J. DIFFERENTIAL GEOMETRY
6 (1971) 95-118

SUBMANIFOLDS WITH PARALLEL
MEAN CURVATURE VECTOR

KENTARO YANO & SHIGERU ISHIHARA

0. Introduction

J. Simons [5] has recently proved a formula which gives the Laplacian of the
square of the length of the second fundamental form, and applied the formula
to the study of minimal hypersurfaces in the sphere (see also [1], [2]).

K. Nomizu and B. Smyth [4] have obtained a formula of the same type for
a hypersurface immersed with constant mean curvature in a space of constant
sectional curvature, and derived a new formula for the Laplacian of the square
of the length of the second fundamental form, in which the sectional curvature
of the hypersurface appears. Using this new formula, they determined hyper-
surfaces of nonnegative sectional curvature and constant mean curvature im-
mersed in the Euclidean space or in the sphere under the additional condition
that the square of the length of the second fundamental form is constant.

The purpose of the present paper is to generalize Nomizu-Smyth formulas
to the case of general submanifolds and to use the formulas to study submani-
folds, immersed in a space of constant curvature, whose normal bundle is locally
parallelizable and mean curvature vector field is parallel in the normal bundle.

1. Preliminaries

Let there be given an n-dimensional connected submanifold M™ immersed in
an m-dinensional Riemannian manifold M™ (1 < n < m) with the metric
tensor G, whose components are G,; with respect to local coordinates {£"},
(Riemannian manifolds we discuss are assumed to be differentiable and of class
C=.) and suppose that the local expression of the submanifold M™ in M™ is

(1.1) g = &My

where {5%} are local coordinates in M". (Submanifolds we discuss are always
assumed to be differentiable, of class C~ and connected. The indices A, i, j, k, [
run over the range {1, - - -, m} and the indices a, b, ¢, d, e over therange {1, - - -,
n}. The summation convention is used with respect to these systems of indices.)
Differentiate (1.1) and put
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1.2) B)* = 9,§*, 9, =20/,

which is, for each fixed index b, a local vector field tangent to M™. These local
vector fields B,* spann the tangent plane of M™ at each point of M®. We denote
by C,* m — n mutually orthogonal local unit vector fields normal to M*. (The
indices x, y, z run over the range {n+1, - - ., m} and the summation convention
is used with respect to this system of indices.)

If we denote by g the metric tensor on M™ induced from the metric tensor G
of M™, then for the components of g we have

(13) 8cr = Gjchijj .

The contravariant components of g are denoted by g%, i,e., g.,.g° = o°.
Denoting by {;*;} and {.*,} the Christoffel symbols formed with G;; and g,
respectively, we put

(1-4) VcBbh = acBbh + {jhi}Bchbi - {cab}Bah >

which is the van der Waerden-Bortolotti covariant derivative of B,"*. From (1.2)
and (1.4) we then have

(1.5) V.B,* =V,B" .

For tensor fields on M", I/, is the operator of covariant differentiation with
respect to {,%,}. The van der Waerden-Bortolotti covariant differentiation I, is
extended to tensor fields of mixed type, say T,*;*, on M™ in such a way that

Vchaih = achaih + {jhk}Bchbaik - {jki}Bchbakh
+ {cae}Tbeih - {ceb}Teaih .
Thus we have

V.w.B," =08,V .B,") + {/*:}B.V B¢

(1.6)
- {dec}VeBbh - {deb}VcBeh .

It is easily verified that for any fixed indices b and ¢, V' B,* is normal to M™*,
and hence that

a.7 V.By* = h,*C."
where h,,* satisfies, due to (1.5),
(1.8) hcbx = hbcz .

The A,,” is, for cach fixed index x, a local tensor field of type (0,2) of M™ and
called the second fundamental tensor of the submanifold M”* relative to the unit
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normal C,". Equations (1.7) are the equations of Gauss for the submanifold
M=,

If we denote by g* the metric tensor induced on the normal bundle 4" (M?*)
of M™ from the metric tensor G of M*, then we have, for the components of
g* relative to the frame {C,"},

8yz = GJsz]CxZ = 5yz »

because C,* are orthonormal. The contravariant components of g* are given
by g¥® = %7, since g,.8°% = J.
If we put

hz = nghcbI/n b h2 - gyxhyhx (h Z 0) 5

then we see that A* or A*C,* is a global vector field normal to M™, which is
called the mean curvature vector of the submanifold M*, and that 4 is a global
function, which is called the mean curvature of the submanifold M”. When 4,,*
vanish identically, the submanifold M* is said to be fotally geodesic. When

hcbz = h'gchJU (h + 0) s

Cc* = %h’ or C* = C*C,"* being a global vector field normal to M™, M" is said

to be totally umbilical.

Denoting by ['.*, the components of the connection F'* induced on the
normal bundle 4"(M?") from the Riemannian connection of the ambient mani-
fold M™, we have, by definition,

re, = @.cC,"” + {,*}B.CHC*,,
where C*, = C,'g¥“g;,. If we put
(1.9 r.c,>=9C + {,*4B,C,} — I'.*,C,",

which is the van der Waerden-Bortolotti covariant derivative of C,", then we
sec that 7 .C,” is, for any fixed indices ¢ and y, tangent to M". For tensor fields
associated with the normal bundle A4'(M™"), I/, is the operator of covariant dif-
ferentiation with respect to I",*,. We thus have V,g,, = 0, V/,g¥* = 0. The van
der Waerden-Bortolotti covariant differentiation V/, is extended to tensor fields,

say T,*,, of the mixed type on M" in such a way that

(1.10) VT = 3.T0%" + {T0%" — {5} 16"
+ chszayz - Fcz'yTbazx .

For tensor fields, say T,,", of the mixed type on M~*, by definition we have
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VeTo" = 8,T5," + {;/*}BTy," — {%} T 0y — T Toa" s
and hence
rr,ct=206.,C" + {;/}BV,C,}
- {cab}VaCyh - FczbeCzh .

