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I. INTRODUCTION

The antenna used by submarines, for LORAN-C
radionavigation and very low frequency (VLF)
communications, is made of a long insulated wire
(= 700 m) dragged by the submarine when it is
submerged. A significant part of this wire is located
near the surface. For VLF signals, the wave draws
into seawater and is picked up by the antenna. The
behavior of such an antenna is often reduced, in
practice, to a simple model. One generally just
considers that the current phase is inverted when the
wave path comes from the front to the back of the
carrier. Moreover, since the phase center location of
the antenna (virtual point where the wave is supposed
to be picked up) is not accurately known, the antenna
is only used for radio navigation when the incident
angle of the path wave with the axis of the antenna is
near zero (in practice 5 ). In order to improve the
location accuracy with LORAN-C signal processing,
it is necessary to develop a relevant model of such an
antenna. To achieve this goal, it is necessary to deal
with the electromagnetic properties of these kinds of
antenna.

The electric field induced in such an antenna is
related to the lateral electromagnetic waves theory (see
[1] for a complete bibliography). It may be viewed
as a diffraction effect due to the differences between
the wave velocity in the air and seawater and may be
analyzed using optical Fresnel formula [2]. This kind
of wave has been fully studied and the results have
been applied to many fields including geophysical
exploration, communications, and remote sensing.

The paper is structured as follows. After some
electromagnetic preliminaries dealing with the
propagation properties of classic electromagnetic
waves, we present a physical description of the
floating antenna and analyze its electric characteristics.
We then evaluate the electric field properties of a
vertical dipole transmitting a wave traveling along
the boundary between sea and air in reference to
the LORAN-C transmitter. Note that these first
paragraphs are essentially derived from [1]. We then
compute the main current in the horizontal wire
induced by the lateral waves. It is shown that the
computation of this current is obtained by integration
of elementary currents along the axis of the wire. The
model involved exhibits a nonrational transfer function
between the current induced in the transmitter
and the current in the receiver. We then develop a
parameter estimation algorithm based on the use of
parallel-extended Kalman filters. Finally, the model is
validated with real data.

II. ELECTROMAGNETIC PRELIMINARIES

Let us recall that the Fourier transform of the
electric field E(x, t) in all homogeneous isotropic
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media has the following expression:

Ê(!,x) = Â(!)e jk(!)x

k(!) = ! ¹ " j
¾

!

(1)

where ! stands for the Fourier variable, k(!) is
the wave number, ¹ is the permeability, " is the
permittivity, and ¾ is the conductivity of the medium
(j2 = 1). Â is an integration constant resulting of
sources. Performing the inverse Fourier transform, one
gets the general solution of the Maxwell equations,
that is:

E(t,x) =
1
2¼ R

Â(!)e j(!t k(!)x)d!:

Let us consider a vertical wire source with current
It along the axis of the wire. If the wavelength is
much smaller than the wire length l, one may assume
that the antenna is equivalent to a dipole with electric
moment Itl [3, 4]. When observed in a direction that is
orthogonal to the antenna axis, the Fourier transform
of the electric field radiated at range ½, in the far-field
region, can be written

Ê(!,½) =
j!¹0
2¼

e jk(!)½

½
Î(!)l (2)

where Î(!) stands for the current Fourier transform.
Conversely, for reception, the current induced in a
wire antenna of length h by the impressed electric
field Ê(!,½) can be represented by

Î(!) =
2¼
j!¹0

Ê(!,½)
h

: (3)

The characteristic impedance of such an antenna,
defined by Zc = El=I, is

Zc =
j!¹0
2¼

:

III. FLOATING ANTENNA

A. Description

The floating antenna behavior is described by
the theory of lateral electromagnetic waves [1]. The
propagation of waves along and across the boundary
of two media with different characteristic velocities
is illustrated Fig. 1. Suppose that an electromagnetic
source is lying on the boundary between air and
seawater. Three waves are then generated. In both
media, there is a direct wave traveling at velocities
depending on their electromagnetic characteristics.
In air, this direct wave is the only one that reaches
the receiver. In seawater and for frequencies near
100 kHz, as is the case for LORAN-C signal, this
direct wave is extremely attenuated. Its power is
divided by two after a course of 80 cm long. A third

Fig. 1. Lateral electromagnetic wave.

