Internat. J. Math. & Math. Sci. Vol. 1 (l978) 519-524

RESEARCH NOTES

SUBMATRICES OF SUMMABILITY MATRICES

J. A. FRIDY

Department of Mathematics Kent State University Kent, Ohio 44242

(Recieved April 20, 1978)

<u>ABSTRACT</u>. It is proved that a matrix that maps ℓ^1 into ℓ^1 can be obtained from any regular matrix by the deletion of rows. Similarly, a conservative matrix can be obtained by deletion of rows from a matrix that preserves boundedness. These techniques are also used to derive a simple sufficient condition for a matrix to sum an unbounded sequence. <u>KEY WORDS AND PHRASES</u>. Regular matrix, ℓ - ℓ matrix, conservative matrix. AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. 40C05, 40D05, 40D20.

1. INTRODUCTION.

In [7] Knopp and Lorentz showed that the matrix summability transformation that maps the sequence x into Ax, given by

$$(Ax)_{n} = \sum_{k=0}^{\infty} a_{nk} x_{k},$$
 (1.1)

maps ℓ^1 into ℓ^1 if and only if

$$\sup_{n} \sum_{n=0}^{\infty} |a_{nk}| < \infty.$$
 (1.2)

Such a matrix is called an ℓ - ℓ matrix [4]. This theorm is the analogue of

the well-known theorem of Kojima and Schur [6, p. 43] that characterizes those matrices A that map the set c (convergent sequences) into c by the three conditions:

- (i) for each k, $\lim_{n \to \infty} a_{nk} = \alpha_k$;
- (ii) $\lim_{n} \{ \sum_{k=0}^{\infty} a_{nk} \} = S;$
- (iii) $\sup_{n} \{ \Sigma_{k=0}^{\infty} |a_{nk}| \} < \infty.$

Such a matrix is called a conservative matrix. A regular method preserves limit values as well as convergence, and such matrices are characterized by the Silverman-Toeplitz conditions (i), (ii), (iii) in which S=1 and $\alpha_k \equiv 0$.

Some of the well-known summability matrices are both $\ell-\ell$ and regular methods [5]. The main purpose of this paper is to establish a general correspondence between regular matrices and $\ell-\ell$ matrices by showing that every regular matrix gives rise to an $\ell-\ell$ matrix by the deletion of an appropriate set of rows. A similar theorem is proved that asserts that a matrix that maps the set m (bounded sequences) into m contains a row-submatrix that is conservative. In the final section, the row-selection technique is replaced by a column-selection technique in order to prove a simple criterion for the summability of an unbounded sequence.

2. THE MAIN RESULTS.

Although our primary motivation is concerned with regular matrices, we can relax considerably the Silverman-Toeplitz conditions and still select the rowsubmatrix that we seek.

THEOREM 1. If A is a summability matrix in which each row and each column converge to zero and $\sup_{n,k} |a_{nk}| = \mu < \infty$, then A contains a row-submatrix that is an $\ell - \ell$ matrix.

PROOF. First choose a positive integer v(0) satisfying $|a_{v(0),0}| \leq 1$; then,

520

using the assumption that $\lim_{k} a_{\nu(0),k} = 0$, choose $\kappa(0)$ so that $k > \kappa(0)$ implies $|a_{\nu(0),k}| \leq 1$. Having selected $\nu(i)$ and $\kappa(i)$ for i < m, we choose $\nu(m)$ greater than $\nu(m-1)$ so that

$$k \leq \kappa(m-1)$$
 implies $|a_{\nu(m),k}| \leq 2^{-m}$;

then choose $\kappa(m)$ greater than $\kappa(m-1)$ so that

$$k > \kappa(m)$$
 implies $|a_{\nu(m),k}| \leq 2^{-m}$.

Now define the submatrix B by $b_{mk} \equiv a_{\nu(m),k}$. The above construction guarantees that each column sequence of B is dominated, except for at most one term, by the sequence $\{2^{-m}\}$; i.e., if $\kappa(m-1) < k \leq \kappa(m)$ and $i \neq m$, then $|b_{ik}| = |a_{\nu(i),k}| \leq 2^{-i}$. Since $|a_{\nu(m),k}| \leq \mu$, it is clear that for each k,

$$\sum_{m=0}^{\infty} |\mathbf{b}_{mk}| \stackrel{\leq}{=} 2 + \mu.$$

Hence, by (1.2), B is an $\ell - \ell$ matrix.

We can now state our principle objective as an immediate consequence of this theorem.

COROLLARY 1. Every regular matrix contains a row-submatrix that is an $\ell-\ell$ matrix.

It is easy to see that if A is regular, then the submatrix B of the preceding proof is both $\ell - \ell$ and regular; for, any matrix method is included by a method determined by one of its row-submatrices. Also, it is obvious that in Corollary 1 it is not sufficient to assume only that A is conservative; for if $\alpha_k \neq 0$ for some k, then $\sum_{m=0}^{\infty} |a_{\nu(m),k}| = \infty$ for any choice of $\{\nu(m)\}_{m=0}^{\infty}$. Furthermore, it is easy to see that not every $\ell - \ell$ matrix is a submatrix of a regular matrix; e.g., if $b_{0,k} = 1$ and $b_{mk} = 0$ (when $m \ge 0$) for every k, then B is $\ell - \ell$ but $\sup_n \sum_{k=0}^{\infty} |b_{nk}| = \infty$.

Another way of ensuring that the hypotheses of Theorem 1 hold is to assume that A maps ℓ^p into ℓ^q , where $p \ge 1$ and $q \ge 1$. Although explicit row/column conditions that characterize such a matrix are not known, it is easy to see that

J. A. FRIDY

the columns of A must be in ℓ^q and the rows must be uniformly bounded in $\ell^{p'}$, where 1/p + 1/p' = 1. Thus we state this formally in the following result.

