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Introduction. Recently, several authors studied submaifolds with
“simple” geodesics immersed in space forms. For example, planar geodesic
immersions were studied in [6], [8], [13], [14], geodesic normal sections
in [3] and helical immersions in [15]. In [9], Nakagawa also introduced
a notion of cubic geodesic immersions. Let M and M be connected com-
plete Riemannian manifolds of dimensions » and n + p, respectively. An
isometric immersion ¢ of M into M is called a d-planar geodesic immersion
if each geodesic in M is mapped locally under ¢ into a d-dimesional totally
geodesic submanifold of M. In particular, if a 3-planar geodesic immersion
is isotropic, then it is called a cubic geodesic immersion. In this paper,
we study a proper d-planar geodesic Kahlerian immersion ¢: M — CP™(e)
of a Kdhler manifold M into a complex projective space CP™(¢c) of constant
holomorphic sectional curvature ¢ and proper cubic geodesic totally real
immersion ¢: M — CP™() of a Riemannian manifold M, where “proper”
means that the image of each geodesic in M is not (d — 1)-planar. Here
and elsewhere, m in N™ denotes the complex dimension, if N is a com-
plex manifold.

In a complex projective space CP™(c) of complex dimension m, an
odd-dimensional totally geodesic submanifold is a totally real submanifold
RP'¢/4) of constant sectional curvature ¢/4. In §2 we show that if
t: M*»— CP™c) is a proper d-planar geodesic Kahlerian immersion of a
Kahler manifold M™ and d is odd, then M™ = CP"(¢/d) and ¢ is equivalent
to the d-th Veronese map. Here we recall the definition of k-th Veronese
map (k =1, 2, ---). This is a Kdhler imbedding CP"(¢/k) — CP™(¢) given by

ky 1/2 Y .
[Zogicn o | { —————) 2b0 ... 2hn
ko! et kn! kot tlp=k 7

where [*] means the point of the projective space with the homogeneous

coordinates * and m’ = <n }: k ) — 1. More generally, we prove that if

* Work done under partial support by Association of International Education, Japan.
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the image of each geodesic in M" is locally properly contained in a
d-dimensional totally real totally geodesic submanifold, then M» = CP"(¢c/d)
and ¢ is equivalent to the d-th Veronese map. This result is a geometric
characterization of the Veronese map.

In §3, we consider a proper cubic geodesic totally real immersion
¢: M — CP™c) of a Riemannian manifold M" of dimension n. We shall
prove that (") is contained in a totally real submanifold RP"%(c/4) and
apply Nakagawa’s theorem:

THEOREM N. For n = 3, let M be an n-dimensional compact simply
connected Riemannian manifold and ¢ a proper cubic geodesic immersion
of M into an (n + p)-dimensional sphere S**?(c), where p = 2. If ¢ is
minimal, then M = S™(nc/3(n + 2)) and ¢ is equivalent to the immersion
tots of S™ into S™?, where ¢, is a totally geodesic immersion of S¥®(c)
into S™*, N@B) + 1 is the multiplicity of the third eigenvalue of the
Laplace operator of S™ and ¢, is the third standard minimal immersion
of S™ into S¥%(e).

Here we recall the definition of the k-th standard minimal immersion
of S* into S*** (cf. [4]). Let H*" be the eigenspace of the k-th eigen-
value of the Laplace operator on S*, where dim H*" = (n + 2k — 1)(n +
E—2)1/kt(n — 1)! =: Nk) + 1. For an orthonormal basis {f, -+, fyw+
of H*™, an immersion ¢, of S™ into an (N(k) + 1)-dimensional Eueclidean
space EV®* defined by ¢,(x) = (fi(x), - * -, @)/ (N(k) + 1) is a minimal
isometrie immersion into the unit hypersphere S¥*(1) in E¥®+ and ¢,(S")
is not contained in any great sphere of S¥* (i.e., full). If k £ 3, then
¢, is rigid (cf. [23]). The immersion ¢, is called a k-th standard minimal
immersion.

The authors wish to express their gratitude to Professor S. Ishihara
for his constant encouragement.

