag{3.5}
\end{equation*}
$$

because of (2.7) and (2.14). Therefore, (3.4) reduces to

$$
\begin{equation*}
A_{j i}^{(z)}=A^{(z)} P_{j} P_{i} \tag{3.6}
\end{equation*}
$$

with the aid of (2.17).

Differentiating (3.3) covariantly and making use of (2.12), we get

$$
\left(\nabla_{k} A_{j t}\right) P^{t}-A_{j}^{t} A_{k s} f_{t}^{s}=\left(\nabla_{k t} \alpha\right) P_{j}-\alpha A_{k t} f_{j}^{t},
$$

from which, taking the skew-symmetric part with respect to the indices k_{0} and j and utilizing (2.22), (3.5) and (3.6),

$$
\begin{equation*}
\frac{e}{2} f_{j k}+2 A_{j}^{t} A_{t s} f_{k}^{s}=\left(\nabla_{k} \alpha\right) P_{j}-\left(\nabla_{j} \alpha\right) P_{k}+2 \alpha A_{k t} f_{j}^{t} \tag{3.7}
\end{equation*}
$$

with the help of (1.14), (1.15) and (3.1).
If we transvect (3.7) with P^{j} and use (1.14), (1.15) and (3.3), then we have

$$
\begin{equation*}
\nabla_{k} \alpha=\beta P_{k} \tag{3.8}
\end{equation*}
$$

where $\beta=P^{t} \nabla_{t} \alpha$. Thus, (3.7) becomes

$$
\frac{e}{4} f_{j k}+A_{j}^{t} A_{t s} f_{k}^{s}=\alpha A_{j t} f_{k}{ }^{t}
$$

Transvection $f_{i}{ }^{k}$ yields

$$
A_{j t} A_{i}^{t}=\alpha A_{j i}+\frac{c}{4}\left(g_{j i}-P_{j} P_{i}\right)
$$

with the aid of (1.13) and (3.3).
Thus we have
LEMMA 3.1. - Let M be a semi-invariant submanifold of a complex space form with the almost contact metric compound structure. If the second fundamental tensors of M are commutative with the structure tensor f induced on M, then an eigenpolynomial of a second fundamental tensor is given by

$$
\begin{equation*}
A_{j i} A_{i}^{t}=\alpha A_{j i}+\frac{e}{4}\left(g_{j i}-P_{j} P_{i}\right) \tag{3.9}
\end{equation*}
$$

where α is a certain scalar field on M.
We now assume that the ambient manifold is a complex projective space $O P^{m}$ of real dimension $2 m$. Then (3.9) reduces to

$$
\begin{equation*}
A_{j t} A_{i}^{t}=\alpha A_{j i}+g_{j i}-P_{j} P_{i} \tag{3.10}
\end{equation*}
$$

Differentiating (3.8) covariantly, it follows

$$
\nabla_{j} \nabla_{k} \alpha=\left(\nabla_{j} \beta\right) P_{k}+\beta \nabla_{j} P_{k}
$$

from which, taking the skew-symmetric part in j and k,

$$
\left(\nabla_{j} \beta\right) P_{k}-\left(\nabla_{k} \beta\right) P_{j}+\beta\left(\nabla_{j} P_{k}-\nabla_{k} P_{j}\right)=0
$$

or, using (2.12) and (3.1),

$$
\begin{equation*}
\left(\nabla_{j} \beta\right) P_{k}-\left(\nabla_{k} \beta\right) P_{j}+2 \beta A_{k t} f_{j}^{t}=0 \tag{3.11}
\end{equation*}
$$

Transvecting this with P^{k}, we find

$$
\nabla_{i} \beta=\gamma P_{j}
$$

for some scalar field. γ. Thus (3.11) becomes $\beta A_{k t} f_{j}{ }^{t}=0$. This yields

$$
\begin{equation*}
\beta\left(A_{k j}-\alpha P_{k} P_{j}\right)=0 \tag{3.12}
\end{equation*}
$$

Let $M_{\beta}=\{P \in M: \beta(P) \neq 0\}$. Then M_{β} is an open subset of M and $A_{k j}=\alpha P_{k} P_{j}$ on M_{β}. But it can never occur by considering (3.10). Thus M_{β} is empty and hence $\beta=0$ on M. Therefore α is a constant.

We now compute the covariant derivative of a second fundamental tensor $A_{j i}$ with respect to the distinguished normal C^{4} which will be useful in $\S 5$.

Differentiating (3.10) covariantly, we get

$$
\begin{align*}
\left(\nabla_{k} A_{j t}\right) A_{i}{ }^{t}+A_{j}{ }^{t} \nabla_{k} A_{i t}-\alpha \nabla_{k} A_{j i} & =-\left(\nabla_{k} P_{j}\right) P_{i}-P_{j} \nabla_{k} P_{i} \tag{3.13}\\
& =A_{k t} f_{j}{ }^{t} P_{i}+A_{k t} f_{i}{ }^{t} P_{j}
\end{align*}
$$

because of (2.12), from which, taking the skew-symmetric part with respect to the indices k and j,

$$
A_{j}{ }^{t} \nabla_{k} A_{i t}-A_{k t}^{t} \nabla_{j} A_{i t}=2 A_{k t} f_{j}^{t} P_{i}+\alpha\left(P_{k} f_{j i}-P_{j} f_{k i}\right)
$$

with the aid of (2.22) with $c=4,(3.1),(3.3),(3.5)$ and (3.6). If we exchange the indices k and i in the above equation, then we get

$$
A_{j}^{t} \nabla_{i} A_{k t}-A_{i}^{i} \nabla_{j} A_{k t}=2 A_{i t} f_{j}^{t} P_{k t}+\alpha\left(P_{i} f_{j k}-P_{j} f_{i k}\right)
$$

Substituting (2.22) with (3.5) and (3.6) into this, we find

$$
A_{j}^{t} \nabla_{k} A_{i t}-A_{i}^{t} \nabla_{k} A_{j t}=\left(A_{i t} f_{k}^{t}\right) P_{j}-\left(A_{j t} f_{k}^{t}\right) P_{i}+\alpha\left(P_{j} f_{i k}-P_{i} f_{j k}\right)
$$

Adding (3.13) and above equation, we obtain

$$
\begin{equation*}
2 A_{j}^{t} \nabla_{k} A_{i t}-\alpha \nabla_{k} A_{j i}=2 A_{k t} f_{j}{ }^{t} P_{i}+\alpha\left(P_{j} f_{i k}-P_{i} f_{j k}\right) \tag{3.14}
\end{equation*}
$$

with the aid of (3.1). Differentiating (3.3) covariantly and making use of (2.12), (3.1) and (3.10), we have

$$
\begin{equation*}
\left(\nabla_{k} A_{j t}\right) P^{t}=\alpha f_{j k} \tag{3.15}
\end{equation*}
$$

Transvecting (3.14) with ${A_{h}}^{j}$ and using (3.3), (3.10) and (3.15), we get

$$
\begin{equation*}
\alpha A_{j}{ }^{t} \nabla_{k} A_{i t}+2 \nabla_{k} A_{j i}=\left(\alpha^{2}+2\right) f_{i k} P_{j}-2 f_{k j} P_{i}-\alpha A_{i t} f_{k}{ }^{t} P_{i} . \tag{3.16}
\end{equation*}
$$

Then we have from (3.14) and (3.16) that

$$
\nabla_{k} A_{j i}=f_{i k} P_{j}+f_{j k} P_{i}
$$

Thus, we have
Lemma 3.2. - Let M be an $n(>1)$-dimensional semi-invariant submanifold with the distinguished normal C^{4} of a complex projective space $C P^{m}$ admitting an almost contact metric compound structure. If the second fundamental forms are commutative with the structure tensor f induced on M, then we have

$$
\begin{equation*}
\nabla_{k} A_{j i}=f_{i k} P_{j}+f_{j k} P_{i} \tag{3.17}
\end{equation*}
$$

4. - Sabmanifolds of an even-dimensional Euclidean space admitting an almost contact metric compound structure.

