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Submarine slope failures due to pipe structure
formation
Judith Elger1, Christian Berndt 1, Lars Rüpke1, Sebastian Krastel2, Felix Gross2 & Wolfram H. Geissler3

There is a strong spatial correlation between submarine slope failures and the occurrence of

gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the

potential reduction of slope stability due to bottom water warming or sea level drop. How-

ever, 30 years of research into this process found no solid supporting evidence. Here we

present new reflection seismic data from the Arctic Ocean and numerical modelling results

supporting a different link between hydrates and slope stability. Hydrates reduce sediment

permeability and cause build-up of overpressure at the base of the gas hydrate stability zone.

Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to

migrate upward. Where these pipe structures reach shallow permeable beds, this over-

pressure transfers laterally and destabilises the slope. This process reconciles the spatial

correlation of submarine landslides and gas hydrate, and it is independent of environmental

change and water depth.
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L
andslides have the potential to generate tsunamis and
destroy seafloor infrastructure. Spatial correlation between
numerous submarine landslides and the occurrence of gas

hydrates1,2 suggests a causal relationship. The leading paradigm
for more than a decade stated that the dissociation of gas hydrates
destabilises continental slopes, because it removes the hydrate
cementation and reduces the shear strength, while at the same
time it increases overpressure due to gas expansion3,4. Although
there is circumstantial evidence that hydrates may have an effect
on the evolution of landslides5, it was not possible to find
unequivocal proof that any of the large submarine landslides were
triggered by gas hydrate dissociation6. Hydrate is particularly
sensitive to changes in pressure and temperature conditions close
to the interception of the hydrate stability field and the seabed on
the upper slopes7,8. The fact that many submarine landslides are
retrogressive and originated at the middle or lower continental
slope9,10 contradicts the hypothesis that hydrate dissociation
triggers slope failure. Other studies link submarine landslides to
overpressure caused by an inversion of permeability11,12 (Fig. 1),
e.g., due to gas hydrates.

In this study, we investigate the feasibility of a new process that
links gas hydrate systems and submarine mass wasting. The
process combines various verified mechanisms that we put into a
new context. Gas hydrates reduce the permeability of sedi-
ments14,15 resulting in the accumulation of free gas and the
buildup of overpressure below the gas hydrate stability zone
(GHSZ)16,17. Elevated pore pressure may cause hydrofractures in
the sediments, which in turn leads to pipe formation and transfer
of overpressure to shallower coarse-grained sediments18, to trig-
ger slope failure. This novel mechanism of submarine slope
failure initiation does not require any changes in the gas hydrate
stability conditions and is applicable to all water depths.

The objective of this study is to constrain the environmental
conditions under which this process is viable and to constrain the
required parameters. We use seismic and hydroacoustic data
from offshore N Svalbard showing a pipe structure reaching from
the base of the GHSZ up to the base of a mass transport deposit,
in combination with theoretical and numerical models of
hydrofracture and overpressure generation, to evaluate (1) the
required gas column height underneath the bottom-simulating
reflection (BSR) to initiate hydrofracturing and pipe structure
formation, (2) if it is feasible that a pipe may stop within the
subsurface once it has started to propagate upwards, and (3) if
overpressure may start to build up laterally within the subsurface
to trigger a retrogressive submarine landslide.

Results
Seismic data. Interpretation of two-dimensional (2D) seismic
data from the rim of the Hinlopen Slide north of Svalbard
(location in Supplementary Fig. 1) offers a different explanation
for the link between the presence of gas hydrate and slope failure.
A low seismic amplitude anomaly, i.e., blanking, in ~ 800 m water
depth rises from 1.4 s two way travel time (twtt) corresponding
to 215 m below sea floor (mbsf) to ~ 45 mbsf assuming an average
seismic velocity of 1,700 m s–1 (Fig. 2). Sedimentary reflections
bend upwards around the anomaly that leads from an area of
enhanced reflectivity to a body without visible internal structure
(Fig. 2). We interpret it as a pipe structure of ~ 20 m diameter
from a BSR up to the base of a mass transport deposit. The BSR
marks the base of the GHSZ and mimics the seafloor. A broad-
ening of the anomaly close to its upper termination indicates a
reduction in confining pressure19, suggesting that its top is at or
close to the base of the mass transport deposit and that it was not
significantly eroded by the landslide.