1. Preliminaries. Let M and I be connected Riemannian manifolds
and ¢ M — M an isometric immersion. We denote by V the covariant
differentiation with respect to the Riemannian metric of M. Then we
may write

(1.1) V.Y =V,Y + HX, Y)

for arbitrary tangent vector fields X and Y on M, where V.Y and H(X, Y)
denote the components of V,Y tangent and normal to M, respectively.
Then V becomes the covariant differentiation of the Riemannian manifold
M. The symmetric bilinear form H valued in the normal bundle is called
the second fundamental form of the immersion ¢. For a normal vector
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field C on a neighborhood of Pec M, we write
(1.2) ViC= —AX + ViC,

—A.X and ViC being the components of %XC tangent and normal to M,
respectively, where V* is the covariant differentiation with respect to
the induced connection in the normal bundle 7'M which will be called
the normal connection. Denoting by (, > the inner product with respect
to the Riemannian metric of M, we find that A, and H are related by
{AX, Y) = (H(X, Y), C)> for any vectors X, Y tangent to M. Thus A,
is a symmetric linear transformation of T,M.

Let the ambient manifold M be a complete, simply connected complex
space form with constant holomorphic sectional curvature ¢. Thus M is
a complex projective space CP™(c). If we denote by J the complex strue-
ture, the Riemannian curvature tensor B of CP™(c) is of the form

(1.3) RX VZ=(d(Y, 2>X - (X2 Y+ (JY, Z2)JX
—JIX, ZYTY — 2JX, Y)JIZ)
for all vectors X, ¥, Z tangent to CP™(¢c).

We denote by Proj,, and Proj,;., the projections of T,M to the tangent
space T,M and the normal space T#M, respectively and put J = Projru-e
J|TM, Jy =Projpiyod | TM, J; = Projyuod | T*M and J*=Projziyod | T+ M.
Then we can write

(1.4) JX=JX+JyX, JC=J,C+J*C

for every tangent vector X and normal vector C of M. Taking account
of J? = —I, we find that these tensors satisfy

(1_5) J2+JTJN: -1, JNJ+ J'LJN:O;

JE 4+ Iy = —1T, JI + J =10,
I being the identity transformation, and also we have
(1.6) IxX, C) = —(X, J,.C>
with the help of (JX, ¥> = —(X, JY).
Differentiating covariantly the left hand side of (1.4), and using
VJ =0 and (1.4) itself, we can easily see that
(Dx)Y = A; v X + J H(Y, X),
(DyJ )Y = J*H(Y, X) — HJY, X),
Ded)C = A;10X — JAX,
(Dg YC = —JyA X — HX, J,C),

where D denotes the van der Waerden-Bortolotti covariant differentiation.

1.7
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Let us denote the curvature tensors of the connections V and V* by
R and R*, respectively. Then, using (1.3), we find that the structure
equations of Gauss, Codazzi and Ricei are respectively given by
(1.8) R(X, Y)Z = (c/OWKY, Z>X — (X, Z)Y + JY, ZYJX — {JX, Z>JY

- 2<JX, Y>JZ} + AH(Y,Z)X - AH(X,Z)Y I3
(1.9 (DLH)Y, Z) — (DyH)X, Z)
= (¢/DJTY, ZYJy X — {JX, ZYJ Y — 2{JX, Y)J Z},
(1.10) RYX, Y)C = (c/H){{JyY, C)JyX — {(JyX, C)JI Y — 2{J X, Y)J'C}
+ H(X, AY) — HAX, Y),

where (DyH)Y, Z) = Vy(H(Y, Z)) — H(V,Y, Z) — H(Y, VyZ). Therefore,
if the submanifold M is complex or totally real, that is, Jy =0 or J = 0,
then
(1.11) (DeH)Y, Z) — (DyHXX, Z) =0
because of (1.9). Conversely, if (1.11) is verified at every point of M,
then M is complex or totally real. Thus 3-dimensional complete totally
geodesic submanifolds in CP™(¢c) are RP%(c/4).