In this section we assume that the metric compound structure $\left(f_{j}{ }^{h}, g_{j i}, f_{j}, f_{y}{ }^{x}\right.$) induced on a submanifold M of an even-dimensional Euclidean space $E^{2 m}$ defines an almost contact metric structure ($f_{j}{ }^{h}, g_{i j}, P^{h}$) and the second fundamental tensors of M commute with f, that is, (3.1) and (3.2) hold. Then (2.21) $\sim(2.25)$ with $e=0$ are valid because the ambient manifold is Euclidean. As is already shown in § 3 under the assumption (3.1) and (3.2) hold, we get

$$
l_{j}^{(x)}=\left(l_{t}^{(x)} P^{t}\right) P_{j} \quad \text { and } \quad A_{j i}{ }^{(x)}=A^{(x)} P_{j} P_{i}
$$

Substituting these equations into (2.22) with $e=0$, we find

$$
\begin{equation*}
\nabla_{k} A_{j i}-\nabla_{j} A_{k i}=0 \tag{4.1}
\end{equation*}
$$

Also, (3.9) reduces to

$$
\begin{equation*}
A_{j t} A_{i}{ }^{t}=\alpha A_{j i} \tag{4.2}
\end{equation*}
$$

because of $c=0$.

Differentiating (3.8) covariantly, it follows that

$$
\nabla_{i} \nabla_{k} \alpha=\left(\nabla_{j} \beta\right) P_{k}+\beta \nabla_{j} P_{k}
$$

from which, taking the skew-symmetric part in j and k,

$$
\left(\nabla_{j} \beta\right) P_{k}-\left(\nabla_{k} \beta\right) P_{j}+\beta\left(\nabla_{j} P_{k}-\nabla_{k} P_{j}\right)=0
$$

or, using (2.12) and (3.1)

$$
\begin{equation*}
\left(\nabla_{j} \beta\right) P_{k}-\left(\nabla_{k} \beta\right) P_{j}+2 \beta A_{k t} f_{j}^{t}=0 \tag{4.3}
\end{equation*}
$$

Transvecting P^{k} gives

$$
\nabla_{j} \beta=\gamma P_{i}
$$

γ being a certain scalar field. Thus (4.3) reduces to $\beta A_{k t} f_{j}{ }^{t}=0$. Transvecting this with $f_{i}{ }^{j}$, we have

$$
\begin{equation*}
\beta\left(A_{k i}-\alpha P_{k} P_{i}\right)=0 \tag{4.4}
\end{equation*}
$$

with the aid of (1.13) and (3.3).
We now assume that M is locally irreducible.
Let M_{t} be a subset of M such that $M_{t}=\{P \in M: \beta(P) \neq 0\}$. Then M_{t} is an open subset of M and $A_{i i}=\alpha P_{j} P_{i}$ on M_{i}. By considering (2.12), P_{i} is parallel on M_{t}. It contradicts the fact that M is locally irreducible. Consequently M_{t} is a void set and hence β is identically zero on M. Therefore we can see from (3.8) that α is constant.

Differentiating (4.2) covariantly, we get

$$
\begin{equation*}
\left(\nabla_{k} A_{j t}\right) A_{i}^{t}+A_{j}^{t} \nabla_{k} A_{i t}=\alpha \nabla_{k} A_{j i} \tag{4.5}
\end{equation*}
$$

from which, by taking the skew-symmetric part in k and j and using (4.1),

$$
\begin{equation*}
A_{j}{ }^{t} \nabla_{k} A_{i t}-A_{k_{k}}{ }^{t} \nabla_{j} A_{i t}=0 \tag{4.6}
\end{equation*}
$$

Exchanging the indices k and i in (4.6), we can write down

$$
\begin{equation*}
A_{j}^{t} \nabla_{i} A_{k t}-A_{i}^{t} \nabla_{j} A_{k t}=0 . \tag{4.7}
\end{equation*}
$$

Remebering (4.1), we get

$$
\begin{equation*}
A_{j}{ }^{t} \nabla_{k} A_{i t}-A_{i}{ }^{t} \nabla_{k} A_{j t}=0 \tag{4.8}
\end{equation*}
$$

Adding two equations (4.5) and (4.8), we have

$$
\begin{equation*}
2 A_{j} \nabla_{k} A_{i t}=\alpha \nabla_{k} A_{j i} \tag{4.9}
\end{equation*}
$$

Transvecting this with $A_{h}{ }^{j}$, we find

$$
\begin{equation*}
\alpha A_{h}^{t} \nabla_{k} A_{i t}=0 \tag{4.10}
\end{equation*}
$$

with the aid of (4.2). Since α is constant, we think of two cases whether α is zero or not. If α is zero, $A_{j i}=0$ on M because of (4.2). And consequently P_{j} is parallel along M, which is a contradiction. Then, α is a nonzero constant and hence we obtain from (4.10)

$$
A_{h}^{t} \nabla_{r k} A_{i t}=0
$$

After all, this reduces to

$$
\begin{equation*}
\nabla_{k} A_{j i}=0 \tag{4.11}
\end{equation*}
$$

with the aid of (4.2) and $\alpha \neq 0$. Since M is locally irreducible, we have

$$
\begin{equation*}
A_{j i}=\varrho g_{j i} \tag{4.12}
\end{equation*}
$$

for a certain nonzero constant ϱ. Also, it is easily proved from (4.2) and (4.12) that $\varrho=\alpha$. Thus, (4.12) becomes

$$
\begin{equation*}
A_{j i}=\alpha g_{j i} \tag{4.13}
\end{equation*}
$$

Substitution this into (2.12) gives

$$
\begin{equation*}
\nabla_{j} P_{i}=\alpha f_{j i} \tag{4.14}
\end{equation*}
$$

On the other hand, (2.18) and (3.6) yield

$$
\begin{equation*}
l_{j}^{(x)}=\mathcal{A}^{(y)} f_{(y)}^{(x)} P_{j} \tag{4.15}
\end{equation*}
$$

Substituting this into (2.24) and using (3.6) and (4.13), we get

$$
\nabla_{j}\left(A^{(y)} f_{(y)}^{(x)} P_{i}\right)-\nabla_{i}\left(A^{(y)} f_{(y)}^{(x)} P_{i}\right)+A^{(z)} f_{(z)^{(y)}\left(l_{j(y)}^{(x)} P_{i}-l_{i(y)}^{(x)} P_{j}\right)=0, ~}^{0}
$$

or, using (2.15) and (4.13),

$$
\left\{\left(\nabla_{j} A^{(y)}\right) P_{i}-\left(\nabla_{i} A^{(y)}\right) P_{i}\right\} f_{(y)^{(x)}}+A^{(y)}\left(l_{j(y)^{(z)}} f_{(z)^{(x)}} P_{i}-l_{i(y)}^{(z)} f_{(z)}^{(x)} P_{j}\right)+2 \alpha f_{j i} A^{(y)} f_{f_{y j}}^{(x)}=0
$$