Differentiating covariantly G,,B,’C,* = 0, we have G;,(V .B,/)C,* + G;,B,’
.C,H = 0 and hence, from (1.7),

(1.12) V.C,» = —h,B," ,

(1.11)

since V,C,* is, for any fixed indices ¢ and y, tangent to M", where we have
put

hcay = hcezgeaga:y .
We use the following notations in the sequel:
hcby = hcbxgzy ) hbay = hdcxgdbgcagxy s hbet = hdczgdbgca .

Equations (1.12) are the equations of Weingarten for the submanifold M™.
We have, from (1.4) and (1.6), the Ricci formula

(1-13) VchBbh - VchBbh = RkjihBSgg - chbaBah »
and, from (1.9) and (1.11), the Ricci formula
(1.14) rJ&v.Cc,t—vy,C,* = Ry, *BEC, — K;.,"C," .

Here and in the sequel
B%fﬁ - BdchijiBah ’ Bflgg = Bdchiji » B’éé = Bdchj
and R,;", K;,;* and K,.,” are respectively the curvature tensors of the

Riemannian metrics G of M™, g of M™ and the induced connection F'* of the
normal bundle /" (M*), the curvature tensor K,.,” of I'* being defined by

chy‘r - adljcxy - ac[vdxy + Fdxzpczy - ['cxzpdzy .

For tensor fields, say T,%,%, of the mixed type on M"*, we have, from (1.10),
the Ricci formula

(1.15) vl Ty, —VV,T,%°
= Koot Tof )" — Kooy T + Koo Ty0F — Kyoy?To" .
Substitution of (1.7) in the Ricci formula (1.13) gives
Ry;i"Blly = Kuep*Bo" — (hy®chey® — he®chgy)Bo"
+ Vahey™ — VehayDC,"

and substitution of (1.12) in the Ricci formula (1.14) gives

(1.16)
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Rk]thS(]:Cyl = chyxcwh - (hdexhcey - hcemhdey)czh

1.17
- (thcay - Vchday)Bah ’

where V ;h,,% and V k., are defined in the sense of (1.10), i.e.,

thcbx = adhcbw - {dec}hebx - {deb}hcez + Fdzyhcby >

(1.18)
thcay = (thcbx)gbagxy .

We now have, from (1.16) and (1.17),
Rkathg;Z - chba - (hdaxhcbx - hcazhdbx) ’
(1.19) Ry si"BiiC*y = Vahey® — Vohe,®
RkahB{%CyZCzh - chyz - (hdezhcey - hcexhdey) ’
where
Rijin = Ryyi'8in Kicsa = Kaer®8ea -

The first, second and third equations of (1.19) are the equations of Gauss,
Codazzi and Ricci respectively. Equations (1.19) altogether are sometimes
called the structure equations of the submanifold M™.

We now assume that the ambient manifold M™ is a space of constant cur-
vature c, i.e., that

(120) Rkjih = C(Gthji - Gthki) .
Then, substituting (1.20) in (1.19), we find

(121) chba = C(gdagcb - gcagdb) + (hdazhcbz - hcamhdbx) ’
(1-22) 0= thcbz - Vchdbx »
(123) chyx = hdezhcey - hcezhdey )

which are the structure equations for the submanifold M® immersed in a space
of constant curvature c¢. Transvection of (1.21) with g?¢ yields

(124) ch = c(n - l)gcb + nhxhcbx - hcezhbez )

where K, = K, is the Ricci tensor of M”,

When the ambient manifold M™ is a space of constant curvature ¢, we com-
pute the Laplacian 4F of a function F = h,,*h°?,, which is globally defined in
M”, where 4=g°FV V,. We thus have

$dF = gV .V sheyDhy + (VYT R*,)
V¢ being defined by ¢ = g«F .
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By using the Ricci identity (1.15) and equations (1.22) of Codazzi, we find

%AF = gEd[VcVehde - I<ecbaha,dJ7 - Kecdah'bax
 Keothoa Ve, + (7 ) PoHe,)
ot n(Vchh'x)thx + Kcahbazh'wz - Kecbaheazhwz
T Ko by, (T ohyg) TR

where K, is defined by K,* = K,,g%%, and we have used (1.8) and equations
(1.11) of Codazzi. If we substitute (1.21), (1.23) and (1.24) for K, .54, K,,®
and K. = K,,g% respectively in the above equation, then we have

%AF = n(Vchhx)thz + [c(n - 1)gca + nhyhcay - hceyhaey]hbaxhwr
- [C(geagcb - gcageb) + (hea,yhcby - hcayheby)]heazhwx
+ [heayhcax - hcayheaZ]hbethbz + (Vchba,x)(Vchbar) >

and therefore

LAF = n(F J,ho)hes, + cnhy,ht®, — cn?hoh, + nhVhog,hy® hets

(1.25)
— hea¥hey 0 h*" + V7 hy YR

when the ambient manifold M™ is a space of constant curvature c.

To establish some formulas for a submanifold immersed in a hypersurface
for the later use, we consider an n-dimensional submanifold M immersed in a
hypersurface M™ which is further immersed in an (m + 1)-dimensional
Riemannian manifold M™*! with the metric tensor G whose components are
G » with respect to local coordinates £-.

Suppose that the local expression of M™ in M™*! is

g4 =g,

where {£"} are local coordinates of M™, and that the local expression of M" in
M™ is

& = &My ,

where {7} are local coordinates of M". (The indices 4, B, C run over the range
{1, .-..m 4 1}, the indices 4, i, j over the range {1, - - -, m} and the indices a,
b, c over the range {1, - - -, n}. The summation convention is used with respect
to these systems of indices.) Then the local expression of M™ in M™*! is

¢ =EG) -

If we put
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B,)" = 3,§"(n*) ,  By* = 8,LME ()

along M* and B;,* = 3,£4(¢") along M™, where 9, = 3/dn® and 9, = 9/3&",
then we find B,* = B,*B;* along M*. Denote by C,* m—n mutually orthogonal
local unit vector fields normal to M” in M™, and by D4 a local unit vector field
normal to M™ in M™*!. (The indices x, y, z run over the range {n + 1, - . -, m}.
The summation convention is used with respect to this system of indices.) If
we put C,4 = C,'B;4, then C,4 and D* are mutually orthogonal unit vector
fields normal to M™ in M™*!.