Fig. 2. Floating antenna model.

wave, called lateral wave, travels along the surface of
the water in air which continuously generates waves
that propagate into the water at the critical angle
determined by the ratio of velocities of each medium
[2]. This ratio is generally sufficiently great so that
the angle of refraction in water is practically 90 . The
receiver in the water observes mainly this lateral wave
since it travels a long distance in air and then a short
distance in water.

The floating antenna used by submarines, for VLF
telecommunications and LORAN-C transmitting,
consists of a conductor of length h enclosed in
an insulating sheath located at a small depth d in
seawater [1] (Fig. 2). It is driven at one end against
the impedance Z0 of the receiver. At the other end, the
insulated conductor is terminated in second impedance
Zh. Let Zc be its characteristic impedance. In practice,
a maximum current is maintained along the antenna
when it is terminated either in a low impedance
(Zh Zc) or in its characteristic impedance (Zh = Zc).

The current along the insulated horizontal wire is
a generalized traveling wave with wave number kL
depending on the antenna properties.

B. Wave Numbers

Let k1 and k2 be the waves number of medium 1
and 2, respectively, defined according to (1). In region
1 (air), the medium is lossless and its wave number is
defined by

k2 = ! "0¹0 =
!

c
(4)

where c is the light velocity in air. In region 2
(seawater), the conductivity of the medium ¾1 is not
zero and the wave number has the following regular
expression:

k1 = k2 "r
j¾1
"0!

: (5)

Note that the relative permittivity of seawater "r
is near 80 when its conductivity is approximately
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3.9 S/m. For frequencies near 100 kHz, the "r term is
negligible in the square root of (5). In fact, ¾1=("0!)
7:02 105 which is much smaller than 80. Therefore,
the wave number in region 1 can be reduced to

k1 = ¹0¾1e
j¼=4 !

The wave number of the floating antenna has the
following general expression [5]:

kL = zLyL
with

yL =
j2¼k2d

!¹0 ln(b=a)

zL = z
i j!

¹0
2¼
ln

b

a
+ ze+ z12

where kd = ! ¹0"d is the wave number of the
dielectric sheath (outer radius b), a is the radius of
the insulated wire, zi is the internal impedance per
unit length, ze is the series external impedance per
unit length and z12 is the series mutual impedance per
unit length. The expression of zi can be approximated,
depending on the value of kc = j!¹0¾c, the wave
number of the conductor:

kca < 2Hzi
1

¼a2¾c

kca > 5Hzi
jkc
2¼a¾c

:

In our case, for copper (¾c = 5:65 107 S/m), at
frequency f = 100 kHz and with a conductor radius
of 1 mm, one has kca = 6:68> 5. Consequently,
contrary to the case studied in [1], the leading
approximation of zi is

zi (1 j)
1
2¼a

!¹0
¾c
:

In the same way, if k1b < 1 and k1d < 1, z
e and z12

can be approximated by

ze
!¹0
4

j!¹0
2¼

ln
2
k1b

º

z12
!¹0
4

j!¹0
2¼

ln
1
k1d

º

with º = 0:5772. Using all these expressions, the wave
number of the insulated antenna is

kL = kd 1+
1

ln
b

a

1
a !¹0¾c

+ ln(
2
k1b

+ ln
1
k1d

2º + j
1

a !¹0¾c
+ ¼

and its characteristic impedance is

Zc =
zL
yL
=
!¹0kL
2¼k2d

ln
b

a
: (6)

IV. EVALUATING THE INCIDENT FIELD

The transmitting LORAN-C antenna is equivalent
to a vertical dipole in air as described in Section II.
The wave travels along the sea surface and acts as
a waveguide since its conductivity is not negligible.
Therefore, the axial component of the electric field
near the boundary of the two media is not quite
zero as is the case in homogeneous media. The
transverse and axial components of the far field have
the following expressions (the subscript is composed
of one number related to the region and of one letter,
½ for the axial component and z for the transverse
one):

E2½(½) =
1
k1
F(½,k1,k2)

E2z(½) =
1
k2
G(½,k1,k2)

(7)

where ½ stands for the distance between the source
and the receiver. Functions F and G will be defined in
the sequel. In water, at depth z, these components are