Transvection with $f_{(x)}{ }^{(x)}$ gives

$$
\begin{equation*}
\left(\nabla_{j} A^{(w)}\right) P_{i}-\left(\nabla_{i} A^{(w)}\right) P_{j}+A^{(y)}\left(l_{j(y)}^{(w)} P_{i}-l_{i(y)}^{(w)} P_{j}\right)+2 \alpha f_{j i} A^{(w)}=0 \tag{4.16}
\end{equation*}
$$

with the aid of (2.7). Transvecting this with P^{i} and using (1.10), we obtain

$$
\nabla_{j} A^{(w)}=Q^{(w)} P_{j}+R^{(w)} P_{j}-A^{(v)} l_{i(y)^{(w)}}
$$

where we have put

$$
Q^{(w)}=P^{t} \nabla_{t} A^{(w)}, \quad P^{(w)}=A^{(v)} l_{t(y)}^{(w)} P^{t}
$$

Thus, (4.16) reduces to

$$
\alpha f_{j i} A^{(w)}=0
$$

This means that

$$
\begin{equation*}
A^{(w)}=0 \tag{4.17}
\end{equation*}
$$

Therefore, we can see that M is totally umbilical by means of (4.13) and $A_{j i}{ }^{(x)}=0$.
Summing up these facts, we have

Theorem 4.1. - Let M be a locally irreducible complete n-dimensional semi-invariant submanifold of an even-dimensional Euclidean space $E^{2 m}$ with almost contact metric compound structure. If the second fundamental tensors commute with the structure iensor f, then M is an n-dimensional sphere δ^{n}.

We now assume that the normal vectors $C_{(x)^{A}}$ are parallel in the subnormal bundle spanned by $C_{(x)^{4}}$, that is, $l_{f(x)}=0$ and $l_{f(x)}{ }^{(3)}=0$, and M does not admit a cosympletic structure. Then we can easily find that M is contained as a real hypersurface of an $(n+1)$-dimensional Euclidean space $E^{n+1} \subset E^{2 m}$ by virtue of $A_{i i}{ }^{(x)}=0$ induced from (2.17) and (3.6).

On the other hand, the scalar field α defined by (3.3) is proved to be a nonzero constant by the similar method used in Theorem 3.1 by considering that M does not admit a cosymplectic structure. Also, we can prove that $A_{j i}$ is parallel. Therefore M has two constant principal curvature 0 and α. Moreover, their multiplicities are constant. So the distributions $D_{0}=\{X: A X=0\}$ and $D_{\alpha}=\{X: A X=\alpha X\}$ are parallel, completely integrable, totally geodesic in M and totally umbilical in E^{m+1}. Thus we have

Theorem 4.2. - Let M be an n-dimensional complete semi-invariant submanifold without cosymplectic structure of an even-dimensional Euclidean space $E^{2 m}$ admitting
an almost contact metric compound structure. If the second fundamental tensors and the structure tensor commute and the normal vectors $C_{(x)}{ }^{A}$ are parallel in the subnormal bundle spanned by $O_{(x)}{ }^{\text {A }}$, then $I I$ is a product of a sphere and a plane $S^{r} \times E^{n-r}(0<r<n)$.

Coroldary 4.3. - Let M be an n-dimensional complete minimal semi-invariant submanifold of an even-dimensional Euclidean space $E^{2 m}$ admitting an almost contact metric compound structure. If the same assumption as that of Theorem 3.2 is satisfied, then M is an n-dimensional plane E^{n}.
5. - Submersion $\tilde{\pi}: S^{2 m+1} \rightarrow C P^{m}$ and immersion $i: M \rightarrow C P^{m}$.

In this section, we assume that M is an $n(>1)$-dimensional submanifold of a complex projective space $C P^{m}$. As is well known, the unit sphere $S^{2 m+1}$ is a principal circle bundle over a complex projective space $C P^{m}$, which is characterized by the Hopffibration $\tilde{\pi}: S^{2 m+1} \rightarrow O P^{m}$. We consider a Riemannian submersion $\pi: \bar{M} \rightarrow M$ compatible with $\tilde{\pi}: S^{2 n+1} \rightarrow C P^{m}, \bar{M}$ being $\tilde{\pi}^{-1}(M)$. If we speak more precisely, $\pi: \bar{M} \rightarrow M$ is a Riemannian submersion with totally geodesic such that the following diagram commute:

Where $\tilde{i}: \bar{M} \rightarrow S^{2 m+1}$ and $i: M \rightarrow C P^{m}$ are isometric immersions. Let $S^{2 m+1}$ be covered by a system of coordinate neighborhoods $\left\{\hat{U}: y^{*}\right\}$ such that $\tilde{\pi}(\hat{U})=\tilde{U}$ are coordinate neighborhoods of $C P^{m}$ with local coordinate system (x^{A}). We then represent the projection $\tilde{\pi}: S^{2 m+1} \rightarrow O P^{m}$ locally by

$$
\begin{equation*}
x^{A}=x^{A}\left(y^{\chi}\right) \tag{5.1}
\end{equation*}
$$

and we put

$$
\begin{equation*}
E_{x^{A}}=\partial_{x} x^{A}, \quad \partial_{x}=\partial / \partial y^{x} \tag{5.2}
\end{equation*}
$$

where the matrix $\left(E_{r^{4}}\right.$) has the maximal rank $2 m$.
Let ξx be the components of the unit Sasakian structure vector ξ defined on $S^{2 m+1}$. Since ξ is the vertical vector with respect to each fibre $\tilde{\pi}^{-1}(P),{ }^{\forall} P \in C P^{m}$, $\left\{E_{x}{ }^{4}, \xi_{x}\right\}$ constitutes a local coframe in $S^{2 m+1}$, where we have put $\xi_{\chi}=g_{x \mu} \xi^{\mu}$ and
$g_{x \mu}$ denotes the fundamental metric tensor of $\mathcal{S}^{2 m+1}$. We denote by $\left\{E^{x_{A}}, \xi^{x}\right\}$ the frame corresponding this coframe. Then we get

$$
\begin{equation*}
E_{\varkappa^{A}} E^{\mu_{B}}=\delta_{R}^{A}, \quad E_{\varkappa}^{A} \xi x=0, \quad \xi_{\varkappa} E^{\mu}=0 \tag{5.3}
\end{equation*}
$$

We now take coordinate neighborhoods $\left\{\bar{U}: y^{\alpha}\right\}$ of \bar{M} such that $\pi(\bar{U})=U$ are coordinate neighborhoods of M with local coordinate system (x^{h}). Let the isometric immersion \tilde{i} and i are locally expressed by $y^{x}=y^{*}\left(y^{\alpha}\right)$ and $x^{A}=x^{4}\left(x^{h}\right)$ respectively. The commutativity of the preceding diagram implies

$$
x^{4}\left(y^{\alpha}\left(y^{\alpha}\right)\right)=x^{4}\left(x^{h}\left(y^{\alpha}\right)\right)
$$

where π is expressed locally by $x^{h}=x^{h}\left(y^{x}\right)$. Which induces

$$
\begin{equation*}
B_{h}^{A} E_{\alpha}^{h}=E z^{A} B_{\alpha^{h}} \tag{5.4}
\end{equation*}
$$

where $B_{\alpha}{ }^{\chi}=\partial_{\alpha} y^{\alpha}$ and $E_{\alpha}^{h}=\partial_{\alpha} x^{h}$.
For each point $P \in M$, we can choose the mutually orthogonal unit normal vector fields $O_{x}{ }^{A}$ defined in a neighborhood U of P such that $\left\{B_{i}{ }^{A}, C_{x}{ }^{A}\right\}$ generates the tangent space of $C P^{m}$ at $i(P)$. Let \bar{P} be an arbitrary point of the fibre $\pi^{-1}(P)$ over P, then the horizontal lifts $C_{x^{x}}$ of C_{x}^{A} are mutually orthogonal unit normal to \bar{M} defined in the tubular neighborhood of \bar{P} over U because of (5.4).

