RESEARCH NOTES

SUBMATRICES OF SUMMABILITY MATRICES

J. A. FRIDY
Department of Mathematics
Kent State University
Kent, Ohio 44242
(Recieved April 20, 1978)

ABSTRACT. It is proved that a matrix that maps ℓ^{l} into ℓ^{l} can be obtained from any regular matrix by the deletion of rows. Similarly, a conservative matrix can be obtaired by deletion of rows from a matrix that preserves boundedness. These techniques are also used to derive a simple sufficient condition for a matrix to sum an unbounded sequence. KEY WORDS AND PHRASES. Regular matrix, $\ell-\ell$ matrix, conservative matrix. AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 40C05, 40D05, 40D20.

1. INTRODUCTION.

In [7] Knopp and Lorentz showed that the matrix summability transformation that maps the sequence x into $A x$, given by

$$
\begin{equation*}
(A x)_{n}=\Sigma_{k=0}^{\infty} a_{n k} x_{k}, \tag{1.1}
\end{equation*}
$$

maps ℓ^{1} into ℓ^{l} if and only if

$$
\begin{equation*}
\sup _{n} \sum_{n=0}^{\infty}\left|a_{n k}\right|<\infty . \tag{1.2}
\end{equation*}
$$

Such a matrix is called an $\ell-\ell$ matrix [4]. This theorm is the analogue of
the well-known theorem of Kojima and Schur [6, p. 43] that characterizes those matrices A that map the set c (convergent sequences) into c by the three conditions:
(i) for each $k, \lim _{n} a_{n k}=\alpha_{k}$;
(ii) $\lim _{\mathrm{n}}\left\{\mathrm{E}_{\mathrm{k}=0}^{\infty} \mathrm{a}_{\mathrm{nk}}\right\}=\mathrm{S}$;
(iii) $\sup _{\mathrm{n}}\left\{\Sigma_{\mathrm{k}=0}^{\infty}\left|\mathrm{a}_{\mathrm{nk}}\right|\right\}<\infty$.

Such a matrix is called a conservative matrix. A regular method preserves limit values as well as convergence, and such matrices are characterized by the Silverman-Toeplitz conditions (i), (ii), (iii) in which $S=1$ and $\alpha_{k} \equiv 0$.

Some of the well-known summability matrices are both $\ell-\ell$ and regular
methods [5]. The main purpose of this paper is to establish a general correspondence between regular matrices and $\ell-\ell$ matrices by showing that every regular matrix gives rise to an $\ell-\ell$ matrix by the deletion of an appropriate set of rows. A similar theorem is proved that asserts that a matrix that maps the set m (bounded sequences) into m contains a row-submatrix that is conservative. In the final section, the row-selection technique is replaced by a column-selection technique in order to prove a simple criterion for the sumability of an unbounded sequence.

2. THE MAIN RESULTS.

Although our primary motivation is concerned with regular matrices, we can relax considerably the Silverman-Toeplitz conditions and still select the rowsubmatrix that we seek.

THEOREM 1. If A is a summability matrix in which each row and each column converge to zero and $\sup _{n, k}\left|a_{n k}\right|=\mu<\infty$, then A contains a row-submatrix that is an $\ell-\ell$ matrix.

PROOF. First choose a positive integer $v(0)$ satisfying $\left|a_{v(0), 0}\right| \leqq 1$; then,
using the assumption that $\lim _{k} a_{v(0), k}=0$, choose $k(0)$ so that $k>k(0)$ implies $\left|a_{\nu(0), k}\right| \leqq 1$. Having selected $\nu(i)$ and $\kappa(i)$ for $i<m$, we choose $v(m)$ greater than $v(m-1)$ so that

$$
k \leqq k(m-1) \quad \text { implies } \quad\left|a_{v(m), k}\right| \leqq 2^{-m} ;
$$