E1½(½) = E2½(½)e
jk1z

E1z(½) =
k22
k21
E2z(½)e

jk1z:

Note that since k22=k
2
1 10 6 in practice, it is clear

that the transverse component in water (E1z(½)) is
quite negligible with respect to its value in air, as
describe in Section I. Conversely, the axial component
in sea is the main component of the entire field, only
attenuated due to the imaginary part of k1. Functions
F and G are defined by

F(½,k1,k2) =
!¹0
2¼

(f2(½)e
jk2½+ f21(½)e

jk21½)

G(½,k1,k2) =
!¹0
2¼

(g2(½)e
jk2½+f21(½)e

jk21½)

with f2(½) = jk2=½ 1=½2, g2(½) = jk2=½ 1=½2 +

jk2=½
3, f21(½) = k32=k1 ¼=(k2½) (k32½=(2k

2
1) and

k21 = k2(1 k22=(2k
2
1)). The function is the Fresnel

integral defined by

(u) = 1
2 (1 j)

u

0

e jt

2¼t
dt:

Functions f2(½) (solid line), g2(½) (dashed line)
and f21(½) (dash-dot line) are shown in Fig. 3. Clearly,
for ranges smaller than 5000 km, the magnitude of

f21(½) is quite negligible with respect to other terms.
Moreover, for such ranges, f2(½) g2(½). Note that
for greater frequencies, say such that k2½ k21 =k

2
2,
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Fig. 3. Variation of attenuation terms with distance from source.

the term 1=½2 in the expression of f2(½) is dominant
since the term 1=½ is canceled by the Fresnel integral.
Furthermore, for ranges greater than 10 km, the term
1=½2 is also negligible with respect to the term 1=½.
Finally, for frequencies near 100 kHz and for ranges
within 10 km and 5000 km, the actual formula for
functions F and G are

F(½,k1,k2) G(½,k1,k2)
j!¹0k2
2¼

e jk2½

½
:

Using the expression of k1 in (5), the axial
component of the incident electric field in water can
be written

E1½(½,z)
e j¼=4

2¼
¹0
"0¾

!3=2
e jk2½e jk1z

½
: (8)

The transverse component in air is

E2z(½)
j!¹0
2¼

e jk2½

½
:

Note that E2z has the same expression as
the electric field radiated by a wire source in a
homogeneous medium (2). Finally, the ratio between
the transverse component in air and the axial
component in water at depth z is

E1½(½,z)

E2z(½)
=

!

"0¾
ej¼=4e jk1z: (9)

V. EVALUATING THE RADIATED FIELD

A. Current Along Insulated Wire

Let us define V0 the electromotive force of
the generator. It can be shown that the current is

distributed like the one in a generalized transmission
line. Its Fourier transform has the following
expression:

Î(x) =
jV̂0

(Z0 +Zc)
sin(kL(h x) jµh)
cos(kLh jµh)

where µh is the terminal function defined by

µh = coth
1 Zh
Zc

: (10)

The current in the load Z0 (x= 0) is related to the
current at x by

Î(x) = Î(0)
sin(kL(h x) jµh)
sin(kLh jµh)

: (11)

The behavior of the antenna depends on the value
of the terminal function µh:

Matched load: If Zh = Zc, then Zh=Zc = 1.
According to (10), one has µh = . The current
behaves like a traveling wave and (11) is simplified
as follows:

Î(x) = Î(0)e jkLx: (12)

Low-impedance termination: If Zh Zc, one
has

µh = rh+ j
¼

2
+ xh

with rh 1 and xh 1. In that case, the wave
is partially reflected and the current in the antenna
becomes

Î(x) = Î(0)
cos(kL(h x))
cos(kLh)

: (13)
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Fig. 4. Top view of antenna.

B. Radiated Field

The antenna may be viewed as a continuous set
of dipoles with elementary electric moments dÎ(x) =
Î(x)dx.
Let us note Á the angle between the propagation

direction and the x-axis of the antenna as illustrated
Fig. 4. The radial and transverse components of the
radiated electric field due to the horizontal dipole
dÎ(x) in the sea (medium 1) at distance ½ from the
origin are

dÊ2z(!,½,Á) =
j!¹0
2¼

k2
k1

e jk2½

½
cos(Á)dÎ(x)

dÊ2½(!,½,Á) =
j!¹0
2¼

k2
k1

2 e jk2½

½
cos(Á)dÎ(x)

where k1 and k2 are defined according to (5) and (4).
Note that, with frequency near 100 kHz, one has

k2
k1

=
"0!