Taking account of this fact, (5.3) and (5.4), we find

$$
\begin{equation*}
\xi^{x}=\xi^{\alpha} B_{\alpha}{ }^{x} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{\alpha} E_{\alpha^{n}}=0 \tag{5.6}
\end{equation*}
$$

where ξ^{α} is a vector field on \bar{M}. Then (4.5) implies

$$
\begin{equation*}
\xi^{\alpha} \xi_{\alpha}=1 \tag{5.7}
\end{equation*}
$$

because of $\xi_{\chi} \xi^{x}=1$, where $\xi_{\alpha}=\xi^{\beta} g_{\beta \alpha}, g_{\beta \alpha}$ being the fundamental metric tensor of \bar{M} induced from $g_{\gamma \mu}$ in such a way that $g_{\beta \alpha}=g_{\alpha_{\mu}} B_{\beta^{\chi}} B_{\alpha}{ }^{u}$. Therefore, $\left\{E_{\alpha}{ }^{h}, \xi_{\alpha}\right\}$ forms a local coframe in \bar{M} corresponding $\left\{E_{\chi^{A}}, \xi_{\chi}\right\}$ in $S^{2 m+1}$. Denoting by $\left\{E_{k}^{\alpha}, \xi^{\alpha}\right\}$ the frame corresponding this coframe, we have

$$
\begin{equation*}
E_{\alpha}{ }^{h} \mathbb{E}^{\alpha}=\delta_{k}{ }^{h}, \quad \xi_{\alpha} \mathbb{E}_{h}^{\alpha_{h}}=0, \quad \xi^{\alpha} \mathbb{E}_{\alpha}{ }^{h}=0 \tag{5.8}
\end{equation*}
$$

Then, (5.4) and (5.8) imply that

$$
\begin{equation*}
E^{\mu_{A}} B_{h}^{A}=B_{\alpha^{*}} E^{\alpha}{ }_{h} \tag{5.9}
\end{equation*}
$$

Since the metric tensors $g_{x \mu}$ and $g_{\beta \alpha}$ are both invariant with respect to the submersion $\tilde{\pi}$ and π respectively, the van der Waerden-Bortolotti covariant derivatives of $E_{2^{A}}, E^{\lambda_{A}}$ and $E_{\alpha^{h}}, E^{\alpha}{ }_{h}$ are given by

$$
\begin{align*}
& \left\{\begin{array}{l}
D_{\mu} E_{\lambda^{A}}=h_{B}{ }^{A}\left(E_{\mu}{ }^{B} \xi_{\lambda}+E_{\lambda^{B}}{ }^{B} \xi_{\mu}\right), \\
D_{\mu} E^{\lambda}{ }_{A}=h_{B A} E_{\mu}^{B} \xi^{\lambda}-h_{A}^{B} \xi_{\mu} E_{B}^{\lambda},
\end{array}\right. \tag{5.10}\\
& \left\{\begin{array}{l}
\bar{\nabla}_{\beta} E_{\alpha}{ }^{h}=h_{j}{ }^{n}\left(E_{\beta^{j}} \xi_{\alpha}+E_{\alpha^{j}} \xi_{\beta}\right), \\
\bar{\nabla}_{\beta} E^{\alpha}{ }_{h}=h_{i h} E_{\beta^{j}} \xi^{\alpha}-h_{h}{ }^{j} \xi_{\beta} E_{j}^{\alpha}
\end{array}\right. \tag{5.11}
\end{align*}
$$

respectively, where D_{μ} and $\bar{\nabla}_{\beta}$ are the operators of the covariant differentiation of $S^{2 m+1}$ and \bar{M} respectively, $h_{B}{ }^{4}==g^{A C} h_{B C}, h_{i}^{h}=g^{h i} h_{i i} h_{B C}$ and $h_{j i}$ are the structure tensors induced from the submersions $\tilde{\pi}$ and π respectively (see Ishitara-Konishi [7]).

On the other hand, the equations of Gauss for \bar{M} are given by

$$
\begin{equation*}
\bar{\nabla}_{\beta} B_{\alpha}^{\alpha}=A_{\beta \alpha} C^{x}+A_{\beta \alpha}^{(x)} C_{(x)^{\alpha}}, \tag{5.12}
\end{equation*}
$$

where $A_{\beta \alpha}$ and $A_{\beta \alpha}{ }^{(x)}$ are the second fundamental tensors with respect to the normals $O^{x}=C^{A} E^{\mu}$ and $O_{(x)^{\kappa}}=C_{(x)^{A} E^{\alpha}{ }_{A}}$ respectively, and those of Weingarten by

$$
\begin{gather*}
\bar{\nabla}_{\beta} C^{\alpha}=-A_{\beta^{\alpha}} B_{\alpha}^{\alpha}+l_{\beta^{(x)}}^{\left(C_{(x)}{ }^{\alpha}\right.} \tag{5.13}\\
\overline{\bar{V}}_{\beta} C_{(x)}{ }^{\chi}=-A_{\beta^{x}(x)} B_{\alpha^{\alpha}}-l_{\beta(x)} C^{x}+l_{\beta(x)^{(y)}}^{(y)} C_{(y)^{\alpha}}, \tag{5.14}
\end{gather*}
$$

where $A_{\beta^{\alpha}}=g^{\gamma \alpha} A_{\beta \gamma}, A_{\beta^{\alpha}(x)}=g^{\gamma \alpha} g_{(y)(x))} A_{\beta \gamma}{ }^{(y)}=g^{\alpha \gamma} A_{\beta \gamma(x)}, l_{\beta}{ }^{(x)}$ and $l_{\beta(x)}{ }^{(y)}$ the third fundamental tensors and $l_{\beta(x)}=l_{\beta}^{(z)} g_{(y)(x)}$.

On the other hand, (5.4) and (5.9) imply that $\nabla_{j}=E^{\alpha}{ }_{j} \bar{\nabla}_{\alpha}$. We now put $\tilde{F}_{\mu}{ }^{\lambda}=$ $=D_{\mu} \xi^{2}$. From the definition of a Sasakian structure it follows that

$$
\begin{equation*}
\tilde{F}_{\mu^{\lambda}} \widetilde{F}_{\chi^{\mu}}=-\delta_{\chi^{\lambda}}^{\lambda}+\xi_{\chi} \xi^{\lambda}, \quad \tilde{F}_{\mu^{\lambda}}^{\lambda} \xi^{\mu}=0, \quad \xi_{\lambda} \tilde{F}_{\mu^{\lambda}}=0, \quad \tilde{F}_{\lambda \mu}+\tilde{F}_{\mu \lambda}=0 \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\mu} \tilde{F}_{\lambda^{\alpha}}=-g_{\mu \lambda} \xi^{x}+\delta_{\mu^{\lambda}} \xi_{\lambda}, \quad D_{\mu} \xi^{\lambda}=\tilde{F}_{\mu^{\lambda}} \tag{5.16}
\end{equation*}
$$

Where we have put $\tilde{F}_{\mu \lambda}=\tilde{F}_{\mu}{ }^{\lambda} g_{\lambda \lambda}$. Denoting by L the lie differentiation with respect to ξ, we find

$$
\begin{equation*}
L \tilde{F}_{x^{\prime}}=0 \tag{5.17}
\end{equation*}
$$

because of (5.16). Putting

$$
\begin{equation*}
H_{B}^{A}=\tilde{H}_{u^{\kappa}} E^{4} u_{B} E_{\chi}^{A} \tag{5.18}
\end{equation*}
$$

We can see that $F_{B}{ }^{4}$ defines a global tensor field of the same type as that of $\tilde{F}_{\mu^{2}}$ because of (5.17), LE ${ }_{A}=0$ and $L E_{2}{ }^{A}=0$ (see [7]).