If we denote by G the metric tensor on M™ induced from the metric tensor
G of M™*!, then we have, for the components of G, G;; = G, sB,°B2. The
contravariant components of G are denoted by G If we denote by g the
metric tensor on M™ induced from the metric tensor G of M™, then we have,
for the components of g,

8er = Gjchiji = G~CBBcCBbB .

The contravariant components of g are denoted by g°.

If we denote by /. and F; the operators of van der Waerden-Bortolloti co-
variant differentiation respectively along M™ immersed in M™*! and along M™
immersed in M™*!, then we have

V,=BJr;
along M™. We now have the equations of Gauss
(126) VcBbh = hcbzcxh/ ’
(1.27) V.B,* = H,*C,* + H,D*

for M™ relative to M™ and M™*' respectively, where A,,* are the second fun-
damental tensors of M* relative to M™ with respect to the normals C,*, and
H_* and H,, are the second fundamental tensors of M* relative to M™*! with
respect to the normals C 4 and D respectively. Next,

(1.28) V;B* = k;;D*

are the equations of Gauss for M™ relative to M™*!, k;, being the second fun-
damental tensor of M™ relative to M™*! with respect to the normal D4, and

(1.29) V,D4 = —k/B*

are the equations of Weingarten for M™ relative to M™*!, where k;* = k;,G"*.
Differentiating covariantly B,4 = B,!B;* along M", we obtain

VcBbA = (VcBbi)Bz‘A + Bchbi(VjBiA)
and hence, by substituting (1.26), (1.27) and (1.28),
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(1.30) H.,*C,* + H,,D4 = h,,*C,* + B,/B,'k;,D4
along M", from which follow

(1.31) H.,* = h,*, H., = BB’k

along M". If we put

(1.32) h* = g®h,*/n, H*=g°H,*/n, H=gH,/n
along M" and

(1.33) k = G¥%k;;,/m

along M™, then we obtain, from (1.31),

(1.3% H* = h= , nH = mk — g¥=C,C 'k,

along M", where h* or h*C " is the mean curvature vector of M* in the normal
bundle A4"(M%™) of M™ in M™, H* and H determine the mean curvature vector
H=C_,* 4+ HD4 of M” in the normal bundle //"(M™®) of M™ relative to M™*,
and kD“ is the mean curvature vector of M™ in M™*!, g2 being the contra-
variant components of the induced metric g* of the normal bundle .4 (M™)
relative to the frame {C,"}.

When M™ is a totally umbilical hypersurface in a space M™*! of constant
curvature, we have

(1'35) kji — kG]Z s
and, from (1.29) and (1.35),
(1.36) VjDA = "“kBJA ’

where the mean curvature k& of M™ is determined up to a sign and is locally
constant.
Next from (1.34) and (1.35) follow

(1.37) H*> = h*, H=k,
and thus by taking account of (1.36) we obtain

V(H*C,* + HD*) =V (h*C,* + kD*)
= T h)C* + h*( .C,*) + k(DY) ,

which, together with the equations of Weingarten

VchA = _HcazBaA = _hca.zBaA > VcDA = '—chA
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for M* relative to M™*', H,°, being defined by H.*, = H,,'g""g,,, implies
(1.38) V(H*C,* + HD*) = (F h*)C,* — h.h*B,4 — k*B,4 .

By putting H®®, = H,,"g*°g*"g,, and H*®* = H,,g*°g*®, and using (1.31) with
k;, = kG;; we thus have

(1.39) H.,=He, + H,H® = hyhet, + nk? .

From (1.38) and (1.39) we hence arrive at

Lemma 1.1. Let M* be an n-dimensional submanifold immersed in a totally
umbilical hypersurface M™ of a space M™* of constant curvature. Then the
mean curvature vector H=C 4 + HD4 of M" relative to M™*! is parallel in the
normal bundle A" (M™) of M™ in M™*' if and only if the mean curvature vector
hxC," of M™ relative to M™ is parallel in the normal bundle /" (M™) of M™ in
M™, and the function'F = H,,*H®®, + H ,H® is constant in M™ if and only if
the function F = h,,*h°®, is constant in M".

We can also prove the following lemma:

Lemma 1.2. For a submanifold M" in Lemma 1.1, the normal bundle
(M™) of M® in M™*' is locally parallelizable if the normal bundle 4 (M™)
of M™ in M™ is so also, i.e., if Ry, = 0 in A"(M™).

2. Lemmas

In this section, for later use we establish some lemmas concerning submani-
folds immersed in a space of constant curvature. From (1.23) we first have

Lemma 2.1. Let M be a submanifold immersed in a space of constant
curvature. Then the normal bundle A/ (M™) of M™ is locally parallelizable, i.e.,
K4.,® =0, if and only if h,*® and hy,*Y are, for any indices x and y, commuta-
tive, i.e., if and only if h,°*h,*¥ = h,%¥h°=.

From Lemma 2.1 it follows that, when K,,,* = 0, there exist certain n
mutually orthogonal unit vectors e,%, - - -, e,* such that

h,%ve? = 2,%e x=n+1,--.,m; a not summed)

at each point of M immersed in a space of constant curvature. We call such
a vector e, with components e,* an eigenvector of #,%*’s, and 1,” the eigen-
value of 4,%* corresponding to e, (¢ =1, - - -, n). (The indices «, §, 7 run over
the range {1, - . -, n}.) We shall now prove

Lemma 2.2. Let M™ be a submanifold immersed in a space of constant
curvature c, and the normal bundle A (M™) be locally parallelizable. Then at
each point of M™
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34F = n(V F h*)yhet, + (FV hyo®)Pehe,)
+ 2 {Z 1,® — Zf)z(c + Mqﬂy)} i
a<B xX Yy
Proof. We first have
cnhy,*hve, — cn*h*h,

—chrzor-z(za))

2.1)
=c {n LZQAY =25 B4 — DL (uy}
x a x a< x a
— ¢ [ TR — 2254, + (zﬁwy}] — Y T (7 — 20
z a<p
Next,
R Py P — BogVhgy 60 00

=2 T AP — 3 Y AT A
a,B x,Y a8 x,Y

=2 2@+ 2 ; 2 QA 4+ Z Z 2.5 (457)
+ 2 Zﬁﬂa”/?ﬁ”(lﬁ”)z Z Z (A0 =25 3 (AR

TFY aF <y a
2.2 — 205 AW =25 5 AAAA
2#FY a<lf

= Zﬁ 2 {27 — 2,5 (A7) + 2,7(4,%)%}
a<B =z
+ 20 2 {AYAY(A) — 22,727 A + A4,V (A7)}

a<lf xFY

=2 2 A" = AT + 20 1 (T — A5 AR,
a<lf x alf pFEY

=2 Z(lﬁ —2””)222?’21’ )
a<f

Thus Lemma 2.2 follows from (1.25),(2.1) and (2.2).