then choose $k(m)$ greater than $k(m-1)$ so that

$$
k>k(m) \quad \text { implies } \quad\left|a_{v(m), k}\right| \leqq 2^{-m}
$$

Now define the submatrix B by $b_{m k} \equiv a_{\nu(m), k}$. The above construction guarantees that each column sequence of B is dominated, except for at most one term, by the sequence $\left\{2^{-m_{\}}}\right.$; i.e., if $\kappa(m-1)<k \leqq \kappa(m)$ and $i \neq m$, then $\left|b_{i k}\right|=|a v(i), k| \leqq 2^{-i}$. Since $\left|a_{\nu(m), k}\right| \leqq \mu$, it is clear that for each k,

$$
\Sigma_{m=0}^{\infty}\left|b_{m k}\right| \leq 2+\mu
$$

Hence, by (1.2), B is an $\ell-\ell$ matrix.
We can now state our principle objective as an immediate consequence of this theorem.

COROLLARY 1. Every regular matrix contains a row-submatrix that is an $\ell-\ell$ matrix.

It is easy to see that if A is regular, then the submatrix B of the preceding proof is both $\ell-\ell$ and regular; for, any matrix method is included by a method determined by one of its row-submatrices. Also, it is obvious that in Corollary 1 it is not sufficient to assume only that A is conservative; for if $\alpha_{k} \neq 0$ for some k, then $\sum_{m=0}^{\infty}\left|a_{v(m), k}\right|=\infty$ for any choice of $\{v(m)\}_{m=0}^{\infty}$. Furthermore, it is easy to see that not every $\ell-\ell$ matrix is a submatrix of a regular matrix; e.g., if $b_{0, k}=1$ and $b_{m k}=0$ (when $m=0$) for every k, then B is $\ell-\ell$ but $\sup _{\mathrm{n}} \Sigma_{\mathrm{k}=0}^{\infty}\left|\mathrm{b}_{\mathrm{nk}}\right|=\infty$.

Another way of ensuring that the hypotheses of Theorem 1 hold is to assume that A maps ℓ^{p} into ℓ^{q}, where $p \geqq 1$ and $q \geqq 1$. Although explicit row/column conditions that characterize such a matrix are not known, it is easy to see that
the columns of A must be in ℓ^{q} and the rows must be uniformly bounded in $\ell^{p^{\prime}}$, where $1 / p+1 / p^{\prime}=1$. Thus we state this formally in the following result.

COROLLARY 2. If A maps ℓ^{p} into ℓ^{q}, where $\mathrm{p} \geq 1$ and $q \geq 1$, then A contains a row-submatrix that is an $\ell-\ell$ matrix.

For the next theorem, we prove a variant of Corollary 2 in which ℓ^{p} and ℓ^{1} are replaced by m and c, respectively.

THEOREM 2. If A maps m into m, then A contains a row-submatrix B that is conservative.

PROOF. Since A maps m into m, we have $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty$. Therefore the sequence of row sums $\left\{\Sigma_{k=0}^{\infty} a_{n k}\right\}_{n=0}^{\infty}$ is bounded, so we can choose a convergent subsequence. This yields a row-submatrix A^{\prime} of A that satisfies properties (ii) and (iii). It remains to choose a row-submatrix of A^{\prime} whose columns are convergent sequences. But this is simply a special case of the familiar diagonal process that is used in the proof of the Helley Selection Principle (see, e.g., [2, p. 227]); for we have a family of functions (the rows of A^{\prime}) that are uniformly bounded by $\sup _{n} \Sigma_{k=0}^{\infty}\left|a_{n k}\right|$ on their countable domain $\{0,1,2, \ldots\}$. Therefore we can select a sequence of these "functions" that converges at each k. This sequence of rows of A^{\prime} are then the rows of B.