Differentiating $\xi^{\kappa} E_{\varkappa^{A}}=0$ covariantly along $S^{2 m+1}$ and using (5.10), (5.16) and (5.18), we find

$$
\begin{equation*}
F_{B}^{A}=-h_{B}^{A} \tag{5.19}
\end{equation*}
$$

which implies

$$
\begin{equation*}
F_{B}^{A} F_{C}^{B}=-\delta_{C^{A}}^{A} \tag{5.20}
\end{equation*}
$$

with the aid of (5.4) and (5.15).
Differentiating (5.18) covariantly along $C P^{m}$, and using (5.4) and (5.10), we find

$$
\begin{equation*}
\tilde{\nabla}_{C} F_{B}^{A}=0 \tag{5.21}
\end{equation*}
$$

where $\tilde{\nabla}$ denotes the projection of D given by $\tilde{\nabla}_{A}=E{ }^{x}{ }_{A} D_{\chi}$. Therefore, the base space $O P^{m}$ for $S^{2 m+1}$ admits a Kaehler structure ($F_{B}^{A}, G_{B C}$) represented by the structure tensor h_{B}^{4} of the submersion $\tilde{\pi}: S^{2 n+1} \rightarrow C P^{m}$ defined by the Hopf-fibration.

On the other hand, by taking account of the co-Gauss equation for the submersion $\tilde{\pi}: S^{2 m+1} \rightarrow C P^{m}$ and (5.19), we can see that the base space $C P^{m}$ is a Kaehlerian manifold of constant holomorphic sectional curvature 4 given by (2.20).

As to transforms of $B_{\alpha^{\mu}}$ and C_{x}^{μ} by \tilde{F}_{μ}^{μ}, we have

$$
\left\{\begin{array}{l}
\tilde{F}_{\mu^{x}} \mathcal{B}_{\alpha}^{\mu}=\hat{f}_{x}^{\beta} B_{\beta^{z}}+f_{\alpha}^{x} C_{x}^{x} \tag{5.22}\\
\tilde{F}_{\mu^{z}} C_{x}^{\mu}=-f_{x}^{\beta} B_{\beta^{x}}+\varphi_{x}^{y} C_{y}^{z}
\end{array}\right.
$$

where $f_{\alpha}{ }^{\beta}$ is a tensor field of type $(1,1), f_{\beta}{ }^{x} 1$-form for fixed $x, f_{x}{ }^{\beta}$ a vector field associated with $f_{\beta} x$ defined by $f_{\beta^{x}}=f_{y}{ }^{\alpha} g_{\alpha \beta} g^{y x}$ and $\varphi_{x}{ }^{y}$ a scalar field for fixed x and y on \bar{M}.

Now we suppose that n-dimensional submanifold M of $C P^{n}$ is semi-invariant with respect to the distinguished normal C^{A}. Then we can have the algebraic relationships (1.13) $\sim(1.16)$ and (2.7) and the structure equations (2.11) $\sim(2.15)$.

If we make use of $(2.4),(2.5),(5.4),(5.9)$ and (5.22), then we obtain

$$
\begin{equation*}
f_{j}{ }^{h}=f_{\beta} \alpha E^{\beta} E_{\alpha^{h}}, \quad P_{j}=f_{\beta^{1}}{ }^{*} E \beta_{j}, \quad P^{i}=f_{1 y^{*}} E_{\beta^{i}}, \quad \varphi_{(x)}{ }^{(y)}=f_{(x)}{ }^{(y)} \tag{5.23}
\end{equation*}
$$

Thus, (5.22) reduces to

$$
\left\{\begin{array}{l}
\tilde{F}_{\mu}^{\alpha} B_{\alpha}^{\mu}=f_{\alpha}^{\beta} B_{\beta^{\alpha}}+P_{\alpha} C^{\alpha} \tag{5.24}\\
\tilde{F}_{\mu^{\alpha}} C^{\mu}=-P^{\alpha} B_{\alpha}^{\alpha} \\
\widetilde{F}_{\mu^{\alpha}} \alpha C_{(x)^{\prime \prime}}=f_{(x)^{(y)}} C_{(y)^{\alpha}}
\end{array}\right.
$$

where we have put $f_{\beta} 1^{*}=P_{\beta}$ and $f_{1^{*}}{ }^{\beta}=P^{\beta}$.

Applying \tilde{F} to (5.24) and using (5.15) and these expressions, we easily find

$$
\begin{equation*}
P_{\alpha} \xi^{\alpha}=0, \quad P_{\alpha} \xi_{\alpha}=0 \tag{5.28}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{a} f_{\beta^{\alpha}}=0, \quad f_{\alpha}^{\sigma} \xi^{\alpha}=0 \tag{5.29}
\end{equation*}
$$

$$
\begin{gather*}
f_{\alpha} \nu f_{\gamma}{ }^{\beta}=-\delta_{\alpha}^{\beta}+\xi_{\alpha} \xi^{\beta}+P_{\alpha} P^{\beta} \tag{5.25}\\
f_{\alpha}^{\beta} P_{\beta}=0, \quad f_{\alpha}^{\beta} P^{\alpha}=0 \tag{5.26}
\end{gather*}
$$

$$
\begin{equation*}
P_{\alpha} P^{x}=1 \tag{5.27}
\end{equation*}
$$

$$
\begin{equation*}
f_{(x)^{(y)}} f_{(y)^{(z)}}=-\delta_{(x)^{(z)}} \tag{5.30}
\end{equation*}
$$

If we apply the operator of the covariant differentiation $\bar{\nabla}_{\nu}=B_{\gamma}{ }^{\star} D_{\%}$ to (5.24) and using (5.5), (5.12), (5.13), (5.14) and (5.16), then we have

$$
\begin{align*}
& \bar{\nabla}_{\beta} f_{\alpha}^{\gamma}=-g_{\beta \alpha} \xi^{\gamma}+\delta_{\beta} \gamma \xi_{\alpha}-A_{\beta \alpha} P^{\gamma}+A_{\beta^{\gamma}} P_{\alpha} \tag{5.31}\\
& \bar{\nabla}_{\beta} P_{\alpha}=-A_{\beta \gamma} f_{\alpha}^{\gamma}, \quad \bar{\nabla}_{\beta} P_{\alpha}=A_{\beta} \gamma f_{\gamma}^{\alpha} \tag{5.32}\\
& A_{\beta \alpha}{ }^{(y)} f_{(y)^{(y)}}=A_{\beta \gamma} \gamma^{(x)} f_{\alpha}^{\gamma}+l_{\beta}^{(x)} P_{\alpha} \tag{5.33}\\
& A_{\beta \gamma}{ }^{(x)} P^{\gamma}=-l_{\beta}^{(y)} f_{(y)^{(x)}}^{(x)} \tag{5.34}\\
& \bar{\nabla}_{\beta} f_{(y)}^{(x)}=l_{\beta(y)^{(z)}} f_{(z)^{(x)}}^{(x)}-l_{\beta(z)^{(x)}} f_{(y)^{(z)}}^{(z)} \tag{5.35}
\end{align*}
$$