¾1
= 1:19 10 3:

This leads to consider only the transverse component
of the field in the air.
Let ½0 be the distance to the receiver referred to

the point of reference x= 0. Assume that ½0 h. At
distance x from the origin, the distance to the receiver
is

½= ½0 x cos(Á):

The contribution of the elementary moment Î(x)dx
to the entire field is then:

dÊ2z(!,x,Á) = Ê
0
2z(!,½,Á)e

jk2x cos(Á) Î(x)

Î(0)
dx (14)

where Ê02z(!,½,Á) is the electric field due to an
horizontal electric dipole with moment Î(0) located
at x= 0, that is:

Ê02z(!,½0,Á)
¢
=
j!¹0
2¼

k2
k1

e jk2½0

½0
cos(Á)Î(0): (15)

Let us introduce the effective length of the antenna
defined by

he(!,Á)
¢
=

h

0
ejk2x cos(Á)

Î(x)

Î(0)
dx:

The integration of (14) along the axis of the antenna
leads to

Ê2z(!,½,Á) = he(!,Á)Ê
0
2z(!,½0,Á) (16)

since it is assumed that the amplitude of the incident
field is approximately constant over the length h of
the wire.

Formula (12) and (13) allow the computation of
the effective lengths, that is:

Matched load:

he(!,Á) =
h

0
e j(kL k2 cos(Á))xdx

=
1

j(kL k2 cos(Á))
(1 e j(kL k2 cos(Á))h)

Low-impedance termination:

he(!,Á) =
h

0

cos(kL(h x))
cos(kLh)

ejk2 cos(Á)xdx

=
1

(k2L k22 cos
2(Á))cos(kLh)

(jk2 cos(Á)(e
jk2 cos(Á)h cos(kLh)) + kL sin(kLh)):

C. Current in Wire for Reception

Let us consider the LORAN-C transmitting
antenna for reception. Let Ê2z(!,½,Á) be the incident
field defined by (16). According to (3), the current in
the load is

Îr(!) =
2¼
j!¹0l

Ê2z(!,½,Á) (17)

where l stands for the receiving antenna length. Using
(15)–(17), one has

Îr(!) =
1
l

k2
k1

e jk2½0

½0
cos(Á)he(!,Á)Î(0):

Applying the reciprocal theorem to this couple of
antennas, if the current in the LORAN-C transmitting
antenna is noted Ie(t), the current in the receiving
buoyant wire antenna is then:

Ît(!,Á) =
1
l

k2
k1

e jk2½0

½0
cos(Á)he(!,Á)Îe(!)

where

Ie(t) = A
t

t0

2

e 2((t t0)=t0) sin(2¼f0t) (18)

with t0 = 65 ¹s and f0 = 100 kHz.
In conclusion, with (5) and (4), omitting the

attenuating factor 1=½ and the pure propagation delay
e jk2½0 , the transfer function between the transmitted
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Fig. 5. Insulated antenna.

and received current is:
Matched load:

H(!,Á) =
!e j¼=4 cos(Á)
(kL k2 cos(Á))

(1 e j(kL k2 cos(Á))h)

(19)
Low-impedance termination:

H(!,Á) =
!e j¼=4 cos(Á)

(k2L k22 cos
2(Á))cos(kLh)

(k2 cos(Á)(cos(kLh) ejk2 cos(Á)h)+ jkL sin(kLh)):

(20)

Note that these expressions are only defined for
! > 0. As the response of the system is supposed to
belong to R, one must have, for all ! < 0, H(!) =
H ( !), where H stands for the complex conjugate
of H. This completes the definition of H(!,Á) for all
! R.