From (1.21) we now see that the sectional curvature ¢, , of M™ correspond-
ing to the plane section determined by the cignevectors e, and e, of #,%%’s is
given by

(2.3) Gpa=C+ DA77 (=P .

Thus from (1.25) and Lemma 2.2 we have
Lemma 2.3. Under the same assumptions as in Lemma 2.2, we have
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%AF - n(Vchhz)thz + (Vchbaz)(Vchbax)
+ 2 2 Q" — 4,50,

alf z

2.4

The mean curvature vector A2 is parallel in the normal bundle .4°(M™") if and
only if

Ve = 8k + T @yhv = 0,

which is equivalent to the condition that for each index c, . H" is tangent to
M, where H* = h*C,* and V ,H" = 3,H" + {;*:;}B,/H*. We now proceed to
establish the following Lemmas 2.4 and 2.5.

Lemma 2.4. Let M™ be a submanifold immersed in a space of constant
curvature and satisfy the conditions:
(C) The mean curvature vector h® of M* is parallel in A" (M7™), and A" (M™)

is locally parallelizable.

If M™ is compact and, M™ has nonnegative sectional curvature (for all plane
sections), then at every point of M™

(25) Vchba,x =0 P
2.6) Ut = 2V0,, =0 (a+ P

for any indices a, b, c, a, 8 and x.

Proof. From (2.4), we have AF > 0, since o, , > 0. Thus F is constant
and therefore 4F = 0 (See, for instance, Kobayashi-Nomizu [3, Vol. I, Note 4]
or Yano [6, p. 215]). Hence we have (2.5) and (2.6).

Lemma 2.5. Let M" be a submanifold immersed in a space of constant
curvature and satisfy the condition (C) in Lemma 2.4. If F = h,,*h°®, is con-
stant on M™, and M™ has nonnegative sectional curvature (for all plane sec-
tions), then we have the same conclusion as in Lemma 2.4.

Now assume that M* is a submanifold immersed in a space of constant
curvature and satisfies the conditions of Lemma 2.4 or 2.5. Then, by Lemma
2.4 or 2.5,V h,,*=0. Since K;.,” = 0, we can choose local vector fields C,*
normal to M" in such a way that I",#, = 0, i.e., that C,* are parallel in the
normal bundle .#(M™). That is to say, for each index c, V.C," is tangent to
M~, where J/,.C,» = 3,C,* + {,")}B,/C,'. Assume in the sequel that if K4,*=0,
then the normal vector fields C,* are chosen in the way mentioned above. Thus,
if Ky.,* = 0, then by (1.18), V' ,h,,® = O reduces to

(27) Vchbaz = achbax - {ceb}hea,Jc - {cea}hbelc =0 ’

which implies that all the eigenvalues 4, of £, are locally constant and that
each eigenspace of #,%? is of constant dimension. Let v,%, - - -, v,* be mutually
orthogonal local unit vector fields in M”, which are the eigenvectors of all /2,2~
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at each point, and let 1, be the eigenvalue of h;%* corresponding to v,*. We
call each of v,%’s an eigenvector field of 4,%%, and denote by i, the normal
vector field with components 2,* = 4,°C,*, which is globally defined in 4" (M")
and is called the vector of eigenvalues of M™ corresponding to v . If, for a
vector 2, of eigenvalues, all the eigenvector fields corresponding to 2, form a
p.-dimensional distribution, then we say that the multiplicity of 2, is p,. If we,
for instance, fix the choice of the normals C,*, then we can identify 2, with a
vector of R™ " having components (1,”*!, --.,2,™), where the usual inner
product (2, ») is defined in R™~". Thus, in terms of such an identification, we
shall prove

Lemma 2.6. Let M*™ be a submanifold immersed in a space of constant
curvature, say ¢, and assume that M™ satisfies the conditions of Lemma 2.4
or 2.5. Then there exists a certain number of distinct vectors p, - - -, uy of
R™" (N < n), whose inner products are given by

(28) (/‘t/h/lB):—c (A:,&B,A,B‘—“l,',N),

in such a way that any vector of eigenvalues of M™ coincides with one of p,,
-,y and any of p, - - -, py Is a vector of eigenvalues.
Proof. First, assume that all sectional curvatures of M™ vanish, i.e., that
0,5 = 0. Then, from (2.3),

(A 4) = —¢ (@ # P .
Thus 2,’s themselves have the property (2.8).
Next, assume that there exists a nonzero o, ,. Then we may suppose that
G4 * ++, 0y, are nonzero and ¢,,,,, = -+ = g, = 0. Thus, by (2.6),
21: . :21}:/‘[1’
and, by (2.3),
QApd) = —¢c  (g>Dp).

If we now take account of (2.3), we find

Uﬂ,n:Ul,Z (ﬁ<a;a9ﬁ:l""yp)a

s =0 @B=1,--,psq=p+1,---,n.
If 651,560 ** *>0pyr,, are nonzero, and ¢,,1,,,1 = **+ = 0p,y,» = 0, then
Qppy =+ =, =y,

and
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(zq’,uz) = —C (q > r) l
Os,0 = Opi1,p+2 (ﬂ<a;a,ﬁ:p+l,--~,r),
O'p,q:o (ﬁ:p"*_15"';r;q:r+1>""n)'

In this way, we shall have

27‘4—1:"':21):#39 (Zq;/ls):_c (q>S),

as far as there exists a non-zero g, .
Ifg,, =0for < a(a,f=1t,---,n;t > 1), then we put

Zl:/lB""’Zn:/lN .
Thus from (2.3) we have
(an,uB): v :(Z(ple): —C (QZI),

so that these g, - -+, uy have the properties of the lemma.
We shall now prove the following algebraic lemma for later use.
Lemma 2.7. Let p,, - - -, uy be distinct vectors belonging to R* such that

(/lA7/lB):k (A:,éB,A,le,',N).