Differentiating (5.5) covariantly along \bar{M} and utilizing (5.12), (5.16) and the first equation of (5.24), we find

$$
\begin{align*}
& \bar{\nabla}_{\beta} \xi^{\alpha}=f_{\beta}^{\alpha} \tag{5.36}\\
& A_{\beta \alpha} \xi^{\alpha}=P_{\beta} \tag{5.37}
\end{align*}
$$

$$
A_{i \alpha}{ }^{(x)} \xi \alpha=0
$$

On the other hand, by differentiating (5.6) covariantly and taking account of (5.11), the first relationship of (5.23) and (5.36), it follows that

$$
\begin{equation*}
f_{j}{ }^{h}=-h_{j}{ }^{h} \tag{5.39}
\end{equation*}
$$

If we apply the operator $\nabla_{j}==B_{j}{ }^{A} \tilde{\bar{\nabla}}_{A}=E^{\alpha}{ }_{j} \bar{\nabla}_{\alpha}=B_{j}{ }^{B} E^{\alpha_{B}} D_{x}$ to (5.4) and use (2.8), (5.10), (5.11), (5.12), (5.19) and (5.39), then we get

$$
\begin{aligned}
& \left(A_{i i} C^{A}+A_{j i}{ }^{(x)} C_{(x)}{ }^{A}\right) E_{\alpha^{i}}+B_{i}{ }^{4} \mathbb{E}^{\beta_{j}}\left\{-f_{h}{ }^{i}\left(E_{\beta^{i}} \xi_{x}+\xi_{\beta} E_{\alpha^{k}}\right)\right\}
\end{aligned}
$$

or using (5.3), (5.8) and the first equation of (5.24),

$$
\begin{aligned}
& A_{j i} E_{\alpha}^{i}=A_{\beta \alpha} E^{\beta}-P_{j} \xi_{\alpha} \\
& A_{\beta \alpha}{ }^{(x)} E^{\beta}{ }_{j}=A_{j i}{ }^{(x)} E_{\alpha}{ }^{i}
\end{aligned}
$$

Transvecting these equations with $E_{\gamma^{j}}$ respectively and using (5.8), (5.23) and (5.37), we have

$$
\begin{gather*}
A_{\gamma \beta}=A_{j i} E_{\gamma^{i}} E_{\beta^{i}}+P_{\gamma} \xi_{\beta}+P_{\beta} \xi_{\gamma} \tag{5.40}\\
A_{\gamma \beta}{ }^{(x)}=A_{j i}{ }^{(x)} E_{\gamma^{j}} E_{\beta^{i}} \tag{5.41}
\end{gather*}
$$

Since the ambient manifold $S^{2 m+1}$ for \bar{M} is a space of constant curvature 1 , the equations of Gauss for \bar{M} are given by

$$
\begin{equation*}
K_{\delta \gamma \beta}{ }^{\alpha}=\delta_{\epsilon}^{\alpha} g_{\gamma \beta}-\delta_{\gamma}^{\alpha} g_{\delta \beta}+A_{\delta^{\alpha}} A_{\gamma \beta}-A_{\gamma^{\alpha}} A_{\partial \beta}+A_{\delta^{\alpha}(x)}^{\alpha(\gamma)} A_{\gamma \beta(x)}-A_{\gamma}^{\alpha(x)} A_{\delta \beta(x)} \tag{5.42}
\end{equation*}
$$

where $K_{\delta \gamma \beta}{ }^{\alpha}$ is the Riemann-Christoffel curvature tensor of \bar{M}, those of Codazzi by

$$
\begin{gather*}
\bar{\nabla}_{\gamma} A_{\beta \alpha}-\bar{\nabla}_{\beta} A_{\gamma \alpha}-l_{\gamma(x)} A_{\beta \alpha}{ }^{(x)}+l_{\beta(x)} A_{\gamma \alpha}{ }^{(x)}=0 \tag{5.43}\\
\bar{\nabla}_{\gamma} A_{\beta \alpha}{ }^{(x)}-\bar{\nabla}_{\beta} A_{\gamma \alpha}{ }^{(x)}+l_{\gamma}^{(x)} A_{\beta \alpha}-l_{\beta}{ }^{(x)} A_{\gamma \alpha}+l_{\gamma(y)}{ }^{(x)} A_{\beta \alpha}{ }^{(y)}-l_{\beta(y)}^{(x)} A_{\gamma \alpha}{ }^{(y)}=0 \tag{5.44}
\end{gather*}
$$

and those of Ricei by

$$
\begin{align*}
& \bar{\nabla}_{\beta} l_{\alpha}^{(x)}-\bar{\nabla}_{\alpha} l_{\beta}{ }^{(x)}+A_{\beta^{\gamma}} \boldsymbol{A}_{\gamma \alpha}{ }^{(x)}-A_{\alpha}{ }^{\gamma} A_{\beta \gamma} \gamma^{(x)}+l_{\beta(y)}{ }^{(x)} l_{\alpha}^{(y)}-l_{\alpha(y)^{(x)} l_{\beta}{ }^{(y)}=0,}=0, \tag{5.45}\\
& \bar{\nabla}_{\beta} l_{\alpha(x)}^{(y)}-\bar{\nabla}_{\alpha} l_{\beta(x)}^{(y)}+A_{\beta^{\prime}}{ }_{(x)} A_{\alpha \gamma^{(y)}}-A_{\alpha^{\gamma}(x)} A_{\beta \gamma}{ }^{(y)}+l_{\beta(x)} l_{\alpha}^{(y)}-l_{\alpha(x)} l_{\beta}^{(y)} \\
& +l_{\beta(z)}^{(y)} l_{\alpha(x)}{ }^{(z)}-l_{\alpha(z)^{(y)}} l_{\beta(x)}{ }^{(z)}=0 .
\end{align*}
$$

We now assume that the second fundamental tensor of the base space M for \bar{M} commute with the structure tensor $f_{j}{ }^{h}$ of the submersion π, that is, (3.1) and (3.2) hold. Then we can easily verify that the second fundamental tensors of the total space \bar{M} also commute with $f_{\beta^{\alpha}}$ because of (5.23), (5.26), (5.29), (5.40) and (5.41), that is,

$$
A_{\beta^{\gamma}} f_{\gamma}^{\alpha}-f_{\beta}{ }^{\nu} A_{\gamma^{\alpha}}^{\alpha}=0, \quad A_{\beta^{\gamma}}{ }_{(x)} f_{\gamma}^{\alpha}-f_{\beta^{\nu}}^{\nu} A_{\gamma^{\alpha}}{ }_{(x)}=0
$$

or, equivalently

$$
\begin{gather*}
A_{\beta \gamma} f_{\alpha}{ }^{\gamma}+A_{\alpha \gamma} f_{\beta} \gamma=0 \tag{5.47}\\
A_{\beta \gamma}{ }^{(x)} f_{\alpha} \gamma+A_{\alpha \gamma}{ }^{(x)} f_{\beta} \gamma=0 \tag{5.48}
\end{gather*}
$$

Transvecting (5.40) with P^{γ} and taking account of (3.3), (5.23), (5.27) and (5.28), we get

$$
\begin{equation*}
A_{\beta \gamma} P^{\gamma}=\alpha P_{\beta}+\xi_{\beta} . \tag{5.49}
\end{equation*}
$$

If we substitute (3.6) into (5.41) and make use of (5.23), we then have

$$
\begin{equation*}
A_{\beta \alpha}^{(x)}=A^{(x)} P_{\beta} P_{\alpha} \tag{5.50}
\end{equation*}
$$

which implies that the mean curvatures of M and \bar{M} are the same with the aid off (5.27).