Gas hydrates reduce the permeability of sediments14 resulting
in the accumulation of free gas and the build-up of overpressure
below the GHSZ16,17. High-amplitude seismic anomalies indicate
a gas lens underneath the BSR of ~ 45 m height corresponding to
a pore overpressure of at least 452 kPa (assuming interconnected
gas pockets and a density contrast of ~ 1,024 kg m−3 between
water and gas). Considering a bulk density in the range of
1,690–2,140 kg m−3 20, this pressure corresponds to 58–73% of
the overburden stress (Supplementary Table 1). The wavy
reflections around the pipe structure (Fig. 2) indicate well-
stratified sediment waves of clay and silt grain sizes21 but could be
biased by the 2D mapping.

Overpressure calculation. Elevated pore pressure may cause
hydrofractures in the sediments, which in turn leads to pipe
formation22. We propose that the associated transfer of over-
pressure to shallower coarse-grained sediments has triggered the
slope failure. In order to test the feasibility of this scenario, we
calculate the critical pore overpressure that initiates hydro-
fracturing or shear failure for a wide value range of static Poisson
ratios, cohesions, and bulk densities at the bottom and top of the
pipe structure (Table 1 and Fig. 2, parametric study in the
methods; Supplementary Fig. 2). Cohesion is the most critical
parameter but it is poorly constrained for marine sediments with
estimates ranging between 0 and 2MPa23–26. We consider a value
of 280 kPa for the base of the GHSZ as the presence of gas
hydrates24 increase the stiffness and the shear strength of sedi-
ments. Our calculations indicate a critical pore overpressure of ~
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Fig. 1 Global compilation of large submarine landslides in areas with gas hydrates. A global distribution of gas hydrate provinces (turquoise points3,13),

coinciding evidence for hydrates and landslides (magenta dots) and the location of Fig. 2 (information on the references for the magenta data points in

Supplementary Note 1)
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890 kPa (786–1,619 kPa) to initiate tensile failure at ~ 215 mbsf
(Fig. 3 and Table 1). At the top of the pipe structure (~ 45 mbsf),
we assume negligible cohesion for normally consolidated marine
sediments in the absence of gas hydrates24 and up to 50 kPa for
marine sediments with enhanced clay fraction (about 35% of the
overburden stress)25,26. Critical pore overpressure for shear fail-
ure is in the order of 15–162 kPa for a range of static Poisson
ratios, cohesion and friction angles (Table 1).

Discussion
Previous studies of similar sedimentary environments showed
that free gas can generate or reactivate fluid migration pathways

within the GHSZ in critically pressured systems16,17,27. Sedi-
mentary structures may influence the build-up of overpressure by
focusing fluid flow and forcing migration of fluids, e.g., in sedi-
ment waves or along faults (Fig. 2). The estimated pore pressure
per overburden stress ratio of 58–73% (Supplementary Table 1)
hints at a gas migration system at depth. Assuming similar
conditions during pipe structure formation, it developed under
critically pressured conditions. A gas column height of ~ 90 m in
215 mbsf initiates tensile failure and forms hydrofractures (Figs. 3
and 4a, and Table 1) but would be a conservative estimate
assuming that overpressure originates from complete replacement
of pore water by gas. Assuming gas lenses of bigger dimension
suggest that this process is unrealistic. However, several studies
observed such pipe structures in other study areas19,22,28 and
showed that mechanical compaction and fluid migration are
capable to generate significant additional overpressures29, espe-
cially at the presence of gas hydrates in clayey sediments30.
Numerical simulations (Supplementary Fig. 3) of overpressure
generation from mechanical compaction, loaded with the inferred
sedimentation history of the Hinlopen area, predict pore over-
pressures of 30–380 kPa beneath the GHSZ for hydrate satura-
tions of 20–60%, assuming no lateral fluid migration. This
reduces the required critical gas column height by 3–38 m. We
conclude that the combination of buoyancy and other sources of
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Fig. 2 Reflection seismic profile and its interpretation with pipe structure