If w, - -+, uy span an r-dimensional subspace (s > r > 0), then N =r or N =
r + 1 and hence N < s + 1. Furthermore in the last case where N =r 4 1,
we have

(#15 /«51) k e k
2.9) e
k k tr (/lNa HN)
and one of p,, - - -, uy is necessarily zero when k = 0.
Proof. First assume that £ = 0. Then none of g, - .-, uy vanishes. If
N >r 4 1and g, -- -, uy span an r-dimensional subspace, then we may sup-

pose that g, - - -, y, are linearly independent. Putting
o1 = Gty + -+ + o,

taking the inner product with 4, ., and g, and using (u4, pz) = k (4 £ B), we
obtain respectively

a4+ - ta, =1, aum—kH=0.
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Thus we may assume that

#r+1:a1f‘t1+"'+at#t (tgr)9

(pa> ) = k 4=1---,n,
so that

(pa> pp) = k A4,B=1,---,1),
which contradicts the independence of y,, - - -, p,, since

(/117 /’51) ce (/119 [ut)
..... =0

| (ﬂt» #1) e (#t, flz)

fort = 1, and p,,, = g, for t = 1. Thus we have N < r + 1.
When N = r + 1, we have a nontrivial linear relation

apy + oo+ aypy =0

and therefore, by taking inner products with g, - - -, gy in turn,
al(flla /11) + azk + - + aNk =0 s
ak + az(/lz, {12) + -0+ aNk =0,

ak + ak + e+ aN(/lN: ﬂN) =0,

respectively, which imply (2.9) because of (a,, ---,ay) # (O, - - -, 0). When
k = 0, the lemma is obviously true. Thus Lemma 2.7 is proved.

Let M™ be a submanifold immersed in a space of constant curvature, and
suppose that M™ satisfies the condition of Lemma 2.4 or 2.5. Then for a vector
. of eigenvalues all the corresponding eigenvector fields span a distribution D,
and for a vector field v* belonging to D, we have

2.10) h 2t = p 200 .
Thus
hbanC/Ub — /lach'va

by (2.7) and the constancy of 4,7, so that the distribution D, and the orthogonal
complement D, of D, are both integrable and that the integral manifolds of D,
and D, are totally geodesic in M”. Hence M" is locally a pythagorean product
M, X M,, where M, and M, are respectively some integral manifolds of D,
and D,. For any vector fields u* and v* tangent to M,, from (2.10) we have
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ul (v°B,") = WV 0")By" + h(guuv’)C,r (4, # 0),
u’l (v°B,») = (uV ,v*)B," (. =0),
where

ho= (% @2, Ct=prChih, .

Thus, when dim M, > 2, the submanifold M, is totally umbilical or totally
geodesic in M™ according as the mean curvature vector g, of M, is nonzero or
Zero.

When dimM, = 1 and g, # 0, M, is a curve in M™ whose first curvature
along M, is constant. For simplicity such a curve is called a totally umbilical
submanifold of dimension 1 in M™. When dimM, = 1 and g, = 0, M_ is a
geodesic arc of M™, which is, for simplicity, called a totally geodesic submani-
fold of dimension 1 in M™. Thus we have

Lemma 2.8. Let M™ be a submanifold immersed in a space M™ of con-
stant curvature, and assume that M" satisfies the condition of Lemma 2.4 or
2.5. If distinct vectors of eigenvalues of M™ are given by u,, - - -, py, then M"
is locally a phthagorean product M, X --- X My, where M_ is a totally um-
bilical or totally geodesic submanifold in M™ according as the mean curvature
vector p, (@« = 1, -- -, N) of M, is nonzero or zero.

Let M™ be a submanifold immersed in an m-dimensional Euclidean space
R™, and denote by N, the normal space of M* at a point P of M”*. The sub-
space 'Np(CNp) spanned by normal vectors v°u’h,,*C.*, u* and v* being
arbitrary tangent vectors of M” at P, is assumed to be of constant dimension r,
i.e., dim’N, = risindependent of P (1 <r < m — n). Thus A" (M*) = U ’'Np

PeMR

is a subbundle of the normal bundle .4"(M™). Take mutually orthogonal r local
unit vector fields C,* in /(M") and mutually orthogonal m — n — r local
unit vector fields C,”*, which are normal to M™ and C,*. (The indices 4, B,
C run over the range {n + 1, - . ., n + r} and the indices p, g, r over the range
{n+r+1,..-,m}. The summation convention is used with respect to the
system of indices 4, B, C.) Then equations (1.7) of Gauss and equations (1.12)
of Weingarten for the submanifold M™ reduce respectively to

2.11 V.By» = h,BCg" , el =0,
and

(2.12) F.Cgt = —hSgzB,",

(2.13) 7,Cot = 0.

Next, from the structure equation (1.23) for the submanifold M™, we have
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(2.14) Ket? =0,

which shows that the vector bundle #'(M") is locally parallelizable. Thus we
can choose C,”» in 4" (M") in such a way that

(2.15) F.Cot = 8,Cy" + {;2}BIC .

If we assume that (%) is a system of rectangular coordinates in R™, then from
(2.15) we obtain

V.Cys» = 2a.C.t,

from which (2.13) it follows that all the components C,* are constant. On the
other hand, since B,* and C,* are mutually orthogonal, we have

INgE!

C/Br =0,  Bj=og" oy,

r=1

[

which gives, by integration,
5 Cr80r) = Dy,
=

where D, are constant and &* = £(3%) is the local expression of M”" in R™.
Thus the submanifold M~ lies in an (n + r)-dimensional plane, defined by the

equations i C,* = D,, of the ambient Euclidean space R™. Consequently,
h=1

we obtain

Lemma 2.9. For a submanifold M" immersed in an m-dimensional
Euclidean space R™, if the normal space 'Np spanned by v°u®h,,*C,", u® and
v® being arbitrary vectors tangent to M™ at P ¢ M™, is of constant dimension
r(l<r<m—n),lie., if ris independent of P, then M" is immersed in an
(n + r)-dimensional plane of R™.