VI. IDENTIFYING THE ANTENNA PARAMETERS

A. Problem Setting

In order to calculate high quality parameter
estimates, it is necessary to combine measurements
from several transmitter stations or several
measurements from a single transmitter. The variables
in this context are as follows.
1) Antenna characteristics (see Fig. 5):

a: wire radius,
b: sheath radius,
d: submersion depth,
"d: dielectric permittivity,
h: antenna length,
Ák: angle between propagation direction from

transmitter k and axis of antenna.
2) Akt is the amplitude of the signal from the

transmitter k = 1 : : :Ns.
3) ¿t is the amplifier delay.
Concerning the antenna characteristics, in order

to reduce the number of parameters, it is convenient
to consider a linear approximation of kL(!) near the
actual frequency of the signal treated:

kL(!) (nL j®L)
!

c
(21)

where nL may be viewed as the antenna index near
the nominal frequency (100 kHz) and ®L as an
exponential attenuation coefficient. We have verified

that with such an approximation, the distortion
induced in the waveform is lower than 1%. Moreover,
if the deployed length of the antenna is a parameter
which is theoretically known under the operational
conditions, the part floating on the surface of water is
a priori difficult to determine. Therefore, the working
length h is considered as an unknown parameter. The
angle Ák is directly computed from Ák = ∙ ³k ¼
where ∙ stands for the submarine course and ³k is the
azimuth of the transmitter k.

In short, the state variable to be estimated is
reduced to

xt = [A
1
t , : : : ,A

Ns
t ,¿t]

T

and the parameters are

µ = [nL,®L,h]
T:

B. Modeling

The reference signal can be represented in the
following way:

r(t,µ,Á) = 1(H(!,µ,Á) (s(t)), t R (22)

where stands for the Fourier transform, s(t) is the
ideal LORAN-C wave defined by (18) and H(!) is the
transfer function defined by (19) or (20).

As only one station is observed at each time, it is
convenient to consider that the sampled observation
process yt, t N is a vector of RNs defined by

yt =

A1t r
1(t¢t ¿1t ¿t,µ)

Ant r
n(t¢t ¿nt ¿t,µ)

+

v1t

vnt

¢
=h(t,xt,µ) + vt

rk(t,µ) = r(t¢t,µ,Ák)

(23)

where ¢t is the sampling period, vt stands for the
output white noise and ¿kt is the propagation time
delay between the station k and the receiver. It is
computed from the GPS data and the station location
using the so-called Salt formula [6]:

¿kt =
Dkt
c
+2:16 10 12Dkt +

0:04
Dkt

4:1 10 11

where Dkt is the geodesic distance from the station k.
Note that we do not take into account here the sky

wave interference [7] because we use only stations
close to the receiver in the identification procedure
(D 1000 km).

As the signal amplitude can fluctuate with time,
their variations can be represented by

Akt+1 = A
k
t + ±A

k
t (24)
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where ±Akt is a white noise (possibly Gaussian).
Similarly, the fluctuation of the amplifier delay is
introduced in view to compensate possible errors and
variations of GPS location data:

¿t+1 = ¿t+ ±¿t (25)

where ±¿t is also a Gaussian white noise.

C. Parameter Estimation

The estimation algorithm proposed here uses an
approximation of the a posteriori probability density
function based on a sample of the parameters to be
identified. Let us consider the following discrete time
dynamic model:

xt+1 = f(t,xt,µ) + g(t,xt,µ)wt

yt = h(t,xt,µ) + vt

where xt is the state vector, µ is a time-invariant
vector of parameters, yt is the output and wt and vt
are independent Gaussian white noises. If this system
is locally linear with respect to xt, for each value of µ,
one can build the extended Kalman filter (EKF) of xt.
Recall that the EKF use is relevant if [8]: 1) the initial
uncertainty of the state is small enough compared with
the field of linearization validity; 2) the noises have
standard deviations small enough to ensure that the
standard deviation of the Kalman filter lies on this
field of validity.
This leads to the following approximation of the

probability density function:

p(xt y
t
0,µ) = (xt;xt(µ),Pt(µ))

where xt(µ) is the EKF of xt and Pt(µ) is its covariance
matrix. Here, (x; x̄,P) stands for the standard
Gaussian distribution with mean x̄ and covariance P.
Suppose that at time t 1, the conditional

probability density function for µ is approximated
by

p(µ yt 10 ) =
N

i=1

½it 1±µi(µ) (26)

where ±µi(µ) stands for the Dirac measure centered on
µi. Using the Bayes rule, one has

p(µ yt0) =
1
´
p(yt y

t 1
0 ,µ)p(µ yt 10 ) (27)

where ´ is a normalizing constant independent of µ.
Replacing p(µ yt 10 ) in (27) by its value defined in
(26), one has

p(µ yt0) =
1
´

N

i=1

½it 1p(yt y
t 1
0 ,µi)±µi(µ):