COROLLARY 2. If A maps ℓ^p into ℓ^q , where $p \ge 1$ and $q \ge 1$, then A contains a row-submatrix that is an $\ell-\ell$ matrix.

For the next theorem, we prove a variant of Corollary 2 in which ℓ^p and ℓ^1 are replaced by m and c, respectively.

THEOREM 2. If A maps m into m, then A contains a row-submatrix B that is conservative.

PROOF. Since A maps m into m, we have $\sup_{n} \sum_{k=0}^{\infty} |a_{nk}| < \infty$. Therefore the sequence of row sums $\{\sum_{k=0}^{\infty} a_{nk}\}_{n=0}^{\infty}$ is bounded, so we can choose a convergent subsequence. This yields a row-submatrix A' of A that satisfies properties (ii) and (iii). It remains to choose a row-submatrix of A' whose columns are convergent sequences. But this is simply a special case of the familiar diagonal process that is used in the proof of the Helley Selection Principle (see, e.g., [2, p. 227]); for we have a family of functions (the rows of A') that are uniformly bounded by $\sup_{n} \sum_{k=0}^{\infty} |a_{nk}|$ on their countable domain $\{0, 1, 2, ...\}$. Therefore we can select a sequence of these "functions" that converges at each k. This sequence of rows of A' are then the rows of B.

3. SUMMABILITY OF UNBOUNDED SEQUENCES.

In [1], R. P. Agnew proved that if A is a regular matrix such that

$$\lim_{n,k\to\infty} |a_{nk}| = 0, \qquad (3.1)$$

then there exists a nonconvergent sequence of zeros and ones that is summable by A. It then follows by the well-known theorem of Mazur and Orlicz [8] that A sums an unbounded sequence. Because the Mazur-Orlicz Theorem requires the development of Fk-spaces, it would be useful to have a direct construction of an unbounded sequence that is summed by such an A. By modifying the proof of Theorem 1 from row selection to column selection, we can prove a theorem in which we relax the regularity of A, weaken property (3.1), and construct an unbounded sequence that is summed by A.

THEOREM 2. If A is a summability matrix whose column sequences tend to zero and

$$\lim \inf_{k} \{\max_{n \in \mathbb{N}} |a_{nk}| \} = 0, \qquad (3.2)$$

then A sums an unbounded sequence.

PROOF. Using (3.2), we choose an increasing sequence of column indices $\{\kappa(m)\}_{m=0}^{\infty}$ such that for each m,

$$\max_{n} |a_{n, (m)}| < 2^{-m}.$$
 (3.3)

Then choose increasing row indices $\{v(m)\}_{m=0}^{\infty}$ so that if $k \leq \kappa(m)$ and n > v(m), then $|a_{nk}| < 2^{-m}$. Now define the sequence x by

$$x_{k} = \begin{cases} m + 1, \text{ if } k = \kappa(m) \text{ for some } m, \\ 0, \text{ otherwise.} \end{cases}$$
(3.4)

Then n > v(m) implies

$$(Ax)_{n} = |\Sigma_{j=0}^{\infty} a_{n,\kappa(j)} x_{\kappa(j)}|$$
$$\leq \Sigma_{j=0}^{m} (j + 1)2^{-m} + \Sigma_{j>m} (j + 1)2^{-j}$$
$$= (m + 1) (m + 2)2^{-m-1} + R_{m},$$

where $\lim_{m \to \infty} R = 0$. Hence, $\lim_{n \to \infty} (Ax)_{n} = 0$.

1

In closing we note that if the row sequences of A tend to zero,

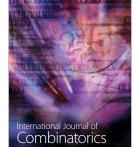
then (3.1) implies $\lim_{k} \{\max_{n} |a_{nk}|\} = 0$, which is stronger than (3.2). Therefore Theorem 2 does have a weaker hypothesis than Agnew's theorem. Theorem 2 has been proved by Bennett [3, Theorem 29] and Tatchell [9], both using extensive functional analytic techniques. These proofs do not, however, provide a direct construction of the desired unbounded sequence.

REFERENCES

- Agnew, R.P. A simple sufficient condition that a method of summability be stronger than convergence, <u>Bull. Amer. Math. Soc.</u> 53(1946), 128-132.
- Bartle, R. G. <u>The Elements of Real Anaylsis</u>, 2nd ed., John Wiley & Sons, New York, 1976.
- Bennett, G. A new class of sequence spaces with applications in summability theory, Journal F. Reine Agnew. Math. 266(1974), 49-75.
- Fridy, J. A. A note on absolute summability, <u>Proc. Amer. Math. Soc.</u>, <u>20</u> (1969), 285-286.
- Fridy, J. Absolute summability matrices that are stronger than the idenity mapping, <u>Proc. Amer. Math. Soc.</u>, <u>49</u> (1975), 112-118.
- 6. Hardy, G. H. Divergent Series, Oxford Univ. Press, London, 1949.
- Knopp, K. and Lorentz, G. G. Beiträge zur absoluten Limitierung, <u>Arch.</u> <u>Math.</u>, <u>2</u> (1949), 10-16.
- Mazur, S. and Orlicz, W. Sur les méthods linéares de summation, <u>C. R. Acad</u>. <u>Sci. Paris</u>, <u>196</u>(1933), 32-24.
- Tatchell, J. B. A note on matrix summability of unbounded sequences, J. London Math. Soc. <u>34</u>(1959), 27-36.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

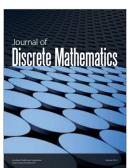
Complex Analysis

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

International Journal of Mathematics and Mathematical Sciences



Journal of **Function Spaces**

International Journal of Stochastic Analysis

