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SUBMERSIONS AND
EQUIVARIANT QUILLEN METRICS

by Xiaonan MA

Introduction.

Let £ be a Hermitian vector bundle on a compact Hermitian complex
manifold X. Let A(£) be the inverse of the determinant of the cohomology
of £&. Quillen defined first a metric on A(£) in the case that X is a Riemann
surface. Quillen metric is the product of the L? metric on A(£) by the
analytic torsion of Ray-Singer of £. The analytic torsion of Ray-Singer [RS]
is the regularized determinant of the Kodaira Laplacian on £. In [BGS3]|,
Bismut, Gillet, and Soulé have extended it to complex manifolds. They
have established the anomaly formulas for Quillen metrics, which tell us
the variation of Quillen metric on the metrics on £ and T'X by using some
Bott-Chern classes.

Later, Bismut and Kohler [BKo| (refer also {BGS2|, [GS1] in the
special case) have extended the analytic torsion of Ray-Singer to the
analytic torsion forms T for a holomorphic submersion. In particular, the
equation on (08/2iw)T gives a refinement of the Grothendiek-Riemann-
Roch Theorem. They have also established the corresponding anomaly
formulas.

In [GS1], Gillet and Soulé had conjectured an arithmetic Riemann-
Roch Theorem in Arakelov geometry. In [GS2], they have proved it for
the first Chern class. The analytic torsion forms are contained in their
definition of direct image.

Keywords : Characteristic classes — Index theory and fixed points theory.
Math. classification : 32L10 — 57R20 — 58J20 — 58J52.
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Let i:Y — X be an immersion of compact complex manifolds. Let
1 be a holomorphic vector bundle on Y, and let (£,v) be a complex of
holomorphic vector bundles which provides a resolution of i,7. Then by
[KM], the line A=*(n) ® A(€) has a nonzero canonical section o. In [BL],
Bismut and Lebeau have given a formula for the Quillen norm of ¢ in terms
of Bott-Chern currents on X and of a genus R introduced by Gillet and
Soulé [GS1].

In [BerB], Bismut and Berthomieu solved a similar problem. In fact,
let #: M — B be a submersion of compact complex manifolds. Let £ be a
holomorphic vector bundle on M. Let R®m.£ be the direct image of £. Then,
by [KM], the line A(§) ® A™1(R*m.£) has a nonzero canonical section o.
In [BerB], they have given a formula for the Quillen norm of ¢ in terms of
Bott-Chern classes on M and the analytic torsion forms of .

Now, let G be a compact Lie group acting holomorphically on X and &.
Then Bismut [B5] defined A (€) the inverse of the equivariant determinant
of the cohomology of £ on X. He also defined an equivariant Quillen metric
on Ag (&) which is a central function on G (refer also §1a)). In [B5], Bismut
computed the equivariant Quillen metric of the nonzero canonical section
of Az! (1) ® Ag(€) for a G-equivariant immersion i: Y — X. In this way, he
has generalized the result of [BL] to the equivariant case. In [B4], he also
conjectured an equivariant arithmetic Riemann-Roch Theorem in Arakelov
geometry. Recently, using the result of [B5], Kohler and Roessler [KRo]
have proved a version of this conjecture.

In this paper, we shall extend the result of Bismut and Berthomieu
to the G-equivariant case. This completes the picture on the G-equivariant
case.

Let m: M — B be a submersion of compact complex manifolds with
fibre X. Let £ be a holomorphic vector bundle on M. Let G be a compact
Lie group acting holomorphically on M and B, and commuting with 7,
whose actions lift holomorphically on &.

Let R*m.£ be the direct image of £&. We assume that the R*m,¢
(0 < k < dim X) are locally free.

Let o be the canonical section of Ag(§) ® Ag' (R*m.€).

Let h™ hTB be G-invariant Kahler metrics on TM and TB. Let hTX
be the metric induced by h™ on TX. Let h¢ be a G-invariant Hermitian
metric on &. Let w™ be the Kéhler form of h™ .

Let H(X, € x) be the cohomology of & x. By identifying H(X, &) x)
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to the corresponding fiberwise harmonic forms in Dolbeault complex
(X, €| x), 0%), the Z-graded vector bundle H(X,¢ x) is naturally
equipped with a L2-metric A7 (X¢1X) associated to ATX, hS.