and mass transport deposit. An extract of profile 20130390 without

interpretation at the top (location in Supplementary Fig. 1) showing parallel

reflections and bodies without visible internal structure, and its

interpretation at the bottom showing stratified layers, headwalls (black

lines), two highlighted colour-coded reflectors (green), the slide plane

(blue) with the mass transport deposit (light blue), and a pipe structure

reaching from the BSR to the mass transport deposit with the free gas

below (red). The assumed sediment sound velocity for depth calculation is

1,700m s−1

Table 1 Parameters and results of critical overpressure

calculation

Depth

(mbsf)

Failure

mode

ρbulk
(kg m−3)

v Φ

(°)

C

(kPa)

pcrit
(kPa)

hgas
a

(m)

215 Tensile 1,800 0.3 30 280 916 91

215 Tensile 1,690b 0.3 30 280 790 78

215 Shear 2,140b 0.3 30 280 1,069 106

215 Tensile 2,140b 0.37 30 280 1,653 164

45 Shear 1,690b 0.3 25 50 162 16

45 Shear 1,690b 0.3 25 0 15 1

a Gas column height supposing 100% replacement of water by gas
b Minimal per maximal bulk density from ODP 911A

Failure modes at 45 and 215 mbsf that result from different parameters (Poisson ratio v, friction

angle ϕ, Cohesion C, bulk density ρbulk) at a critical pressure pcrit or gas column height hgas
(assuming 100% replacement of water by gas)
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Fig. 3 Critical pore overpressure as a function of horizontal per vertical

stress ratio and cohesion at 215 mbsf. The graph shows the critical

overpressure (colour coded) under extensional (σV<σH) or compressional

(σV>σH) conditions that causes tensile or shear failure. The red dot

represents critical pore overpressure for tensile failure at the bottom of the

GHSZ
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pore pressure, e.g., mechanical compaction during sedimentation,
generated critical gas overpressure.

Once hydrofracturing occurs, a pipe structure may develop and
transfer overpressure to layers in the shallow subsurface (Fig. 4a,
b). Within a fast-forming conduit pore water, free gas and dis-
solved gas would start to migrate upwards, maintaining the
pressure of the overpressure reservoir as long as the reservoir is
large compared with the fracture volume in the pipe structure.
Free gas can migrate through the GHSZ without forming gas
hydrate due to limited water supply31, shifting
pressure–temperature conditions32, capillary effects in fine-
grained sediments31, high pore water salinity33 or a combina-
tion of these34. Ample evidence for gas seepage through the
GHSZ has been observed throughout the world35,36. The precise
mechanism for gas migration through the GHSZ is of secondary
importance as long as hydrate formation does not close the
conduit.