Sometimes we denote (D HXY, Z) by (DHXX, Y, Z). 1t is clear that

DH is a normal bundle-valued tensor field of type (0,3). For k=1, the
k-th covariant derivative of H is defined by

112)  (D*H)(Xy Xy +-, Xipd) = VE(DH)(X, -+, Xiso)
— g(Dk—lH)(Xz, oo, Vxle R Xk+2) ,

where D°H = H. It is clear that D*H is a normal bundle-valued tensor
field of type (0, k + 2). By direct computation we have

(1‘13) (DkH)(Xh XZ! Xsr Sty Xk+2) - (DkH)(X27 le Xsr ) Xk+2)
= RNX,, Xp)(D*H)(X;, « -, Xiya))

k42
= 2 (D H) Xy, ooy B(Xy X)X v o0y Xiwa)

for k= 2.
As for the second fundamental form H, if
(1.14) | HX, X)||* = A\?

for every unit vector X tangent to M, then the immersion ¢ is said to
be isotropic (or n-isotropic). The immersion ¢ is isotropic if and only if

(1.15) (HX, X), HX, Y)) =0
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for any orthonormal vectors X and Y at every point. The condition is
equivalent to

(1.16) @5<H(X1! Xo), HX,, Y)> = 7\'2@3<Xn X2><X3, Y> ’

where X, (¢ =1,2,3) and Y are unit vectors and &, denotes the cyclic
sum with respect to vectors X, X,, X..

2. d-planar geodesic Kiahler immersions. Let ¢t M™— CP™(c) be a
Kahler immersion of a connected complete Kidhler manifold M" into
CP™(c). We first prove:

ProPOSITION 2.1. Suppose that for each geodesic Y:R— M" and
each sc€ R, there exist an open interval I, (23s) and a totally real totally
geodesic submanifold P, of CP™(c) such that ¢«(y(I,))CP,. Then M" is a
compact simply connected Hermitian symmetric space.

Proor. Let xeM™ be any point and X any unit tangent vector at
x of M". Let v be the unit speed geodesic satisfying ¥(0) = « and
7(0) = X. Since P, is totally geodesic, we see that 7, Vit and V2% is
tangent to P, on I,, where - = ¢ov. Since 7 is geodesic, we have
0 = X,

(Vi£)(0) = H(X, X)),

FH)0) = — Ay nX + (DHYXX, X, X) .
From the assumption that P, is totally real, we find
2.1) (JH(X, X), (DH)(X, X, X)) = 0.

Now we have Jy = 0 and J, = 0, since ¢ is a Kiahler immersion. It follows
from (1.7) that

2.2) HJY, X)=J*HY, X), HJY, JX)= —H(Y, X)

for every X, YeT,M. Moreover, Codazzi’s equation (1.11) and (2.2)
imply that

(2.8) (DHYJZ, Y, X) = J*DH)(Z, Y, X)

for every Z, Y, Xe T,M. Equation (2.1) holds for every XeT,M. Re-
placing X by JX in (2.1) and using (2.2) and (2.3), we thus have

(2.4) (H(X, X), DH)XX, X, X)} =0

for every Xe T.M. Let X and Y be orthonormal tangent vectors. Let
X(@) = cos X + sinfY. Differentiating {(H(X(6), X)), (DH)(X(#), X(6),
X(@)> =0 at ¢ =0, we see that
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2(H(X, Y), (DH)(X, X, X)) + 3CH(X, X), (DH)(X, X, Y)) = 0.

This equation holds for all X, Ye T,M in virtue of (2.4). Replacing X
by JX in the above equation, we have

—2{H(X, Y), (DH)(X, X, X)) + 8{H(X, X), DH)(X, X, Y)) =0,
and hence
(2.5) (HX, V), DH)X, X, X)) =0

for every X, YeT,M. Symmetrize (2.5) with respect to X. Then for
every X, Y, Z,

(H(Z, Y), DHYX, X, X)) + 3{H(X, Y), DH)X, X, Z)) = 0.
Replacing Z and Y by JZ, JY respectively, we see from (2.2) that
(H(Z, V), (DH)X, X, X)) =0
for every X, Y, Ze T,M. By virtue of (1.11), we obtain
(HX, Y), DH)Z, U, V) =0

for every X, Y, Z, U, Ve T .M, which shows that M" is locally symmetric
because of the Gauss equation (1.8). In [22, Theorem 2.1 and its Corol-
lary], Takeuchi showed that if a complete locally homogeneous Kahler
manifold admits a Kidhler immersion into CP™(c), then it is a compact
simply connected homogeneous Kihler manifold. Using this result, we
have the assertion. g.e.d.

