

Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

Robert Maier, Jürgen Sturm, Daniel Cremers German Conference on Pattern Recognition (GCPR) 2014

September 3, 2014

Motivation

- Given: Low-cost RGB-D sensors
- Wanted: 3D reconstruction of highly accurate 3D models (e.g. for reverse-engineering)

Submap-based Bundle Adjustment

- Problem:
 - Incremental tracking and mapping methods prone to drift
 - Full bundle adjustment (BA) too slow
- Our solution: Novel submap-based BA method for RGB-D based 3D reconstruction

Related Work

Related Work

- RGB-D SLAM systems
 - An evaluation of the RGB-D SLAM system [Endres et al., ICRA 2012]
 - RGB-D mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments [Henry et al., IJRR 2012]
 - Using depth in visual simultaneous localisation and mapping [Scherer et al., ICRA 2012]

Pose Graph Optimization

Sparse Bundle Adjustment

3D Bundle Adjustment

Related Work

- RGB-D SLAM systems
 - An evaluation of the RGB-D SLAM system [Endres et al., ICRA 2012]
 - RGB-D mapping: Using Kinect-Style Depth Cameras for Dense 3D Modeling of Indoor Environments [Henry et al., IJRR 2012]
 - Using depth in visual simultaneous localisation and mapping [Scherer et al., ICRA 2012]
- Out-of-core bundle adjustment for large-scale 3D reconstruction [Ni et al., ICCV 2007]

Pose Graph Optimization

Sparse Bundle Adjustment

3D Bundle Adjustment

Submap-based Bundle Adjustment

RGB-D data acquisition

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots N$)

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots N$)

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots N$)

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots N$)

R. Maier, J. Sturm, D. Cremers: Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots N$)

R. Maier, J. Sturm, D. Cremers: Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

- Camera poses $C_i \in SE(3)$ (with $i \in 1...M$)
- Landmark observations $\mathbf{z}_k = (u_k, v_k, d_k)^\top \in \mathbb{R}^3$ (with $k \in 1 \dots K$)
- 3D landmarks $\mathbf{X}_j \in \mathbb{R}^3$ (with $j \in 1 \dots$ N)

R. Maier, J. Sturm, D. Cremers: Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

Full Bundle Adjustment for RGB-D Sensors

2D reprojection error $\min_{\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^{K} || \pi(\mathcal{T}^{-1}(\boldsymbol{C}_{i_k}, \mathbf{X}_{j_k})) - (\boldsymbol{u}_k, \boldsymbol{v}_k)^\top ||^2$

Full Bundle Adjustment for RGB-D Sensors

3D alignment error $\min_{c_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^{\kappa} ||\mathcal{T}^{-1}(c_{i_k}, \mathbf{X}_{j_k}) - \rho(u_k, v_k, d_k)||^2$

Full Bundle Adjustment for RGB-D Sensors

3D alignment error $\min_{c_{i_k}, \mathbf{X}_{j_k}} \sum_{k=1}^{\kappa} ||\mathcal{T}^{-1}(c_{i_k}, \mathbf{X}_{j_k}) - \rho(u_k, v_k, d_k)||^2$

Efficient Bundle Adjustment for RGB-D Sensors using Submapping

- 1. Graph partitioning into submaps
- 2. Submap optimization
- 3. Global submaps alignment
- 4. Submap optimization with fixed separator

Stage 2: Submap optimization

Stage 2: Submap optimization

Stage 2: Submap optimization

Stage 3: Global submaps alignment

Stage 3: Global submaps alignment

Stage 3: Global submaps alignment

→ Use final camera poses to fuse RGB-D frames into 3D octree model

R. Maier, J. Sturm, D. Cremers: Submap-based Bundle Adjustment for 3D Reconstruction from RGB-D Data

Evaluation: Size of Submaps

 Evaluation of Absolute Trajectory Error (ATE) over 10 sequences of TUM RGB-D benchmark [Sturm et al., IROS 2012]

- Small submaps: smaller ATE than full BA
- Large submaps: increase efficiency but decrease accuracy
- Good speed/accuracy trade-off: 10 frames per submap

Evaluation: Performance

• Benchmark sequences (4 of 10 sequences):

Sequence	No BA	Full 2D	Full 3D		Submap-based 3D BA				
	ATE	ATE	ATE	time	submaps	ATE	$\pm(\%)$	time	$\pm(\%)$
FR1/desk2	0.098	0.044	0.030	27.23	62	0.031	+3.4	21.36	-21.5
FR1/room	0.275	0.228	0.085	125.46	135	0.086	+1.7	77.30	-38.4
FR2/desk	0.201	0.080	0.079	2355.26	289	0.076	-3.3	372.20	-84.2
FR3/office	0.176	0.039	0.036	1290.24	248	0.035	-3.0	242.88	-81.2
average	0.129	0.066	0.047			0.047	-0.5		-32.0

- Similar accuracy as Full 3D BA at reduced cost (-32%)
- Runtime improvement of up to 84% for long sequences
- Comparison with state-of-the-art approaches:
 - RGB-D SLAM [Endres et al., ICRA 2012]: 13% (0.047m vs. 0.054m)
 - Direct SDF tracking [Bylow et al., RSS 2013]: 17% (0.047m vs. 0.058m)

Examples of Submap-based 3D Reconstructions

• Soil auger

Examples of Submap-based 3D Reconstructions

• Soil auger

Examples of Submap-based 3D Reconstructions

• Farm tractor

Examples of Submap-based 3D Reconstructions

• Farm tractor

Conclusion

- Our contribution: Submap-based bundle adjustment for RGB-D data
- Global optimization exploits available depth information
- Evaluation on benchmark datasets:
 - Accuracy similar to full bundle adjustment
 - Average runtime reduced by 32%
 - Higher accuracy than other state-of-the-art approaches
- Reconstructed 3D models: compelling visual quality and metric accuracy

Conclusion

- Our contribution: Submap-based bundle adjustment for RGB-D data
- Global optimization exploits available depth information
- Evaluation on benchmark datasets:
 - Accuracy similar to full bundle adjustment
 - Average runtime reduced by 32%
 - Higher accuracy than other state-of-the-art approaches
- Reconstructed 3D models: compelling visual quality and metric accuracy

Thank you!