By similar arguments as above, we have

Lemma 2.10. For a submanifold M" immersed in an m-dimensional sphere
S™ defined by an equation (x,x) = a® (a > 0) in an (m + 1)-dimensional
Euclidean space R™"* with usual inner product (x,y), if the normal space 'N,
(appearing in Lemma 2.9) is of constant dimension r (1 < r < m — n), then
M™ is immersed in a great sphere S of S™ defined by equations (x,x) = a*
(a>0), (x,e) =0,---,(x,ep_n_,) =0, €, +,€,_,_, being linearly inde-
pendent unit vectors.

If M™ is a submanifold immersed in an m-dimensional Euclidean space R™
(or in an m-dimensional sphere $™) and statisfies the conditions of Lemma 2.4
(or 2.5), then the vectors of eigenvalues of the submanifold M™ span the
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subspace ‘Np appearing in Lemmas 2.9 and 2.10. Thus from Lemmas 2.9
and 2.10 we obtain

Lemma 2.11. Let M" be a submanifold immersed in an m-dimensional
Euclidean space R™ (resp. sphere S™) and satisfy the conditions of Lemma 2.4
or2.5. If the vectors of eigenvalues of M™ span an r-dimensional (0 <r < m—n)
subspace in the normal space to M™ at each point of M*, then M" is immersed
in an (n + r)-dimensional plane in R™ (resp. great sphere in S™) and there
exists in R™ (resp. S™) no plane (resp. great sphere) of dimension less than
n -+ r which contains M™* (1 < r < m — n).

A submanifold M™ immersed in an m-dimensional Euclidean space R™
(resp. sphere S™) is said to be of essential codimension r (0 < r < m — n), if
there exists in R™ (resp. ™) an (n + r)-dimensional plane R"*" (resp. great
sphere §7*7) containing M”* and no such a plane (resp. great sphere) of dimen-
sion less than n + r. A submanifold M® immersed in R™ (resp. S™) is said to
be of essential codimension m — n, if there exists in R™ (resp. S™) no plane
(resp. great sphere) containing M™.

3. Submanifolds in a Euclidean space

We first explain a few examples of n-dimensional submanifolds in an m-
dimensional Euclidean space R™ with usual inner product (x, y). For integers
Py, -+, Py such that p, .-, py > 1, p, + -+ 4+ py = n, consider R™ as
R+l 5 ... X RPn*! where N = m — n, and let

So(r) = {x1 e R (%, x) = r12} ’

SPx(ry) = {xy € RP~*1, (xy, Xy) = 15’} .
Then the pythagorean product
SP:(r) X +-o X SPn(ry) = {(xy, -+, xy)eR™, x, € 8%(r), 0 =1, ---,N}

is an n-dimensional submanifold M* of essential codimension m — n in R™
and its vectors of eigenvalues are given by

(31) = rl‘le, crcL U = rN_sz

at (x,, - - -, Xxy) € M™, whose multiplicities are p,, - - -, p, respectively. Thus the
mean curvature vector field H of M™" is given by

(32) H = (plfh + M + pN;UN)/n - (p1r1_2x1 ‘|‘ ttT + erN%xN)/n

at (x,, - -+, xy) € M*, which is parallel in the normal bundle 4" (M") of M*,
and the function F = h,,*h°?, is given by
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(3.3 F=(m+ - + e =11+ - + 1/r%,

which is constant in M*. It is easily verified that the normal bundle A4"(M") is
locally parallelizable.

For integers p,, - - -, py, psuch that p,, - - -, py, p>1,p,+ - - - +py+p=n,
consider R™ as RP*!' x ... X RP~*' x RP, where N = m — n. Then the
pythagorean product

S(r) X+ -+ X 8P(ry) X R?
= {(xla '--,XN,JC)GR""’,JC&GSIJ“(V“),O( - 15 --',N,XGRP}

is an n-dimensional submanifold M™ of essential codimension N = m — n in
R™. The vectors p,, «- -, py of eigenvalues, the mean curvature vector H
and the function F are given respectively by (3.1), (3.2) and (3.3) at
(x4 «+ -, Xy, x) e M*. Thus H is parallel in the normal bundle ./ (M™®), F is
constant in M™ and 4" (M") is locally parallelizable.

Using the same arguments as those developed by Nomizu and Smyth (See
[4, Theorem 1]), from Lemmas 2.8 and 2.10 we have

Theorem 3.1. Let M" be a complete submanifold of dimension n immersed
in a Euclidean space R™ of dimension m (1 < n<m) with nonnegative sectional
curvature. Suppose that the normal bundle A (M™) is locally parallelizable and
that the mean curvature vector of M™ is parallel in A" (M™). If the function
F = h,*h®, is constant in M™, then M* is a sphere S™(r) of dimension n, an
n-dimensional plane R*{C R™), a pythagorean product of the form

SP(ry) X - X SPa(ry) ,

(3.4)
py--py=1, pi4 - +py=n, 1< NIm-—n,

or a pythagorean product of the form

S#(r) X - X §Px(ry) X R?,

(3.5)
Py spysp=>1, pot+ - +py+p=n, 1<NI<m—n,

where SP(r) is a p-dimensional sphere with radius r, and R*(C R™) a p-dimen-
sional plane. If M™ is a pythagorean product of the form (3.4) or (3.5), then
M™ is of essential codimension N.