Let || | A (ORAZ (RO 7.€) be the G-equivariant Quillen metric on the
line Ag(€) ® A5'(R*7.&) attached to the metrics RTM k¢, ATB RH(XE1X)
on TM, &, TB, R*w.£. The purpose of this paper is to calculate the
G-equivariant Quillen metric o], (¢ g (Romat)”

For g € G, let Td,(TM,g"™) be the Chern-Weil Todd form on
MY = {z € M; gz = z} associated to the holomorphic hermitian
connection on (TM,h™) [B5, §2(a)], which appears in the Lefschetz
formulas of Atiyah-Bott [ABo]. Other Chern-Weil forms will be denoted in
a similar way. In particular, the forms chg (¢, ht) on MY are the Chern-Weil
representative of the g-Chern character form of (£, h%).

In this paper, by an extension of [BKo], we first construct the
equivariant analytic torsion forms Ty(w™,h®) on BY = {z € B; gz = 1},
such that

99 1 (M g H(X €] x)
(01) —22—ng(&) ,h ) = Chg(H(X,glx),h £lx )

- / Tdy(TX,hTX) chy(&, hY).
X9

We also establish the corresponding anomaly formulas. The equivariant
analytic torsion forms will play a role in the higher degree version of Kéhler
and Roessler’s Theorem. Notice that in [K], Kohler defined the equivariant
analytic torsion forms for (possibly non-Kéhler) torus fibrations and proved
curvature and anomaly formulas for them.

Let Td,(TM,TB, h™ hTB) ¢ pM’ /PM’0 be the Bott-Chern class,
constructed in [BGS1], such that

90

(02) Tdy(TM,TB, ™  hTB)
™
= Tdy(TM,h™) — n* (Tdy(TB, h™?)) Td,(TX, h™).

The main result of this paper is the following extension of [BerB,
Thm. 3.1]. Namely, we prove in Theorem 3.1 the formula

(0.3)  Tog (o113 e)orzt (remae)) (9) = = /B Td,(TB, hTB) T, (w™, ht)

+/ Tdy(TM,TB, k™  KTB) ch, (¢, hE).
Ma
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We apply the methods and techniques in [BerB] and [B5], with
necessary equivariant extensions, to prove Theorem 3.1. The local index
theory [B1] and finite propagation speed of the solution of the hyperbolic
equation [CP], [T] will also play an important role as in {BerB] and [B5].

This paper is organized as follows. In Section 1, we recall the
construction of the equivariant Quillen metrics [B5]. In Section 2, we
construct the equivariant analytic torsion forms, and we prove the
corresponding anomaly formulas. In Section 3, we extend the result of [BerB]
to the equivariant case. In Section 4, we state eight intermediate results
which we need for the proof of Theorem 3.1, and we prove Theorem 3.1.
In Sections 5-9, we prove the eight intermediate results.

Throughout, we use the superconnection formalism of Quillen. In
particular, Tr, is our notation for the supertrace. The reader is referred for
more details to [B5], [BGS1], [BerB].

1. Equivariant Quillen metrics.

This section is organized as follows. In a), we recall the construction
of the equivariant Quillen metrics of [B5, §1]. In b), we indicate the
characteristic classes which we will often use.

a) Equivariant Quillen metrics [B5].

Let X be a compact complex manifold of complex dimension ¢. Let
& be a holomorphic vector bundle on X. Let H(X,£) be the cohomology
groups of the sheaf Ox (£) of holomorphic sections of € over X.

Let G be a compact Lie group. We assume that G acts on X by
holomorphic diffeomorphisms and that the action of G lifts to a linear
holomorphic action on &.

Let E = @2 % E' be the vector space of C* sections of
dim X

NTOVX)@¢= P AT VX @8
1=0

over X. Let 3% be the Dolbeault operator acting on E. Then G acts on
the Dolbeault complex (E, %) by chain homomorphisms, and we have an
identification of G-vector spaces

(1.1) H(E,0%) ~ H(X,¢).
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Let hTX h¢ be G-invariant Hermitian metrics on TX, €. Let dux be
the Riemannian volume form on X associated to hTX. Let * be the Hodge
operator attached to the metric h™X. Let { ) (0.1 x)ge be the Hermitian
product induced by hTX, hé on A(T*OVX) ® €. If 5,5’ € E, set

1 \dim X
(1.2) (s,8') = (5;) /X<373I>A(T*(°'1)X)®£ dux

= (%)dimX/X(s/\*s’)hg.