Let M be a Riemannian manifold. A curve z:I— I is said to be
d-planar if there exist an open interval I, (seI,cI) and a d-dimensional
totally geodesic submanifold P, for each s& I such that z{(I,)CP,. An
isometric immersion ¢: M — M is called a d-planar geodesic immersion if
7 = ¢to7 is d-planar for each geodesics v of M.

COROLLARY. Let ¢: M» — CP™(c) be a d-planar geodesic Kahler immer-
sion of a Kahler manifold M™ into CP™(c). If d is odd, then M™ is a
compact simply connected Hermitian symmetric space.

PrROOF. The assertion follows from the fact that an odd-dimensional
totally geodesic submanifold in CP™(c) is totally real. g.e.d.

Secondly, we shall characterize the d-th Veronese map by the shape
of geodesics in the ambient space. Let M be an irreducible symmetric
Kahler manifold of compact type and d a positive integer. In [10],
Nakagawa and Takagi constructed a full equivariant Kidhler imbedding
fii M — CP™¢) which is called the d-th full Kdahler imbedding of M.
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Moreover Takagi and Takeuchi [20] constructed a full Kidhler imbedding
of a (not necessarily irreducible) symmetric Kahler manifold of compact
type into a complex projective space as follows. Segre imbedding
S;: CP™(¢) x CP™(¢c) — CP™(c) (m = (m, + L)(m, + 1) — 1) is defined by the
tensor product of the homogeneous coordinates:

[Z:losismy X [W;)osismg = [2:W5l0si5m, 08 55my +

Similarly, we can define a full Kdhler imbedding S,: CP™(¢) X - - - X CP™(c) —
CP™c¢) (m = (my, + 1) X -+ X(m, + 1) — 1) by the multifold tensor product
of the homogeneous coordinates. Let M be a compact symmetric Kdahler
manifold and M, (=1, ---, q) its irreducible components, i.e., M =
M,x-++xM, Let f,:M,—CP™(c) be the d,-th full Kahler imbedding
of M,. Then the tensor product [, [X--- X2 M—CP™c) (m=
Iiei(m, +1)—1) of f, (k=1,---,9) is defined as S,o(fyx--- X fa,)-
This is a full equivariant Kahler imbedding. In [10] and {22], it was
shown that any full Kahler immersion into CP™(c) of a symmetric Kahler
manifold of compact type is obtained in this way (cf. [22, Corollary 2,
p. 177])). In particular, we note that if M = CP"(c/d), then the d-th full
Kahler imbedding is the d-th Veronese map whose defining equation is
given in the introduction.

A d-planar curve r in Jf is said to be proper d-planar if 7 is not
(d — 1)-planar. A d-planar geodesic immersion ¢: M — M is said to be
proper if T = ¢o7 is proper d-planar for each geodesic v of M.

LEMMA 2.2. The d-th Veronese map V3. CP"(¢c/d) — CP™ (c) is proper
d-planar geodesic.

PrROOF. Since the map V7 is equivariant and there exists an isometry
of CP*(¢/d) which maps v, to 7, for any two geodesics v, and v, of
CP*(c/d), we have only to consider the geodesic ~:

Y({) = [cos t, sint, O, - - -, 0]

in homogeneous coordinates of CP*(c/d), where t is a parameter propor-
tional to the arc-length parameter. By the d-th Veronese map V72, v is
mapped to the curve

T(t) = [aO! tt ad; 07 MY O] y

a®) = (2 ) eost tsint e, (=0, -+, d)

k'(d — k)l

in homogeneous coordinates of CP™(¢). Thus 7 is contained in the totally
real totally geodesic submanifold RP%c/4) = {[z,]€CP™(¢); z;,€ R for 0 <
12d,2,=0ford 4+ 1=14=<m'}. The intersection of two totally geodesic
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submanifolds in CP™(¢) is totally geodesic. Thus r is proper d-planar,
since Y a,a,(t) = 0. a, € R easily implies ¢, =0 (4 =0,1, ---,d). q.e.d.