3. SUMMABILITY OF UNBOUNDED SEQUENCES.

In. [1], R. P. Agnew proved that if A is a regular matrix such that

$$
\begin{equation*}
\lim _{n, k \rightarrow \infty}\left|a_{n k}\right|=0 \tag{3.1}
\end{equation*}
$$

then there exists a nonconvergent sequence of zeros and ones that is summable by A. It then follows by the well-known theorem of Mazur and Orlicz [8] that A sums an unbounded sequence. Because the Mazur-Orlicz Theorem requires the
development of Fk -spaces, it would be useful to have a direct construction of an unbounded sequence that is summed by such an A. By modifying the proof of Theorem 1 from row selection to column selection, we can prove a theorem in which we relax the regularity of A, weaken property (3.1), and construct an unbounded sequence that is summed by A.

THEOREM 2. If A is a summability matrix whose column sequences tend to zero and

$$
\begin{equation*}
\lim \inf _{k}\left\{\max _{\mathrm{n}}\left|\mathrm{a}_{\mathrm{nk}}\right|\right\}=0 \tag{3.2}
\end{equation*}
$$

then A sums an unbounded sequence.

PROOF. Using (3.2), we choose an increasing sequence of column indices $\{\kappa(m)\}_{m=0}^{\infty}$ such that for each m,

$$
\begin{equation*}
\max _{\mathrm{n}}\left|a_{\mathrm{n},(\mathrm{~m})}\right|<2^{-\mathrm{m}} \tag{3.3}
\end{equation*}
$$

Then choose increasing row indices $\{v(m)\}_{m=0}^{\infty}$ so that if $k \leqq k(m)$ and $n>v(m)$, then $\left|a_{n k}\right|<2^{-m}$. Now define the sequence x by

$$
x_{k}=\left\{\begin{array}{l}
m+1, \text { if } k=k(m) \text { for some } m \tag{3.4}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

Then $n>v(m)$ implies

$$
\begin{aligned}
\left|(A x)_{n}\right| & =\left|\sum_{j=0}^{\infty} a_{n, k(j)^{x}}{ }_{k(j)}\right| \\
& \leqq \sum_{j=0}^{m}(j+1) 2^{-m}+\sum_{j>m}(j+1) 2^{-j} \\
& =(m+1)(m+2) 2^{-m-1}+R_{m}
\end{aligned}
$$

where $\lim _{m} R_{m}=0$. Hence, $\lim _{n}(A x)_{n}=0$.
In closing we note that if the row sequences of A tend to zero,
then (3.1) implies $\lim _{k}\left\{\max _{n}\left|a_{n k}\right|\right\}=0$, which is stronger than (3.2). Therefore Theorem 2 does have a weaker hypothesis than Agnew's theorem. Theorem 2 has been proved by Bennett [3, Theorem 29] and Tatche11 [9], both using extensive functional analytic techniques. These proofs do not, however, provide a direct construction of the desired unbounded sequence.

REFERENCES

1. Agnew, R.P. A simple sufficient condition that a method of summability be stronger than convergence, Bull. Amer. Math. Soc. 53(1946), 128-132.
2. Bartle, R. G. The Elements of Real Anaylsis, 2nd ed., John Wiley \& Sons, New York, 1976.
3. Bennett, G. A new class of sequence spaces with applications in summability theory, Journal F. Reine Agnew. Math. 266(1974), 49-75.
4. Fridy, J. A. A note on absolute summability, Proc. Amer. Math. Soc., 20 (1969), 285-286.
5. Fridy, J. Absolute summability matrices that are stronger than the idenity mapping, Proc. Amer. Math. Soc., 49 (1975), 112-118.
6. Hardy, G. H. Divergent Series, Oxford Univ. Press, London, 1949.
7. Knopp, K. and Lorentz, G. G. Beiträge zur absoluten Limitierung, Arch. Math. , 2 (1949), 10-16.
8. Mazur, S. and Orlicz, W. Sur les methods lineares de summation, C. R. Acad. Sci. Paris, 196(1933), 32-24.
9. Tatchell, J. B. A note on matrix summability of unbounded sequences, J. London Math. Soc. 34 (1959), 27-36.