Let 0%* be the formal adjoint of X with respect to the Hermitian
product (1.2). Set

(1.3) DX = 9% 4+ 5%, K(X,¢) = Ker DX.
By Hodge theory,
(1.4) K(X,§) = H(X,§).

Clearly, for g € G, g commutes with DX, so (1.4) is an identification of
G-spaces.

Clearly K(X,¢) inherits a G-invariant metric from ( ). Let hH(X:8)
be the corresponding metric on H(X, ).

Let G be the set of equivalence classes of complex irreducible
representations of G. Let F* (0 < i < k) be finite dimensional complex
G-vector spaces. We consider F' = @fzo F* as a natural Z-graded G-vector
space. Let b = @F_, h¥" be a G-invariant metric on F = @y_, F*. Then
we have the isotypical decomposition

F= GB Homg(W, F) @ W,
wed

and this decomposition is orthogonal with respect to h%. Set

k .
(1.5)  det(F,G) = @D ) (det(Homa(W, F*) @ w)) ™",
weG =0
For W € G, let x(W) be the character of the representation. Set

dim X o
(16)  Aw(®) = R (det(Home(W, Hi(X,€)) e W)™

=0
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Put
(1.7) Aa(€) = B Aw(©).
wed

In the sequel, Ag(€) will be called the inverse of the equivariant determinant
of the cohomology of €. So A (£) is a direct sum of complex lines.

Let | |, (¢) be the LZ-metric on Aw (£) induced by hH(X:8), Set

(1.8) log(| [Rae) = EE;}og(l|§W(o)(§i?;&'
wWeaG

The formal symbol | |5, will be called the (equivariant) L, metric
on Ag(£). In effect, it is a product of metrics on Ag(£) = @Wea Aw ().

Take g € G. Set
(1.9) Xg={xEX;ga:=:c}.
Then XY is a compact complex totally geodesic submanifold of X.

Let P be the orthogonal projection operator from E on K (X, &) with
respect to the Hermitian product (1.2). Set P =1 — P. Let N be the
number operator of E, i.e. N acts by multiplication by i on E*. Then by
standard heat equation methods, we know that for any g € G, k € N, there
exist a; (—¢ < j < k) such that ast — 0,

k
(1.10) Tr, [gN exp(—tD%?)] = Z a; t/ + O(tF+1).
i=—t
DeFiNITION 1.1. — For s € C, Re(s) > dim X, set
(1.11) 0%(g)(s) = — Tr; [gN(D*2)~* P+].

By (1.10), 6% (s) extends to a meromorphic function of s € C which
is holomorphic at s = 0.
DEeFINITION 1.2. — For g € G, set

X
(112) 108 o) (@) =lo8(1 o) (6) ~ 252 (0).

The formal symbol || ||, Will be called a Quillen metric on the
equivariant determinant Ag(§).
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b) Some characteristic classes.

Let X be a complex manifold. Let L be a holomorphic vector bundle
over X. Let h” be a Hermitian metric on L. Let V% be the holomorphic
Hermitian connection on (L, hY). Let R” be its curvature.

Let g be a holomorphic section of End(L). We assume that g is an
isometry of L. Then g is parallel with respect to VL.

Let 1, e ..., eife (0 < 8; < 2m) be the locally constant distinct
eigenvalues of g acting on L on X. Let L% L% ... L% (y = 0) be the
corresponding eigenbundles. Then L splits holomorphically as an orthogonal
sum

(1.13) L=L%@--.-@L%.

Let hLeO, .. .,hLoq be the Hermitian metrics on L%, ... L% indu-
ced by hL. Then V! induces the holomorphic Hermitian connections
8, 8 @, 8, 0,
v WE on (L% KLY, ... (L% hL*). Let RL™,... R’ be their
curvatures.

If Ais a (g, q) matrix, set

%), e(A) = det(A), ch(A4) = Tr[exp(A)].

The genera associated to Td and e are called the Todd genus and the Euler
genus.

(1.14) Td(A) = det (

DEFINITION 1.3. — Set

' Td,(L, h%) = Td R ) f[ 1d ("RL% +i8;),
J

2w e \ %m
) —REL™
T, (L) = 5 | T4 (g +0)
9 Td ,—RL”
(1.15) gj( 5 +10j+b)]b=,
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Then the forms in (1.15) are closed forms on X, and their cohomology
class does not depend on the g-invariant metric AY. We denote these
cohomology classes by Td,(L), Td,(L),..., chy(L).