THEOREM 2.8. Let c: M*—CP™(c) be a proper d-planar geodesic Kahler
immerston of a complete Kahler manifold M™ into CP™(c). Suppose that
Jor each v and s, we can take P, in the definition of d-planar geodesic
smmersions to be a totally real totally geodesic submanifold. Then
M = CP"(c/d) and ¢ is equivalent to 1oV} where i: CP™(¢c) — CP™(c) 1is
a totally geodesic imbedding.

PrROOF. By Proposition 2.1, we see that M* is a symmetric Kahler
manifold of compact type. We shall prove that M™ is of rank one and
apply [22, Corollary, p. 203] (ef. [2], [11]). Assume that the rank r of
M* is greater than 2. Let M, (k =1, ---, q) be the irreducible components
of M~ and r, the rank of M,, where r =7, + -+ + 7, 2 2. It is known
that there is a totally geodesic Kahler immersion

foN (CP1(C/d1))"'1x cee X (CPl(C/dq))"q M,

where d,, - -, d, are certain positive integers (see [20, the proof of Theo-
rem 2, p. 515]). Since r = 2, we thus have a totally geodesic Kahler
immersion

or: CPY(efa) x CP(c/b) - M™, a,beZ, .

The composite ¢ovr is equivalent to %o (V[ VE): CPY(¢/a)x CP(c/b) —
CP"(c), where ©: CP****(c) — CP™(c) is a totally geodesic imbedding. Let
v, (resp. 7,) be a geodesic of CP'(c/a) (resp. CP'c/b)). Then +ov; (j =
1, 2) is a geodesic in M". By Lemma 2.2, coqro7, (resp. toaro,) is proper
a-planar (resp. b-planar). Thus the assumption implies that a = b = d.
Hence we have only to prove that

Vi Vi CPYe/d) x CP¥c/d) — CP*¢+¥(¢)
is not proper d-planar. Consider the geodesic ¥ in CP(c/d) x CPYc/d)
defined by
v(t) = [cos t, sin £] X [cos ¢, sin {]
in homogeneous coordinates, where ¢ is a parameter proportional to the
arc-length parameter. The curve ¢ = (Vi [ Vi) o7 in CP%4*¥(¢) is given by
7(t) = [a®)®)]osisaosiza »

where «,(t) is as defined in the proof of Lemma 2.2. This curve is con-
tained in RP*¢?(¢/4) = {[v.] € CP***?(c); v,, € R for 0 <k, 1 <d}). We
easily see that functions o,(&)a,(t), a,&)a,(), « -+, a,)a,t), a,E)a,t), « -,
o, (t)a,(t) are linearly independent over R. Suppose that there exists a
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(d — 1)-dimensional totally geodesic submanifold P such that z(I)c P, for
some open interval. Then z(I) is contained in RP®“*?(¢/4)N P which is
a totally real totally geodesic submanifold of dimension not greater than
d — 1. Thus the dimension of the vector space spanned by functions
o, 0=k 1 =<d) is not greater than d. We thus have a contradiction
2d +1=d. q.e.d.

COROLLARY. Let ¢: M™— CP™(c) be a proper d-planar geodesic Kdhler
immersion of a complete Kahler manifold M™ into CP™c). If d is odd,
then M™ = CP™(c/d) and ¢ is equivalent to 1o V7.

3. Cubic geodesic totally real immersions. Let ¢: M — CP™(c) be a
cubic geodesic immersion of a Riemannian manifold M into CP™(c), where
dimM = 3. LetxeM, X be a unit vector tangent to M at 2 and v the
unit speed geodesic such that v(0) = x, 7(0) = X. There exists a totally
real, totally geodesic submanifold P, of dimension 3 such that z(I,)CP,
for some open interval I, containing 0, where 7 = ¢ov. We now assume
that the isotropy a(z) at z is positive and hence X\ > 0 on a neighborhood
of . We take I, small enough if necessary and put z, =7 and 7, =
H(z,, t)/» Noting that %,lz'l = H(z, 7,), we see that 7z, is tangent to P,.
Then C:= %Tl‘cz is orthogonal to 7, 7, and tangent to P,. Using (1.2),
we have