In order to transfer the pore pressure from the overpressure
zone at the base of the GHSZ into the shallow subsurface, a
developing pipe structure must not propagate to the sea floor but
bleed overpressure into a shallow sediment layer of higher per-
meability than the overlying beds. This process is favoured by
heterogeneity and anisotropy of the penetrated material, e.g.,
discontinuities, stress barriers or layers of strongly contrasting
Young’s moduli37. Dense layers can function as stress barriers
and encourage arrest of fractures37, whereas layers with a high
fraction of sand increase the permeability and facilitate horizontal
fluid migration. Indications for such barriers are seismic strati-
fication (Fig. 2) and local density differences of ~ 0.4 g cm–3 in
Ocean Drilling Program (ODP) bore hole 911 A20. In contrast to
clay-rich sediment, cohesion of normally consolidated shallow
sediments is negligible24,25 and forces failure to change from
tensile to shear (Fig. 3), which is shown in seismic data and sand
box models19. The calculated critical pore overpressure at ~ 45
mbsf is on the order of 15–160 kPa (Table 1). This is consistent
with the observed broadening of the pipe in its upper part as
resistance to sideway propagation diminishes (Fig. 4b). Once
deformation takes place and the weak zone exceeds a critical
length, a shear band may propagate into the adjacent slope and
can initiate retrogressive slope failure (Fig. 4c)38,39. As we assume
fluid migration in a rapidly forming conduit we do not consider
gas hydrate formation, as the system will be out of thermal
equilibrium in the shallow sediments. The transfer of pressure
through inter-pore connections and by water migration, i.e.,
without free gas, would be other possible scenarios.

A requirement for the process to work is the presence of a
permeability inversion in the shallow subsurface, otherwise a
developing pipe structure will propagate all the way to the seabed
such as the pipe structures that have formed next to the Storegga

Slide22. However, weak layers consisting of sands and perme-
ability inversions are frequently encountered in geotechnical
studies that investigate submarine slope stability39.

Although it is conceivable that other causes for permeability
inversions may start pipe formation also at shallow sub-bottom
depth, ubiquity of pipe structures in hydrate provinces36 show
that permeability changes due to gas hydrate formation is a
particularly efficient process. The straight and vertical limit of
pipe structures indicates that they form quickly and onlap of the
adjacent reflectors onto the upwarped reflectors inside the pipe
structure at distinct stratigraphic intervals suggests periodicity in
their formation22. Therefore, pipe structure formation provides a
re-occurring destabilisation mechanism and trigger process that
explains why there is no clear clustering of landslide ages for
specific times of the climate cycle. These implications have to be
considered in geohazard risk assessments for continental margins
with natural gas hydrate systems.

Methods
Geophysical data. The study bases on a time-migrated ~ 22.6 km-long 2D high-
resolution seismic profile (20130390) using a digital 80-channel Geometrics GeoEel
streamer of 125 m total length and a group spacing of 1.5625 m from the NE slope
of the Hinlopen-Yermak Slide (Fig. 2 and Supplementary Fig. 1). A 1.7 l SERCEL
GI air gun was shot in harmonic mode at 200 bar in ~ 2 m water depth40. Seismic
processing was carried out by using the commercial software Schlumberger Vista
Seismic Processing 13. Data were sampled at 0.5 ms and sorted into common
midpoint domain with a bin spacing of twice the group spacing. Normal move-out
correction was applied with a velocity of 1,500 m s–1 and an Ormsby bandpass filter
with corner frequencies at 10, 20, 200, and 400 Hz. Due to the short length of the
streamer system and relatively great water depths, the data were time migrated with
water velocity, as the streamer offset is not long enough for velocity analysis. The
shooting intervals of 7 s at ~ 4.5 knots results in a shot point distance of 16 m. The
entire water column was recorded during seismic acquisition. The seismic profile
starts at 81°04.163′N/17°17.735′E and ends at 81°04.209′N/15°54.633′E (see Sup-
plementary Fig. 1).

Multibeam bathymetric data were recorded during MSM31 using the hull-
mounted Kongsberg Simrad EM122 system with 191 beams per ping, an angular
coverage of 150° and 12 kHz nominal frequency35. Bathymetric data were
processed using the software CARIS HIPS & SIPS and gridded with GMT. The grid
shown in Supplementary Fig. 1 has a horizontal bin size of 50 m.