Because yt is supposed to be “almost” Gaussian, one
has

p(yt y
t 1
0 ,µi)

= (yt;h(t,xt(µ
i)),H(t,µi,xt(µ

i))Pt(µ
i)H(t,µi,xt(µ

i))T+R)

(28)

where H(t,µ,x) = (@h(t,x,µ))=@x) and R is output noise
variance. As a consequence, at time t, the conditional
probability density function for µ has the following
approximation:

p(µ Zt0) =
N

i=1

½it±µi(µ):

The normalized weights ½it are defined recursively
using (28):

½it =
½it 1p(yt y

t 1
0 ,µi)

N
i=1 ½

i
t 1p(yt y

t 1
0 ,µi)

: (29)

The minimum variance parameters estimation is then
computed using:

µ̂ =
N

i=1

½itµ
i (30)

and the covariance matrix by

Pµ =
N

i=1

½it(µ
i µ̂)(µi µ̂)T: (31)

Recall that this approximation is relevant only if
standard deviations Pt(µi) are sufficiently small with
respect to the field of validity of the linearization.

In fact, this filtering procedure can be applied to
our case. Indeed, the dynamic model (24), (25) is
clearly linear Gaussian and the amplitudes Akt appear
linearly in the observation model (23). Moreover, the
observation model can be linearized with respect to
¿t as long as the standard deviation is low compared
with the signal period (10 ¹s).

The identification is carried out by positioning N
samples of µ on a fixed grid. Each one of its nodes
represents a set of parameter µi = [®iL,n

i
L,h

i]. For each
sample µi, one computes the EKF that estimates the
state vector xt = [A

1
t , : : : ,A

Ns
t ,¿t]

T using the following
output matrix:

Ht(µ) =
@h(t,xt,µ)
@xt

=

r1(t¢t ¿1t ¿t,µ) 0 A1t
@r1

@t
¿t

0 rn(t¢t ¿nt ¿t,µ) Ant
@rn

@t
¿t

:

The identified parameters are then computed using
(28), (29), and (30). The evaluation of the standard
deviation of the estimate given by (31) is just used to
survey the consistency of the identified parameters.
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Fig. 6. Signal after summation.

TABLE I
Distances and Incidence Angles

Record 1 Record 2

Transmitter 1 1090 km/156.1 1040 km/28.6
Transmitter 2 975 km/172.2 930 km/11.6
Transmitter 3 1225 km/140.2 1170 km/45.2

VII. EXPERIMENTAL RESULTS

A. Data Set

We use a set of data that has been collected by a
civilian boat freighted by the General Army Direction
of France (DGA). The LORAN-C signal was sampled
at 400 kHz and time-stamped to a very high accuracy
(a few nanoseconds), thanks to the use of a cesium
clock. The position reference of the carrier was
acquired using a classical GPS receiver. Course and
speed are also recorded. The duration of each record
is 10 min. The identification had been made using two
records for which the transmitters were close to the
carrier (distance from transmitters near 1000 km). The
distances and incidences of the transmitters used are
presented in Table I.

B. Preprocessing

In order to reduce the quantity of calculations
necessary to the identification, it is convenient to
initially carry out the summation of the samples on
a burst of eight pulses, the period of the summation
being 1 ms. The signal obtained can then be added
up again over several group repetition interval (GRI)
periods ( 0:1 s). This reduces the signal-to-noise
ratio (division of the variance of the additive noise

by the number of pulses added up). Note that, as the
carrier location is known and the signal dating very
accurate, it is possible and appropriate to dismiss
all pulses that are supposed to be spoiled by some
other LORAN-C transmitter. It should not however be
forgotten that, in the calculation, the movement cannot
be compensated, which yields to deform the signal.
This deformation is connected with an integration
of wave for one length of time corresponding to
the distance covered during the summation. As an
example, for a carrier navigating at 5 mi/h, after 5 s,
it traversed approximately 15 m, which corresponds to
a time of integration of approximately 0.05 ¹s. If we
compare the starting signal with the integrated one, it
is observed that the induced distortion is lower than
0:01%. For these reasons, this duration of summation
(5 s) had been appointed. At this stage, each 5 s, we
have a pulse at one’s disposal which looks like the
one shown Fig. 6.