AMC = =N, — AH(rl,rl)Tl + (DH)(zy, 7y 71) + N7y
where N = dan(v(s))/ds, from which
(31) (DH)(TIY Ty T1) = )\”72 +AC
because of (1.15). The above equation shows that C is normal to M.
Covariantly differentiating (8.1) in the direction z,, we have
3.2)  (DH)Ty, 7o To T) = Apmey T — WT + V' + 2VC + AV, C .
Since 7,, 7, and C are mutually orthogonal, %,10 is orthogonal to z,.
Suppose that C(0) == 0. If necessary, we choose I, so that C(s) == 0 for
every se€l,. Put = |C| and z, = C/y. Vector fields z,, 7, and 7, are
orthonormal and tangent to P,, Therefore, %,IC is spanned by 7, and =,
which are normal to M. It follows from (3.2) that

(3.3) (DHXX, X, X), HX, Y)) =0

for every Ye T, M orthogonal to X. If C(0) =0, then (8.1) and (1.15)
also imply (3.3).

LeMMA 3.1. The tmmersion ¢ is constant isotropic.
PrOOF. Let xeM, YeT,M with ||Y | = 1 be arbitrarily fixed. Let
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X be a unit tangent vector orthogonal to Y. We shall prove Y-a?=0.
If an(x) = 0, then \* attains the minimum at x and hence Y-A* = 0. Thus
we may assume M) > 0. Extend X and Y to orthonormal vector fields
X* and Y*, respectively, on a neighborhood of x so that VX* = VY* =0
at z. We have

Y= Y-(H(X* X*), HX* X*) = 2{(DHXY, X, X), HX, X)) .
Using (1.9), we obtain

Y-\ = 2(DH)X, X, V), HX, X)) — %ch, X5 X, H(X, X)) .

Since P, is totally real, we have (JX, H(X, X)) = 0. Therefore,
YN =2{DH)X, X, Y), HX, X))
= 2{X - (HX* Y*, HX*, X*)) — (H(X, Y), (DH}XX, X, X))}
=0
by virtue of (1.15) and (3.3). q.e.d.

In the sequel, we assume that the cubic geodesic immersion ¢ M —
CP™(¢) is proper and totally real. By means of Lemma 3.1, we may
assume that » > 0. We next prove that g is a nonzero constant and
independent of the choice of the geodesic v. From (3.1), we have

3.4 [(DH)(X, X, X)|I = Npi(X) ,

where g is regarded as a non-negative function on the unit sphere bundle
UM of M.

LEMMA 3.2. The function pt is constant on the unit tangent sphere
UM for every xec M.

ProoF. Let x be an arbitrary point. Suppose that there exists a
vector X, € U, M such that #(X,) > 0. Put S = {Xe U,M: (X)) > 0}, which
is an open set in U,M because of the continuity of g#. For each Xe S,
we consider the unit speed geodesic v such that v(0) = x and ¥(0) = X.
Taking Lemma 3.1 into account, we see that (3.3) holds for every
X, YeTM and hence A,y z.x.0nX =0 for any Xe TM. From (3.2), we
have (D*H)(z,, Ty Ty T) = )»%TIC. The right hand side is spanned by <,
and 7,. It follows that (D*H)(X, X, X, X) is spanned by H(X, X) and
(DHXX, X, X) for XeS. Let Y be orthogonal to X. Differentiate

(DH)(X*, X*, X*), HX*, Y*)) =0

in the direction X where X* and Y* are local vector fields used in the
proof of Lemma 3.1. Then we have
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(DHYX, X, X, X), HX, Y)) + {(DH)X, X, X), DH)X, X, Y)> =0,
from which
(8.5) (DHYX, X, X), DH)X, X, Y)> =0
in virtue of (1.15) and (3.3). This means that |[(DH)(X, X, X)|]* is constant

on each connected component of S. Therefore, the component (3 X;) of
S is open and closed. We have proved g is constant on S = U, M. q.e.d.