2. Equivariant analytic torsion forms and anomaly
formulas.

This section is organized as follows. In a), we describe the Kihler
fibrations. In b), we construct the Levi-Civita superconnection in the sense
of [B1]. In ¢), we indicate results concerning the equivariant superconnection
forms. In d}, we construct the equivariant analytic torsion forms. In e), we
prove the anomaly formulas, along the lines of [B5], [BKJ).

a) Kéahler fibrations.

Let w: M — B be a holomorphic submersion with compact fibre X.
Let TM,TB be the holomorphic tangent bundles to M, B. Let TX be
the holomorphic relative tangent bundle TM/B. Let J7X be the complex
structure on the real tangent bundle TR X. Let h7X be a Hermitian metric
onTX.

Let TH M be a vector subbundle of TM, such that

(2.1) T™ =THM ¢ TX.
We now define the Kahler fibration as in [BGS2, Def. 1.4].

DEFINITION 2.1. — The triple (m, k™ THM) is said to define a
Kahler fibration if there exists a smooth real 2-form w of complex type
(1,1), which has the following properties:

(a) w is closed;
(b) T M and Ty X are orthogonal with respect to w;
(¢) if X,Y € TrX, then w(X,Y) = (X, JTXY)prx.

Now we recall a simple result of [BGS2, Thms. 1.5 and 1.7].

THEOREM 2.2. — Let w be a real smooth 2-form on M of complex
type (1,1), which has the following two properties:

(a) w is closed;
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(b) the bilinear map X,Y € TeX — w(JTXX,Y) defines a Hermitian
product h™ on TX.

Forx € M, set
(2.2) THIM ={Y € T,M; forany X € T,X, w(X,Y)=0}.
Then TH M is a subbundle of TM such that TM = THM & TX. Also

(m, hTX, TH M) is a Kéhler fibration, and w is an associated (1,1)-form.

A smooth real (1,1)-formw’ on M is associated to the Kéahler fibration
(m, hTX , TH M) if and only if there is a real smooth closed (1,1)-form 7
on B such that

(2.3) W —w =77

b) The Bismut superconnection of a Kihler fibration.
Let w™ be areal (1,1)-form on M taken as in Theorem 2.2.

Let ¢ be a complex vector bundle on M. Let h¢ be a Hermitian
metric on €. Let VX V¢ be the holomorphic Hermitian connections
on (TX,hTX),(¢,h%). Let RTX L® be the curvatures of VTX V5.
Let VAT “VX) he the connection induced by V7X on A(T*©DX).
Let VATV X)®€ be the connection on A(T*®DX) ® ¢,

(2.4) ATTEEXIeE - gATTOIX) @1 4 16 VL

DEFINITION 2.3. — For 0 < p < dim X, b € B, let E} be the vector
space of C* sections of (AP(T*V X) ® £),x, over Xp. Set

dim X
25  E=(@E, B =@ & E=QE
p=0 peven podd

As in [B1, §1f)], [BGS2, §1d)], we can regard the E}’s as the fibres of
a smooth Z-graded infinite dimensional vector bundle E over the base B.
Smooth sections of E over B will be identified with smooth sections
of A(T*OVX) ® ¢ over M.

Let ( ) be the Hermitian product on E associated to h7X, h¢ defined
in (1.2).

If U € Tk B, let UH be the lift of U in T, M, so that m.U¥ = U.
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DEFINITION 2.4. — If U € Ty B, if s is a smooth section of E over B,
set

*(0,1)
(2.6) VEs = v?,‘,,T P8

By [B1, §1f)], V® is a connection on the infinite dimensional vector
bundle E. Let VE and VE” be the holomorphic and anti-holomorphic
parts of VZ.

For b € B, let 0% be the Dolbeault operator acting on Fj, and
let X+* be its formal adjoint with respect to the Hermitian product (1.2).
Set

(2.7) DX = §%v 4 §Xex,

Let c(TjX) be the Clifford algebra of (TgX,hTX). The bundle
AT*OVX) ® € is a ¢(TgX)-Clifford module. In fact, if U € TX, let
U’ e T*OD X correspond to U by the metric hKTX. If U,V € TX, set

(2.8) cU) =V2U'A, V) =—V2i.

Let PTX be the projection TM ~ THM ¢ TX — TX.
If U,V are smooth vector fields on B, set

(2.9) TUH vH) = - pIX([UH vH],

Then T is a tensor. By [BGS2, Thm. 1.7], we know that as a 2-form, T is
of complex type (1,1).