C. Algorithm

Step 1 Sampling the parameter space.
One defines the searching interval for all

parameters, that is [nmin,nmax], [®min,®max] and
[hmin,hmax]. A mesh-grid is then constructed with steps
defined by

¢x=
(xmax xmin)

3 N

where N denotes the number of samples used. The
standard deviations for ¿t is set to 1 ¹s ( 10 ¹s)
making sure the convergence of EKFs. The initial
means of Ak are set to their theoretical values
computed using [9]. The standard deviations of the
amplitudes Ak are set to half of their theoretical
values.
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TABLE II
Parameters Estimated

Stations nL ®L h ¿

Transmitter 2 1:35 0:01 0:38 0:01 682 m 6 m 0:17 ¹s 0:04 ¹s
Transmitter 1+2 1:36 0:01 0:40 0:006 681 m 3 m 0:19 ¹s 0:03 ¹s

Transmitter 1+2+3 1:37 0:01 0:40 0:01 681 m 2 m 0:17 ¹s 0:03 ¹s
Mean 1.36 0.39 681 m 0.18 ¹s

TABLE III
Amplitudes Estimated and Their Theoretical Values

Distance Incidence Theoretical Attenuation Amplitude Estimated Theoretical Value Difference

940 km 11:6 0:41 dB 11.3 mV 11.3 mV 0.0 dB
975 km 180 7:8 13:1 dB 10.9 mV 10.2 mV 0.5 dB
1045 km 28:6 2:5 dB 4.36 mV 5.93 mV 2:7 dB
1080 km 180 9:0 13:1 dB 8.98 mV 7.64 mV 1.4 dB
1090 km 180 23:9 13:4 dB 3.88 mV 5.32 mV 2:8 dB
1175 km 45:2 6:16 dB 7.79 mV 8.10 mV 0:4 dB
1180 km 180 24:1 13:4 dB 3.75 mV 4.22 mV 1:0 dB
1220 km 180 39:8 14:5 dB 6.22 mV 7.21 mV 1.5 dB
1290 km 180 39:4 14:5 dB 7.02 mV 6.08 mV 1.2 dB
1135 km 11:7 0:42 dB 4.37 mV 4.02 mV 0:6 dB
1420 km 24:2 1:79 dB 1.82 mV 2.28 mV 2:0 dB
1460 km 10:4 0:33 dB 2.09 mV 2.09 mV 0.0 dB
1505 km 37:4 4:23 dB 3.31 mV 3.53 mV 0:6 dB
1530 km 180 0:8 13:0 dB 2.34 mV 2.45 mV 0:4 dB
1610 km 11:8 0:43 dB 1.35 mV 1.46 mV 0:7 dB
1620 km 180 10:2 13:1 dB 1.00 mV 1.43 mV 1:7 dB
1690 km 180 22:0 13:4 dB 1.97 mV 2.3 mV 1:4 dB

Step 2 Reference signals.
For each sample, one calculates the signal of

reference as being the result of the filtering of the
LORAN-C signal through the defined transfer
function (20). The computation is achieved using
numerical Fourier transform.
Step 3 Signal summation.
One carries out here the summation of the

impulses of the signal, within a GRI, then between
GRI as described in subsection B above. The impulses
reentering in conflict with others are eliminated on a
power criterion. The number of pulses proceeded is
collected. The variance of the additive noise divided
by this number of summations gives the new variance
of noise used by the EKFs. Note that this noise
variance can be easily derived by estimating the power
of the signal noncontaminated by LORAN-C pulses.
Step 4 Amplifier delay and amplitudes estimation.
The EKFs estimate ¿t and Akt , conditionally with

the value of the parameters µi. The sky wave is not
taken into account in this estimate, the studied stations
being sufficiently close to the receiver (time of arrival
of the sky wave > 65 ¹s) [7].
Step 5 Weight computation (29).
Step 6 Parameter estimation (30).
Step 7 Convergence test (31).
If the signal-to-noise ratio is such that the estimate

has not the accuracy required, one carries out a

Fig. 7. Radiation pattern.

translation of the point of reference in conformity
with dynamics of the carrier (given course and
speed) and one turns over in 3. The variances of the
Kalman filters are brought up to date in accordance
with the prediction errors (variances of ±¿t and
±At in the dynamic model (25) and (24).
Otherwise, the algorithm provides the estimated
parameters.
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Fig. 8. Comparison wire antenna/whip aerial Á= 172 .