On the other hand, transvection (5.34) with $f_{(x)}^{(z)}$ yields

$$
\begin{equation*}
l_{\beta^{(z)}}=A^{(x)} f_{(x)^{(z)}} P_{\beta} \tag{5.51}
\end{equation*}
$$

with the aid of (5.30) and (5.50).
We first prove
Lemma 5.1. - Let M be an $n(>1)$-dimensional semi-invariant submanifold with distinguished normal C^{A} of a complex projective space $C^{(n)}$ of real dimension 2 m . If the second fundamental tensors of M are commutative with the structure tensor of the submersion π, then we have

$$
\begin{equation*}
A_{\beta \alpha} A_{\gamma}^{\alpha}=\alpha A_{\beta \gamma}+g_{\beta \gamma} \tag{5.52}
\end{equation*}
$$

Proof. - Transvecting (5.40) with $A_{\alpha}{ }^{\nu}=A_{j}{ }^{i} E_{\alpha}{ }^{j} E v_{i}+P_{\alpha} \xi \gamma+P^{\gamma} \xi_{\alpha}$ and taking account of (3.3), (5.8), (5.23), (5.27) and (5.28), we obtain

$$
A_{\beta \gamma} A_{\alpha}^{\gamma}=A_{i t} A_{i}^{t} E_{\beta}^{i} E_{\alpha}^{i}+\alpha\left(P_{\beta} \xi_{\alpha}+P_{\alpha} \xi_{\beta}\right)+P_{\beta} P_{\alpha}+\xi_{\beta} \xi_{\alpha}
$$

or, using (3.9) with $e=4$,

$$
\mathcal{A}_{\beta \gamma} A_{\alpha}^{\gamma}=\alpha A_{\beta \alpha}+g_{\beta \alpha}
$$

with the aid of (5.8), (5.23) and (5.40). Thus, the lemma is proved.
Next, we prove
Lemms 5.2. - Under the same assumptions as those stated in Lemma 5.1, we have

$$
\begin{equation*}
A_{\beta \alpha}{ }^{(x)}=0 \quad \text { and } \quad A_{j i}^{(x)}=0 \tag{5.53}
\end{equation*}
$$

Proof. - Differentiating (5.50) covariantly and using (5.32), we get

$$
\bar{\nabla}_{\gamma} A_{\beta \alpha^{(2)}}=\left(\bar{\nabla}_{\gamma} A^{(x)}\right) P_{\beta} P_{\alpha}-A^{(x)}\left(A_{\gamma \varepsilon} f_{\beta} \varepsilon P_{\alpha}+A_{\gamma \varepsilon} f_{\alpha} \varepsilon P_{\beta}\right)
$$

from which, taking the skew-symmetric part with respect to the indices γ and β and using (5.44),

$$
\begin{aligned}
l_{\beta}^{(x)} A_{\gamma \alpha}-l_{\gamma}^{(x)} A_{\beta \alpha} & +l_{\beta(y)^{(x)}} A_{\gamma \alpha}{ }^{(y)}-l_{\gamma(y)^{(x)}} A_{\beta \alpha}{ }^{(y)} \\
& =\left\{\left(\bar{\nabla}_{\gamma} A^{(x)}\right) P_{\beta}-\left(\bar{\nabla}_{\beta} A^{(x)}\right) P_{\gamma}\right\} P_{\alpha}-A^{(x)}\left(2 A_{\gamma \varepsilon} f_{\beta} \varepsilon P_{\alpha}+A_{\gamma \varepsilon} f_{\alpha} \varepsilon P_{\beta}-A_{\beta \varepsilon} f_{\alpha} P_{\gamma}\right)
\end{aligned}
$$

because of (5.47). Substituting (5.50) and (5.51) into this equation, we find

$$
\begin{align*}
& A^{(y)}\left(f_{(y)}^{(\alpha)} P_{\beta} A_{\gamma \alpha}-f_{(y)^{(x)}}^{(x)} P_{\gamma} A_{\beta \alpha}+l_{\beta(y)}^{(x)} P_{\gamma} P_{\alpha}-l_{\gamma(y)}^{(x)} P_{\beta} P_{\alpha}\right) \tag{ธ̆.54}\\
& \quad=\left\{\left(\bar{\nabla}_{\gamma} A^{(x)}\right) P_{\beta}-\left(\bar{\nabla}_{\beta} A^{(x)}\right) P_{\gamma}\right\} P_{\alpha}-A^{(x)}\left(2 A_{\gamma \varepsilon} f_{\beta}^{\varepsilon} P_{\alpha}+A_{\gamma \varepsilon} f_{\alpha} \varepsilon P_{\beta}-A_{\beta \varepsilon} f_{\alpha} \varepsilon P_{\gamma}\right) .
\end{align*}
$$

Transvection $P^{\beta} P^{\alpha}$ gives

$$
\bar{\nabla}_{\gamma} A^{(x)}=A^{(y)}\left(f_{(y)}^{(x)} \xi_{\gamma}-l_{\gamma(y)}^{(x)}\right)+L^{(x)} P_{\gamma}
$$

with the aid of $(5.26),(5.27),(5.28)$ and (5.29), where we have put $L^{(x)}=A^{(v)} l_{\beta(y)^{(x)}} P^{\beta}+$ $+P^{\beta} \bar{\nabla}_{\beta} A^{(x)}$. Hence (5.54) reduces to
$A^{(y)} f_{(y)}{ }^{(x)}\left(P_{\beta} A_{\gamma \alpha}-P_{\gamma} A_{\beta \alpha}\right)$

$$
=A^{(\gamma)} f_{(y)^{(x)}}^{(\xi)}\left(\xi_{\gamma} P_{\beta}-\xi_{\beta} P_{\gamma}\right) P_{\alpha}-A^{(x)}\left(2 A_{\gamma \varepsilon} f_{\beta}^{\varepsilon} P_{\alpha}+A_{\gamma \varepsilon} f_{\alpha} \varepsilon P_{\beta}-A_{\beta \varepsilon} f_{\alpha} P_{\gamma}\right)
$$

Transvection P^{α} yields

$$
\begin{equation*}
A^{(x)} A_{\gamma_{\varepsilon}} f_{\beta^{\varepsilon}}=0 \tag{5.55}
\end{equation*}
$$

because of (5.26), (5.37) and (5.49).
Transvecting this with $f_{\alpha}{ }^{\beta}$ and using (5.25), we find

$$
A^{(x)}\left(-A_{\gamma \alpha}+P_{\gamma} \xi_{\alpha}+P_{\alpha} \xi_{\gamma}+\alpha P_{\gamma} P_{\alpha}\right)=0
$$

because of (5.27) and (5.49). If we transvect this with $g^{\gamma \alpha}$ and make use of (5.27) and (5.28), then we have

$$
\begin{equation*}
A^{(x)}(A-\alpha)=0 \tag{5.ธॅ6}
\end{equation*}
$$

where $A=g^{\beta \alpha} A_{\beta \alpha}$. By computing the square of norm of (5.55), we obtain $A^{(x)}=0$ with the aid of (5.56) and $n>1$. Therefore, it follows that $A_{i t}{ }^{(x)}=0$ and $A_{\beta \alpha}{ }^{(x)}=0$ because of (3.6) and (5.50). Thus, Lemma 5.2 is completely proved.

If the normal vectors $O_{(x)^{4}}$ are parallel in the subnormal bundle spanned by $C_{(x)}{ }^{A}$, we can easily prove from (2.25) and Lemma 5.2 that M is a real hypersurface of a complex projective space $C P^{m}$. Therefore, by Theorem A.in § 0 , we have

Theorem 5.3. - Let M be an $n(>1)$-dimensional semi-invariant submanifold with distinguished normal C^{A} of $C P^{m}$. If the second fundamental tensors of M are commutative with the structure tensor of the submersion π and the normal vectors $O_{(x)^{4}}$ are parallel in the subnormal bundle spanned by $C_{(x)}{ }^{A}$, then M is the model space $M_{p, 4}^{e}(a, b)$, where (p, q) is some portion of $(n-1) / 2$ and $a^{2}+b^{2}=1$.