By Lemma 3.2, we see that p is a function defined on M. If p(x) > 0,
then for each Xe UM

(3.6) wD'H)(X, X, X, X) = (X-)(DH)(X, X, X) — ##H(X, X)
because of (DH)(X, X, X) L HX, X), {D’'H)X, X, X, X), HX, X)) =
=3 and 2{(D°HYX, X, X, X), (DH)(X, X, X)) = M(X- ).

LEMMA 3.3. p is a monzero constant.

Proor. If p vanishes identically on M, then the image z of each
geodesic v is a circle in P = RP%¢c/4). Thus 7 is contained in a totally
geodesic submanifold RP*c/4) of RP*(c/4). This contradicts the assump-
tion that ¢ is proper cubic geodesic. Put S = {xe M: u(x) > 0}. Let ze S
and Ye UM be fixed. Let Xe UM be orthogonal to Y. Then from
(3.4), we have

N(Y ) = 2{(DPH)(Y, X, X, X)), (DH)(X, X, X)) .
Making use of (1.10) and (1.13), we find
DH)Y, X, X, X) — (DP'H)X, X, X, Y)
= RY(Y, X\)H(X, X) - 2HR(Y, X)X, X)

= %KJNX, HX, XDy Y — (JyY, HX, X))JwX

— 2JY, X0J HX, X)} + H(Y, Ayax 0 X) — HAzanY, X)
— 2H(R(Y, X)X, X) .

Using the fact that {(JyX, HX, X)) = {(JyX, (DH)X, X, X)> =0, J =0,
Apx.nX =NX and (3.3) holds for every X, Ye UM, we have

(Y- =2((DPHY(X, X, X, Y), (DH)X, X, X)) .
Differentiate (DH)(X*, X*, X*), DH)(X*, X*, Y*)) = 0 (cf. (3.5)) in the
direction X. Then

(DFHYX, X, X, X), DH)(X, X, Y))
+{(DHX, X, X), D'H)(X, X, X, Y))=0.
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Substitute (8.6) into the above equation and use Lemma 3.1 and (3.5).
We obtain Y-g¢* = 0. It follows that g is a nonzero constant on each
connected component of S. g.e.d.

Next we shall prove that there is a totally real, totally geodesic
submanifold @ of CP™() such that ({(M)c@ and M —@Q is full. In
contrast with Erbacher [5], our proof is based on the situation that
t: M — CP™(c¢) is proper cubic geodesic, totally real immersion.

Since each geodesic is mapped locally into a 3-dimensional totally real,
totally geodesic submanifold, the discussion up to this point yields
JX, HX, X)>=0, <(JX (DHXX, X, X))=0
(JH(X, X), (DH)(X, X, X)) = 0.
for every Xe TM. Moreover we have, from (3.6) and Lemma 3.3,

(8.8 C(DPHYX, X, X, X) = —pPH(X, X)X, X)

for every X € TM. Let O, denote the third osculating space Sp{X, H(X, X),
(DHY X, X, X): Xe T,M} at a distinguished point z.

(3.7)

LemMMA 3.4, The third osculating space O, is totally real, i.e.,
JO, 1L O,

Proor. We must show (1) (JX, Y) =0, 2) (JX, H(Y, Z)) =0, 3)
JX,(DHXY, Z, W)y =0, (4) (JHX,Y), HZ W)> =0, 6) (JHX, Y),
(DH)(Z, W, U)> = 0 and (6) <J(DH)X, Y, Z), (DH)YW, U, V) = 0 for any
XY Z UV, WeT,M.

(1) is the definition of totally real immersions.

The first equation (1.7) with J =10 gives A, X+ J,H(Y, X) =10
and, consequently, {(JyX, H(Y, Z)) = {(J,Y, H(Z, X)>. On the other hand,
the first equation of (3.7) implies @3<jX, H(Y, Z)) = 0. Thus we obtain
2).

(8) is shown as follows. From the second equation of (8.7) it follows
that ©JX, (DH)XY, Z, W)> = 0. Differentiating (JX*, H(Y*, Z*)> = 0
in the direction W, we have

(3.9) (JH(W, X), HY, Z)) + {(JX, (DH)XY, Z, W)) =0 .