Fig. 9. Comparison wire antenna/whip aerial Á= 12 .

D. Identification

Experimental results have been achieved using
data described in Section VIIA. In view to test the
algorithm, the parameter estimation algorithm used
records 1 and 2 and transmitters 2 (incidences closest
to 0 and 180 ), 1+2 and 1+2+3. The results are
presented in Table II. The induced radiation pattern
(computed from (20) at 100 kHz) and the incidences
of transmitters used for identification are shown
Fig. 7.
In Fig. 8, we show the wave obtained with our

identified model for an incidence angle near

¼ (transmitter 2—record 1). It is compared with the
wave obtained with the whip aerial model. It appears
clearly that our model is able to fit the data with
much more accuracy than the whip aerial model
does. Note that, however, with this antenna, the error
involved in the location is near 3800 m. On the other
hand, as shown in Fig. 9, the whip aerial model
remains accurate when used with incidence angle
near 0 (transmitter 2—record 2). Indeed, the wave
deformation induced by the antenna is quite negligible
in that case, which explains that this floating antenna
is only used in practice in such a situation.
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TABLE IV
Propagation Delays Estimated

Distance Incidence Floating Antenna Whip Aerial

940 km 11:6 2 m 23 m
975 km 180 7:8 1 m 3863 m
1175 km 45:2 11 m 146 m
1045 km 28:6 3 m 67 m
1080 km 180 9:0 33 m 891 m
1335 km 11:7 45 m 65 m
1220 km 180 39:8 26 m 695 m
1290 km 180 39:4 36 m 763 m
1090 km 180 23:9 11 m 3820 m
1180 km 180 24:1 28 m 829 m
1420 km 24:2 82 m 86 m
1460 km 10:4 8 m 27 m
1505 km 37:4 16 m 33 m
1530 km 180 0:8 18 m 818 m
1610 km 11:8 15 m 18 m
1690 km 180 22:0 4 m 775 m
1620 km 180 10:2 45 m 768 m

VIII. MODEL VALIDATION

A. Radiation Pattern

The magnitude of the current in the wire defined
by (20) is theoretically very dependent on the
incidence Á of the wave, as it appears on Fig. 7. Table
III presents the comparison between the magnitude
of the signal estimated for some records and their
theoretical values computed from [9]. In the third
column, the theoretical attenuations at 100 kHz
( H(!,Á) 2 with ! = 2¼f0) are displayed illustrating
variations of the antenna gain for some incidences. In
the last column, the difference between the amplitudes
estimated and their theoretical values are shown. It
turns out that these differences are lower than 2 dB in
practice. One may conclude that the radiation pattern
produced by our model is close to reality.

B. Positioning Accuracy

Finally, the relevance of our model has been
tested by the comparison of the propagation delay
estimated with both models (floating antenna and
whip aerial). To achieve this goal, we used several
records with distances greater than those had been
used for identification. The results are presented in
Table IV. It appears clearly that the whip aerial model
is only relevant for incidences lower than 30 when
our model is accurate for all incidences.

IX. CONCLUSION

We have presented a new way for modeling the
behavior of the wire antenna used by submarines. The

model leads to an important variation of the waveform
when used with different incidence angles. It has been
shown that the modeled waveforms match real data
with a very good accuracy. Moreover, the variations of
the antenna gain with the incidences are well treated
by such a model. Consequently, it allows extending
the use of transmitters with any azimuth, without
change of course, as is necessary at the present time.
Moreover, one can use several transmitting stations at
the same time, which is known to improve the global
location accuracy [10, 11].
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signaux electromagnétique de très basse fréquence.
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