Lemma 5.4. - Under the same assumptions as those stated in Lemma 5.1, we obtain

$$
\begin{equation*}
\bar{\nabla}_{\gamma} A_{\beta \alpha}=0 \tag{5.57}
\end{equation*}
$$

Proof. - Applying the operator $\nabla_{k}=E_{k} \nu \overline{\nabla_{\gamma}}$ to both sides of (5.40), we have

$$
\begin{aligned}
E_{k_{k}} \bar{\nabla}_{\gamma} A_{\beta \alpha}=\left(\nabla_{k} A_{j i}\right) E_{\beta^{i}} E_{\alpha}{ }^{i} & +A_{j i} E \nu_{k}\left(\bar{\nabla}_{\gamma} E_{\beta^{j}}\right) E_{\alpha}{ }^{i}+A_{j i} E_{\beta^{j}} E \nu_{k} \bar{\nabla}_{\gamma} E_{\alpha}{ }^{i} \\
& +E_{k}\left(\bar{\nabla}_{\gamma} P_{\beta}\right) \xi_{\alpha}+P_{\beta} E^{\gamma}{ }_{k} \bar{\nabla}_{\gamma} \xi_{\alpha}+\left(E \nu_{k} \bar{\nabla}_{\gamma} P_{\alpha}\right) \xi_{\beta}+P_{\alpha} E \gamma_{k} \bar{\nabla}_{\gamma} \xi_{\beta} .
\end{aligned}
$$

Substituting (5.11) with $h_{j}^{h}=-f_{j}{ }^{h}$, (5.32) and (5.36) into this equation, we get

$$
E v_{k} \bar{\nabla}_{\gamma} A_{\beta \alpha}=\left(\nabla_{k} A_{j i}+P_{i} f_{k j}+P_{j} f_{k i}\right) E_{\beta^{i}} E_{\alpha}^{i}-\left(A_{k t} f_{i}^{t}+A_{i t} f_{k}^{t}\right)\left(E_{\beta} \xi_{\alpha}+E_{\alpha}^{i} \xi_{\beta}\right)
$$

because of (5.23) and (5.40), from which, using (3.1) and (3.17),

$$
\begin{equation*}
E v_{k} \bar{\nabla}_{\gamma} A_{\beta \alpha}=0 \tag{5.58}
\end{equation*}
$$

On the other hand, by Lemma 5.2, we can have from (5.43)

$$
\begin{equation*}
\bar{\nabla}_{\gamma} A_{\beta \alpha}-\bar{\nabla}_{\beta} A_{\nu \alpha}=0 \tag{5.59}
\end{equation*}
$$

Transvecting (5.58) with $E_{\delta^{k}}$, we get

$$
\bar{\nabla}_{\delta} A_{\beta \alpha}=\left(\xi^{\nu} \bar{\nabla}_{\gamma}, A_{\beta \alpha}\right) \xi_{\delta}
$$

Differentiating (5.37) and making use of (5.32), (5.37), (5.47) and (5.59), we have $\bar{\nabla}_{\varepsilon} A_{\beta \alpha}=0$. Therefore Lemma 5.4 is proved.

We consider the identity:

$$
\frac{1}{2} \Delta\left(A_{\beta \alpha^{x}} A^{\beta \alpha_{x}}\right)=\left(\bar{\nabla}^{\gamma} \bar{\nabla}_{\gamma} A_{\beta \alpha}\right) A^{\beta \alpha_{x}}+\left\|\bar{\nabla}_{\gamma} A_{\beta \alpha}^{x}\right\|^{2},
$$

where $\Delta=g^{\gamma \beta} \bar{\nabla}_{\gamma} \bar{\nabla}_{\beta}$ and $A_{\beta \alpha^{1^{*}}}=A_{\beta \alpha_{1}{ }^{*}}=A_{\beta \alpha}$.
From this identity we can see that the second fundamental tensors $A_{\beta \alpha^{2}}$ are parallel because of (5.53) and (5.57). Thus the first normal space $N_{1}(\bar{P})$ defined to be the orthogonal complement of $\left\{C_{x}{ }_{x} \in T \frac{1}{\bar{p}}(\bar{M}): A_{C_{x}}=0\right\}$ in $T_{\bar{p}}(\bar{M})$ is invariant under parallel translation with respect to the comection in the normal bundle and of constant dimension 1, where $A_{C_{x}}$ are the second fundamental tensors associated with $O_{x}{ }^{x}$ and $T \frac{\perp}{p}(\bar{M})$ is the normal space at $\bar{p} \in \bar{M}$. Thus, by the reduction theorem ([2]),
we conclude the total space \vec{M} for M is contained in an $(n+2)$-dimensional unit sphere $S^{n+2}\left(\subset S^{2 m+1}\right)$ and consequently the base space M is contained as a hypersurface of a complex projective space $O P^{(n+1) / 2}$ of real dimension $n+1$ (see [2]). And hence the diagram in the beginning in $\S 5$ reduces to

Therefore, taking account of Theorem A in § 0 , we have
Theorem 5.5. - Let M be an $n(>1)$-dimensional complete semi-invariant submanifold with the distinguished normal C^{A} of a complex projective space $O P^{m}$ of real dimension 2 m . If the second fundamental tensors are commutative with the structure tensor of the submersion π, then M is the model space $M_{p, q}^{c}(a, b)$, where (p, q) is some portion of $(n-1) / 2$ and $a^{2}+b^{2}=1$.

BIBLIOGRAPHY

[1] D. E. Blatr - G. D. Ludden - K. Yano, Semi-invariant immersion, Kōdai Math. Sem. Rep., 27 (1976), pp. 313-319.
[2] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geo., 5 (1971), pp. 333-340.
[3] S.-S. Eum - U.-H. Ki - U. K. Kim - Y. H. Kim, Submanifolds of codimension 3 of a Kaehlerian manifold (I), J. Korean Math. Soc., 16 (1980), pp. 137-153.
[4] S.-S. Eum - U.-H. KI - U. K. Kim - Y. H. Krm, Submanifolds of codimension 3 of a Kaeh lerian manifold (II), J. Korean Math. Soc., 17 (1981), pp. 211-228.
[5] B. Y. Chen - K. Yano, Pseudo-umbilical submanifolds in a Riemannian manifold of constant curvature, Diff. Geo. in honor of K. Yano, Kinokuniya Tokyo, (1972), pp. 61-71.
[6] S. Ismipara - U.-H. Ki, Complete Riemannian manifolds with (f, g, u, v, λ)-structure, J. Diff. Geo., 8 (1973), pp. 541-554.
[7] S. Tshihara - M. Konishi, Differential Geometry of fibred spaces, in "Publication of the study gròup of geometry », Vol. 8, Tokyo, 1973.
[8] H. B. Lawson Jr., Rigidity theorems in rank 1 symmetric spaces, J. Dife. Geo., 4 (1970), pp. 349-357.
[9] M. Okomura, On some real hypersurfaces of a complex projective space, Transation of A.M.S., 212 (1975), pp. 355-364.
[10] Y. Tashrizo, On relations between the theory of almost complex spaces-mainly on semiinvariant subspaces of almost complex spaces -, Sugaku, 16 (1964-1965), pp. 54-61.
[11] Y. Tashino - I.-B. Kim, On almost contact metric compound structure, Kodai Math. J., 5 (1982), pp. 13-29.
[12] K. Yavo - U.-H. Ki, on $(f, g, u, v, w, \lambda, \mu, \nu)$-structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$, Ködai Math. Sem. Rep., 29 (1978), pp. 285-307.

[^0]: (*) Entrata in Redazione il 1 settembre 1984.
 (**) This research was partially supported by Korean Science and Engineering Foundation Grant.

 Indirizzo degli AA.: Department of Mathematics, Teachers College, Kyungpook National University, 635 Taegu, Korea.