The first term on the left hand side is symmetric with respect to W and
X. Thus we see that <JX, (DH)(Y, Z, W) = (JW, H(Y, Z, X)>. There-
fore, we have (3).

Combining (8) with (3.9), we have (4).

Differentiating (JH(X*, Y*), H(Z*, W*)> = 0 in the direction U, we
find
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(JIDH)(U, X, ), H(Z, W)) + (JH(X, ), (DH)(U, Z, W)y =0 .

By virtue of Codazzi’s equation (1.11), we see that (jH(-, S, (DH)(-, +, )
is a symmetric 5-form on T,M. Thus the third equation of (3.7) shows (5).

Finally, we prove (6). Differentiating (JH(X*, Y*), (DH)(Z*, W*,
U*)> = 0 in the direction V, we find

(J(DHXV, X, Y), (DH)Z, W, U))
+ (JH(X, Y), (D*H)V, Z, W, U)> =0.

Thus it suffices to show that (JH(X, Y), (D*H)V, Z, Z, Z)) = 0 for any
X, Y, Z Ve T,M. Equation (3.8) gives

(D*HEXV, 2, Z, Z) + 3(D’H)(Z, Z, Z, V)
= —2PH(V, Z){2, Z) — 21*H(Z, Z)XZ, V) .

Since (D*H)XV, Z,Z, 7Z) — (D*H)(Z, Z, Z, V) is a linear combination of
H(V, Agis.22Z), HAnz2,nV,Z) and H(R(V, Z)Z, Z) (see the proof of
Lemma 3.8), (D*H)(V, Z, Z, Z) is a linear combination of vectors H(:, :).
Thus (4) implies (6). q.e.d.

LEMMA 3.5. There exists a totally real, totally geodesic submanifold
Q ~ RP"*c/4) in CP™(c) such that ¢(M)CQ and the immersion ¢: M — Q
18 full, where n = dim M and ¢ = dim O, — n.

Proor. Let xe M be fixed. Since O, is totally real, there exists a
unique totally real, totally geodesic submanifold @ such that z< @ and
T.Q = O,. Let yeM and v be a unit speed geodesic from x to . The
curve 7 = ¢o7 satisfies the Frenet equation:

~ ~ ~

T=7T, Vrlz-l = AT, quz = —\T, + U7, VrlTs = —UT,,

where A and g are constants. Let v(0) = x and ¥(0) = X. The initial
conditions of the above differential equation are (0) =2, 7,0) = X,
7,(0) = H(X, X)/» and 7;(0) = (DH)(X, X, X)/anpt which are elements of
0,. Consider a helix @ in @ whose curvature and torsion are A and g,
respectively, and which satisfles w(0) = 2, 0,(0) = X, w,(0) = H(X, X)/»
and @;(0) = (DH)(X, X, X)/anp¢, where w,, @, and @, are unit tangent,
principal normal and binormal vectors, respectively. Since @ is totally
geodesic, the fundamental theorem of ordinary differential equation implies
7 = @w. Therefore, we have yc Q. It isclear that ¢: M — Q is full. qg.e.d.

THEOREM 3.6. Let M be an n(= 3)-dimensional compact simply con-
nected Riemannian manifold and ¢: M — CP™(c) be a proper cubic geodesic,
totally real immersion. If ¢ is minimal, then M is isometric to a sphere
S™(ne/12(n + 2)) with curvature nc/l2(n + 2) and ¢ is equivalent to tomot,,
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where i: Q@ — CP™(c) 1is the inclusion, w: S**(c/4) — Q@ the covering and
t: S*(ne/12(n + 2)) — S"9(c/4) the third standard minimal immersion.

Proor. By Lemma 3.5, we have only to consider the immersion
t: M — Qr~ RP""(c/4). We can apply Theorem N stated in the introduec-
tion to a lifting &: M — S"+%(c/4) of ¢, since ¢ is also proper cubic geodesic
(¢ is a helical immersion of order 8 in the sense of [15]). Noting that
the immersion ¢ is full, we see that M = S*(ne¢/12(n + 2)) and ¢ is equiva-
lent to ¢, Thus clearly ¢ is equivalent to wo¢,. g.e.d.
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