Finally, from Lemmas 2.8 and 2.10 we have

Theorem 3.2. Let M™ be a compact submanifold of dimension n immersed
in a Euclidean space R™ of dimension m (1 <_n <m) with nonnegative sectional
curvature, and suppose that the normal bundle A" (M™) of M" is locally paral-
lelizable. If the mean curvature vector of M™ is parallel in N (M™), then M™ is
an n-dimensional sphere S™(r) or a pythagorean product of the form (3.4), which
is of essential codimension N.
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Remark. Suppose that a submanifold M” immersed in R™ satisfies the con-
ditions of Theorem 3.1 or 3.2, and is of essential codimension s less than
m — n. Then M" is contained in a plane R™** of R™, and satisfies the same
conditions as those mentioned in Theorem 3.1 or 3.2 and satisfied by M” con-
sidered as a submanifold in R™ if M” is considered as a submanifold in R™**,

4. Submanifolds in a sphere

In an (m + 1)-dimensional Fuclidean space R™*! with usual inner product
(x, ),

S™a) = {xe R™*, (x,x) = a*}

is called an m-dimensional sphere of radius a > 0. For mutually orthogonal unit
vectors b, - -+, b, _, in R™*!, a submanifold ;" (r) defined in S™(a) by

() = {xeS™a@), (b)) = dyp, f=1,.--,m — n}
is called an n-dimensional small sphere of $™(a) with radius r if (d,, - - -, d,,_,)
#,---,0),wherer* =a* —d?*— .- —d, ;2 >0and 1 <n<m 37
is called an n-dimensional great sphere of S™(a), if (d,,+- -, d,_,) = (0, ---,0),
i.e., if r = a. If r +# a, a small sphere " (r) is a totally umbilical submanifold
of essential codimension m — n in $™(a), and the mean curvature % relative to
S™(a) is given by
4.1 h=dl(aa@ —a&), &=d’+ - +dp_, d>0).
A great sphere }," (a) is totally geodesic in $™(a) and of essential codimen-
sion 0.

We explain other examples of n-dimensional submanifolds in $™(a). For
integers p,, - - -, py such that p,, ----,py > 1,p, + .-+ 4+ py = n, consider
R™*! ag RPt! ¢ ... X R?x*! where N = m — n + 1. Then

SPr) X -+ X SPr(ry)

“4.2)
= {(x, -+, xy) e R, x, e R?(r,), a0 =1, ---, N},

where S?(r,) C RP«" (¢ = 1, . .-, N), is an n-dimensional submanifold M?* of
essential codimension m — nr imbedded in S™(a) if

4.3) R T

Thus from (1.30) with k;; = a*G}; it follows that the vectors of eigenvalues
of M” relative to S™(a) are given by

m=rn" —a*x + -+ Xx)

Uy =Ty Xy — a7 (x + o+ xy)
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at (x;, ---,xy) e M", whose multiplicities are respectively p,, - .-, py, and
therefore that the mean curvature vector H of M™ relative to S™(a) is given by

H=@uw+ - + pypx)/n

4.4) 1 . . L
= 7(p1r1 Xy + o Pty Xy - av M, + oo+ Xy)

at (x,, -+-,xy)e M, which is parallel in the normal bundle ./ (M"») of M»
relative to S™(a), and the function F = A,,°h°?, by

F= (o) + -+ (s )
= A — @ 4 eyt — @+ NV — Da?

which is constant in M™. 1t is easily verified that the normal bundle 4" (M") is
locally parallelizable.

Let Y™ '(r) be an (m — 1)-dimensional small sphere of S™(a)(0 < r < a).
For integers p,, - - -, py- such that p,, -« -, py. > 1, py+ -+« + py.-=n, N
=m — n, in >, (r) consider an n-dimensional submanifold ‘M" of the form

(4.5) D) X e X P (ry) © 2™,
4.6) P4 s rrd=r<a,
where Y7+ (r)(a = 1, ---,N’) is a p,-dimensional sphere with radius r,, and

'M™ is constructed in >,™' (r) in the same way as that used in constructing
in $™(a) a submanifold M" of the form (4.2). Then ‘M” is an n-dimensional
submanifold of essential codimension m — n — 1 in >,™"! (r) and therefore
m — n in S™(a). The mean curvature vector of ‘M" relative to S™(a) is parallel
in the normal bundle 4" ("M™) of 'M™" relative to S™(a), the function F = A,,*h°?,,
h,,® being the second fundamental tensors of “M™* relative to S™(a), is constant
in ‘M*, and the normal bundle .4"("M™") relative to S™(a) is locally parallelizable.

We shall now prove

Theorem 4.1. Let M™ be a complete submanifold of dimension n immersed
in an m-dimensional sphere S™(a) with radius a (0 < a,1 < n < m) and non-
negative sectional curvature. Suppose that the mean curvature vector of M™ is
parallel in the normal bundle A"(M™) and that A" (M™) is locally parallelizable.
If the function F = h,,*h*®,, is constant in M", then M™ is a small sphere Y ,* (r),
a great sphere Y," (a) or a pythagorean product of a certain number of speres.
Moreover, if M™ is of essential codimension m — n, then M™ is a pythagorean
product of the form (4.2)withr* 4 .. + 1y =d, N=m —n + 1, or of the
form (4.5 withr?+ .-« +ryt=rt < a, N = m — n. If M" is a pythagorean
product of the form (4.5) with r* + - -+ +ry* =r* < &, N = m — n, then M"
is contained in a small sphere > ;™' (r) of S™(a).
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Proof. I M7 is considered as a submanifold immersed in R™*!, then from
Lemmas 1.1 and 1.2 the mean curvature vector of M™ relative to R™*! is
parallel in the normal bundle 4/'(M™) of M™ in R™*!, the function 'F =
H,=H®, + H,,H®, H* and H, being the second fundamental tensors of M*
relative to R™*!, is constant in M*, and 4" (M™") is locally parallelizable. Thus,
by Theorem 3.1, M" is an n-dimensional sphere or a pythagorean product of
a certain number of spheres, since M*(CS™(a)) is bounded. Hence M™ is a
small sphere of S™(a), a great sphere of $™(a) or a pythagorean product of a
certain number of spheres.

When M* is of essential codimension ' — n in $S™(a), there exist m — n or
m — n + 1 distinct vectors of eigenvalues of M™ relative to S™(a) and hence
m — norm — n + 1 distinct vectors of eigenvalues of M™ relative to R™*'.
Thus M" is of essential codimension m — norm — n + 1 in R™** If M™ is
of essential codimension m — n in R™*! then it is contained in a certain m-
dimensional plane R™(C R™"!)(See Theorem 3.1), not passing through the
origin of R™*!. Otherwise M" is not of essential codimension m — » in $™(a).
Thus, if R™ is of essential codimension 7 — nin R™*!, then M™ is a pythagorean
product of the form (4.5) satisfying (4.6). When M™ is of essential codimension
m — n + 1in R™*!, M" is a pythagorean product of the form (4.2) satisfying
(4.3). Hence Theorem 4.1 is proved.