Overpressure calculation. The calculation of critical pore pressure is based on the
Mohr–Coulomb criterion for shear failure41 and the theoretical criterion for tensile
failure of a fluid-filled crack from Griffith’s theory42. The methodology of inferring
the failure mode induced by a localised fluid overpressure source under different
initial stress states is taken from ref. 43, using only failure mode one to four. These
equations lead to a definition of the critical pore-fluid overpressure for shear and
tensile failure in different compressional and extensional regimes.

To determine the static Poisson ratio v we assume that the maximum total
stress (σ1) is vertical, and that only compaction and no significant tectonic forces
are present. We assume a coefficient of earth pressure at rest, defined as the
horizontal to vertical stress ratio36, of 0.42–0.7 for coarse sand to compacted sand
in layers, respectively37. The relationshipσ2¼σ3¼

v
1�vð Þ σ1 , with horizontal stress

tensors σ2 and σ3, lead to static Poisson ratios v of 0.3–0.4. To calculate the ratio of
pore and lithostatic pressure, we used bulk densities from ODP hole 911 A38 to
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calculate the lithostatic pressure and define the pore pressure as the sum of
hydrostatic pressure and overpressure.

Ratio of pore pressure to lithostatic pressure. We calculated the ratio of pore
pressure to lithostatic pressure in Supplementary Table 1 by the equations (1) and
(2) with gravitational acceleration g, depth -y, gas column height hgas and density ρ
(assuming interconnected gas pockets and a density contrast of ~ 1,024 kg m−3

between water and gas).

plithostatic ¼ ρbulk ´ g ´ y ð1Þ

ppore ¼ phydrostatic þ poverpressure ¼ ðρwater � ρgasÞ ´ g ´ y þ ðρwater � ρgasÞ ´ g ´ hgas

ð2Þ

Parametric study. The equations that determine the critical overpressure and the
failure mode depend on a number of geotechnical parameters of the subsurface and
on assumptions on the stress regime. Due to the lack of drill sites most of the
parameters were taken from literature or estimated from similar studies and thus
have associated uncertainties. In order to assess the influence of each parameter on
the critical overpressure and the failure mode, we calculated the critical over-
pressure as a function of each parameter and the coefficient of earth pressure at rest
for 45 and 215 mbsf. The values for the constant parameters are listed in Sup-
plementary Table 2. The parametric study focusses on a coefficient of earth
pressure at rest of 0.4 to 0.7 in agreement with several studies44,45.

Cohesion of marine sediments is poorly constrained. We adopt the estimates in
the literature that range between 0 and 2MPa23,24,26,46. Supplementary Fig. 2
shows the critical pressure as a function of cohesion and stress ratios in 45 and 215
mbsf. Increasing cohesion causes a shift from shear to tensile failure and increases
the critical pressure for failure. At 45 mbsf, the zone characterised by cohesion and
stress ratio that causes shear failure is very small. As these sediments in the shallow
subsurface are less consolidated and the amount of gas hydrates should be
negligible, cohesion is most likely negligible (c.f., refs. 24,47) and shear failure is the
most likely failure mode. These constrains limit the critical pressure for failure to
maximal ~ 0.2 kPa, a restricted area in Supplementary Fig. 2. Cohesion of
sediments at the bottom of the GHSZ in 215 mbsf is not negligible, because they
underwent mechanical compaction and contain relevant amount of gas hydrate.
Supplementary Fig. 2 shows that cohesion is critical to determine the failure mode
and allows a wide range of critical pressure for a particular stress ratio that
corresponds to about 40 m of gas column height (supposing 100% replacement of
water by gas).

We set the static Poisson ratio to a value of 0.3 following other studies, e.g., ref. 48.
In order to take into account that this is only a rough estimate, and that there are
other studies that propose the static Poisson ratio to range between 0.41 and 0.4517,
we have calculated the critical pressure for failure as a function of stress ratio and
static Poisson ratio ranging between 0.25 and 0.45 in 45 and 215 mbsf
(Supplementary Fig. 2). Regardless of the depth, the static Poisson ratio does not
change the failure mode under most pressure conditions. Increasing static Poisson
ratio decreases slightly the critical pressure.