Let f1,..., fom be a base of TR B, and let f1,..., f>™ be the dual base
of T2 B.

DEFINITION 2.5.
(2.10) c(T):% 3 refPe(T(fE, ).
1<, f<2m

Then c(T) is a section of (A(Ty B)® End(A(T*OVX) ® £))°*. Similarly,
if TWO) 70 denote the components of T in T X, TOV X, we also
define c(TM9), (TOV) as in (2.10), so that

(2.11) o(T) = ¢(TH0) 4 ¢(TO),
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DEFINITION 2.6. — For u > 0, let B,, be the Bismut superconnection
constructed in [B1, §3], [BGS2, §2a)],

" — T10))
B!'=vVvE 4+ JudX - c—(———,
* Vu 2V 2u
(0,1)
(212) B' — vE' + ua—X* - C(T ),
“ Vu 2v/2u
B, =B, +B,.

Let Ny be the number operator defining the Z-grading on
AT*OVX) @ ¢ and on E. Ny acts by multiplication by p on
AP(T*ODNX) @ €. If U,V € TrB, set

(2.13) WwHA(U, V) = wMUH VH).
DeriniTION 2.7. — For u > 0, set

inH

(2.14) N, =Ny +

In the rest of this subsection, we recall the definition of the tensor S
[B1, Def. 1.8] which will be used in the proof of Theorem 2.13.

Let h™®F be a Riemannian metric on TgB. Let VIRE be the Levi-
Civita connection on (TgrB, h™®B). The metric h™*2 and the connection
VB lift to a metric A% ¥ and a connection V¥ ™ on THM.
Let ATeM = pT&'M g pT*X be the metric on ToM = T M & Tr X which
is the orthogonal sum of the metrics h7® M and h™*X_ Let { , ),mum denote
the correponding scalar product on T M.

Let VT®X be the connection on Tr X induced by VTX. Let VTRM.L 1e
the Levi-Civita connection on (Tg M, hT*M). Let VTeM = yT&'M g yTeX
be the connection on Tg M = TH{’{ M ®TrX. Set

(2.15) S = VhiRML _gTaM,

Then S is a 1-form on M taking values in antisymmetric elements of
End(TgM). By [B1, Thm. 1.9], the (3,0} tensor {S(:)-,-),m=m does not
depend on hT*B, By (2.15), for U,V € Tg X,

(2.16) S(U)V = S(V)U.
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c) Equivariant superconnection forms and double
transgression formulas.

At first, we assume that the direct image R*w.£ of £ by 7 is locally free.
For b € B, let H(X},§|x,) be the cohomology of the sheaf of holomorphic
sections of &|x,. Then the H(X,, &) x,)’s are the fibres of a Z-graded
holomorphic vector bundle H(X,{ x) on B, and R*mé& = H(X,§x).
So we will write indifferently R*m.£ or H(X,&|x).

By (1.4), the K(X3,§x,) are the fibres of a smooth vector bundle
K(X,€x) over B. By [BGS3, Thm. 3.5], the isomorphism of the fibre (1.4)
induces a smooth isomorphism of Z-graded vector bundles on B

Then K(X,&|x) inherits a Hermitian product from (E, ( )). Let hH(X:¢1x)
be the corresponding smooth metric on H(X, £ x). Let P¥ (X8 x)
be the orthogonal projection operator from E on H(X,{x) =~

K(X,&x). Let VH (X:£1X) be the holomorphic Hermitian connection on
(H(X, € x), A X41X0),

Let G be a compact Lie group. We assume that G acts holomorphically
on M, B, £, and that £, M are G-equivariant (vector) bundles over M, B.
We also assume w™ | h¢ are G-invariant. Then R*7.¢ is also a G—equivariant
vector bundle over B, and hf (X£1X) is also G-invariant.

For g € G, set
(2.18) Mgz{mEM;gac:x}, Bgz{weB;gx:x}.

Then we have a holomorphic submersion 79: MY — BY with compact
fibre X¥.

DErINITION 2.8. — Let PP be the vector space of smooth forms on B,
which are sums of forms of type (p,p). Let P20 be the vector space of
the forms o € PP such that there exist smooth forms (3,7 on B for which
a =08+ 0.

We define PM* pM?.0 pB? pB°.0 iy the same way.
Let & be the homomorphism o +— (2i7)~ 968 */2¢ of A*V*" (T B) into
itself.