By similar devices as in the proof of Theorems 3.1,3.2 and 4.1, from
Lemmas 2.8 and 2.10 we have

Theorem 4.2. Let M™ be a compact submanifold of dimension n immersed
in an m-dimensional sphere S™(a)(1 < n < m) with nonnegative sectional cur-
vature. Suppose that the normal bundle 4/ (M™) of M™ is locally parallelizable
and that the mean curvature vector of M" is parallel in A" (M"). If M”* is of
essential codimension m — n, then we have the same conclusion as in Theo-
rem 4.1.

Remark. If a submanifold M* immersed in S™(a) satisfies the conditions of
Theorem 4.1 or 4.2 and if M™ is of essential codimension s less than m — n,
then M” is contained in a great sphere $”*¢ of S™, and satisfies the same condi-
tions as those mentioned in Theorem 4.1 or 4.2 and satisfied by M” considered
as a submanifold in $™ if M" is considered as a submanifold in $"*¢.

5. Minimal submanifolds in spheres

A submanifold is said to be minimal if its mean curvature vanishes identi-
cally.

Let M be a submanifold immersed in an m-dimensional sphere S™ and satisfy
the conditions in Theorem 4.1 or 4.2. Then by (4.4) the mean curvature H of
M™ is given by

H = (p1#1 + 0+ pN/lN)/n s
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where gy, - - -, uy are the distinct vectors of eigenvalues, and p,, - - -, py the
multiplicities of s, - - - py respectively. Since the mean curvature 4 is defined
by h* = g, ,H'H* (h > 0), H® being the components of H, such a submanifold
M~* is minimal if and only if

(5.1) H=pu+ -+ 4+ pypuv=0.

By using Theorem 4.1 we shall now prove

Theorem 5.1. Let M™ be a complete minimal submanifold of dimension n
immersed in an m-dimensional sphere S™(a) with radius a (0 < a,1 < n < m)
and nonnegative sectional curvature, and suppose the normal bundle /" (M™)
of M” is locally parallelizable. If the function F — h,,*h°®,, is constant in M™,
then M" is a great sphere of S™(a) or a pythagorean product of the form

(5.2) SP(r) X -+ X 8PN(ry) ,
7 opyepy=1, Do+ oo dpy=n, 1<N<m—n+1

with essential codimension N — 1, where
(5.3) r, =ayp,/n =1,--,N).

Proof. Since M™ is minimal, we see, from (5.1), that the vectors g, - - -, puy
of eigenvalues are linearly dependent. Thus from Lemmas 2.7 and 2.11 it fol-
lows that M™ is of essential codimension N — 1 if M" is a pythagorean product
of the form (5.2). We find (5.3) from (4.4). Thus Theorem 5.1 is proved.

We can prove

Theorem 5.2. Let M™ be a compact minimal submanifold of dimension n
immersed in an m-dimensional sphere S™(a) with radius a (0 < a,1 < n < m).
If M™ has nonnegative sectional curvature and the normal bundle A/ (M™) of
M™ is locally parallelizable, then we have the same conclusion as in Theorem
5.1.

We now explain a few n-dimensional minimal submanifolds M of essential
codimension m — r in an m-dimensional sphere S™(a) for small m and n as
follows:

In $%(a) Sia/v/ 2) x S'a/v/2) n=2).
In S*(a) Sav'2/3) x S'(a/v 3) (n=23).
In $%) S'a/v/3) X S a/v ) X Sa/v3) n=3).

Sav3 12) x SWaj2), Sa/vV2) X S@/V2)  (n=4).
In S$%a) Sa/v 2) x S'a/2) x S'(a/2) n=4),

$'2a/v/5) x S'a/v'5), SYav3[5) X $(av2[5) (n=15).
In §(a) S'(a/2) x S'(a/2) x S$¥a/2) X S'a/2) (n=4,



SUBMANIFOLDS 117

S¥av/3]5) x S¥ajv' 5) X SHa/v/'5),

Sav'2[5) X SHav'2[5) x SNa/v/5) (n=25),
$av/5/6) x S'a/v/ 6), S'(av2[3) x S'a/vV3),

Sajv2) X Sajv2) (n=6).

We now observe that in $™(a) no minimal submanifold of the type (5.2) is
contained in an open semi-sphere, and shall show in Theorem 5.3 that this
fact generally holds for any compact minimal submanifold in S™(a). We first
need a lemma. Take a fixed unit vector e with components (¢!, - - ., e™*?!) in
R™*1, and define a function ¢ in R™*! by

(5.4) #(x) = (x,e) = mizlx/‘e‘i , xeR™L

A=1

where x = (x!, - . -, x™*1), and v denotes the restriction of ¢ to S™(a). Then
along S™(a),

m+1
Fow=3 BAV .4,
A=1
from which and (5.4) it follows that
Vﬂ) = milBiAeA ,
A=1
and hence that
m+1
A=1
because along $™(a)

ViBA = —g;xt|a,

Thus we have
Lemma 5.1. In S™(a) there exists a nontrivial function v satisfying

(55) VjVi?) = _"Ugji/a2 s

where v is the restriction to S™(a) of the function ¢ defined in R™** by (5.4).
Next consider an n-dimensional minimal submanifold M™ in $™(a), 1 <n<m.
Then by transvecting (5.5) with B,’B,* we have, along M~",

(5.6) BB Vv = vgy/at,
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which together with V. .B,* = H,,*C,” implies
P¥V,w— Hy*C,'\V,o = —vg,/a*.
Thus by transvecting with g and the minimality of M™ we obtain
gV Vyw= —nv/a*.

Since v cannot be positive (or negative) everywhere in a compact M*, we have

Theorem 5.3. If an n-dimensional submanifold M" in an m-dimensional
sphere S™ is compact and minimal (1 < n<m), then in S™ there exists no open
semi-sphere containing M. When the M™ is contained in a closed semi-sphere
V of 8™, M" lies on the boundary 3V of V, which is a great sphere of S™.
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