Values for bulk density of the subsurface in the calculations range from 1,690 to
2,140 kg m–3 according to results from IODP site 911 A20. For sediments at 45
mbsf, the effect of density on critical pressure and failure mode is negligibly small
and there is no influence on the failure mode (Supplementary Fig. 2). At the
bottom of the GHSZ (215 mbsf), changes of density can lead to a change from
tensile to shear failure with increasing density (Supplementary Fig. 2). Increasing
density of the material requires an increasing critical pressure for tensile failure.

Several studies estimated the friction angle of marine sediments to 30° 48. Using
the correlation of the coefficient of earth pressure at rest K0 (horizontal to vertical
stress ratio, ranging from 0.42 to 0.7) and the friction angle ϕ (K0= 1− sinϕ) from
ref. 49, we tested friction angles between 10° and 40°. Supplementary Fig. 2 shows
that very small friction angles prevent failure in the shallow subsurface. Increase of
friction angle correlates with negligible or no increase of critical pressure in 45 and
215 mbsf.

The Biot-Willi poroelastic coupling constant varies in our calculations between
0.67 and 0.77, and corresponds to 25–0% bulk hydrate in sediment17.
Supplementary Fig. 2 shows that there is no influence on the failure mode and
negligible influence on the critical pore pressure at the bottom of the GHSZ and in
the shallow subsurface.

The horizontal to vertical stress ratio, or coefficient of earth pressure at rest49,
has a significant influence on the failure mode and on the critical pore pressure in
every depth (see Supplementary Fig. 2). In agreement to values in the literature, we
chose the range from 0.42 to 0.7, which describes coarse sand to compacted sand in
layers, respectively45.

Overpressure from sediment compaction. In order to assess the critical gas
column height necessary to initiate hydrofracturing, the background pressure state
has to be known. Sediment compaction can raise the pore fluid pressure well above
hydrostatic values. Here we investigate under-compaction and overpressure gen-
eration beneath the GHSZ. For this purpose, we solve the pressure equation (3) to

(5):

Dϕ

Dt
¼ �C

Dσ′z

Dt
ð3Þ

σ′z ¼ u1 � u ¼ plithothatic � phydrostatic � u ð4Þ

C

ð1� ϕÞ

Du

Dt
� ∇ �

k

μ
∇u

� �

¼
C

ð1� ϕÞ

Du1

Dt
ð5Þ

where u is the excess pore pressure (p – phydrostatic), C=0.09613 × 10−6 Pa−1 is
the Athy compaction constant, k is permeability, ϕ is the friction angle and µ is the
temperature-dependent viscosity. We use a porosity-dependent permeability
function for shales50 and assume that the permeability further changes with
hydrate saturation Sh within the GHSZ34:

k ¼ k0 1� S2h þ
2 1� Shð Þ2

logðShÞ

� �

k ¼ k0 1� S2h þ
2 1� Shð Þ2

logðShÞ

� �

ð6Þ

The above equations have been implemented in Matlab using a Lagrangian
finite element method. The model is initialised to a 1,140 m-thick layer that is at
hydrostatic conditions. Sediments (360 m) are added in each simulation
throughout the Quaternary at deposition rates inferred for the study area20 so that
the final sediment thickness is 1,500 m. Supplementary Fig. 3 shows the results of
three example calculations assuming 20%, 50% and 60% hydrate saturation (c.f.
wide range of hydrate saturation, e.g., in refs. 51,52) within the GHSZ (cf., ref. 52).
For these three model runs, overpressures of 30, 170 and 380 kPa are predicted at
the base of the GHSZ, which reduces the critical gas column heights by 3–38 m.

Data availability. The data sets analysed during the current study are available
from the corresponding author on reasonable request.
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