In the rest of the section, we will construct ap equivariant
analytic torsion form T,(w",hé) € PP’ corresponding to the fibration

m:n~1(BY) — BY. Without loss generality, we may and we will assume
that BY = B.
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THEOREM 2.9. — For u > 0, the forms ® Tr[gexp(—B2)] and
® Tr,[gN,, exp(—B2)] lie in PP°. The forms ® Tr,[gexp(—B2)] are closed
and that their cohomology class is constant. Moreover,

1898

9 o, [gexp(—B2)] = —= == ®Tr, [gN, exp(—B2)].

(2.19) ou u 2w

Proof. — Since g commutes with N, B,, etc., by proceeding as in
[BGS2, Thm. 2.9], we have Theorem 2.9. m

Put

M
Cory= / 2 Tdy(TX, h7) chy (€, ),
X9 «T

(2.20)
Co,g = / (- Td(TX,h™¥)
X + dim X - Tdy(TX, h7X)) chy (€, S).

Set

[ chy (H(Xaglx),hH(XvﬁlX))
dim X
= 3 (~1)* ey (HF(X, €1 x), hH A1),

k=0
(2.21)

chl, (H(X, & x), R X£1))
dim X

L = Y (—1)*k chy (H*(X, £ x), RHXE1X)).
k=0

THEOREM 2.10. — Asu — 0

(2.22) ® Tr,[gexp(—B.)] = /Xg Td, (TX, k%) chy (€, hE) + O(u).

There are forms Cj , € PB° (j > —1) such that fork € N, asu — 0

k
(2.23) ® Tr,[gN, exp(—B2)] = Z C;-ﬂuj + O(u**1).

j=-1

Also

(2.24) Cly,=C_14 Cf,=Cog4inP? /PB0
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Asu — +oo

@ Tr, [gexp(~B2)] = chy(H(X, £ x), HTX41X)) +O( : )’
(2.25) v

1
® T, [ exp(~B)] = e (H(X, ), b)) + 072 ).

Proof. — By combining the technique of [BGS2, Thms. 2.2, 2.16] and
[B7, Thms. 4.9-4.11], we have the equations (2.22), (2.23), (2.24).

Equation (2.25) was stated in [BK6, Thm. 3.4] if g = 1. By proceeding
as in {BeGeV, Thm. 9.23], we also have (2.25). m|

d) Higher analytic torsion forms.

For s € C, Re(s) > 1, set

Gi(s) = _I‘_(ls_) /01 w1 (® Try [gN, exp(—B2)]
— chl (H(X, € x), RT*41%))) du.

Using (2.23), we see that (;(s) extends to a holomorphic function of s € C
near s = 0.

For s € C, Re(s) < %, set

G (S) = —__1.__/ o0 s_l(cp Ir [ N, ex (_B2)]
2 F(s) 1 5191V, eXp 2
chy (H(X, €1 x), h”(xélx))) du.

Then by (2.25), (2(s) is a holomorphic function of s.
DEerInITION 2.11. — Set
0
(2.26) Ty(™,h¥) = 5-(G+ G2)(0).

Then Ty(w™, k) is a smooth form on BY. Using (2.23), (2.25), we get

1
(2.27) To(w™, ht) = — /0 (@Trs[gNuexp( 2] - *179 —C&Q%
e 2 / H(X, du
_/ (<I>Tr [gNy exp(—B2)] — chj (H(X, & x), h ( 5|x))) >
1

+C, +T(1)(Ch 4 — chy(H(X, & x), RTAX))),
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THEOREM 2.12. — The form T,(w™, h?) lies in PP’. Moreover,

5o
(2.28) 5E:rg(wf‘l,hﬁ) = chy(H(X, & x), hHX41X)
— / Tdy(TX, k™) chy (€, hS).
X9

Proof. — As we saw before, the forms ® Tr,[gN,, exp(—B2)] lie in P5’.
So the form T,(w™, k) € PB’. Using Theorem 2.10 and equation (2.19),

the proof of our Theorem 2.12 proceeds as the proof of [BGS2, Thm. 2.20].
O

e) Anomaly formulas for the analytic torsion forms.

Now let (w'™, h'¢) be another couple of objects similar to (w™, h¥).
We denote by a “’” the objects associated to (w'™, h'¢).

By [BGS1, §1(f)], there are uniquely defined Bott-Chern classes

Tdy(TX, g7, ¢'TX), che(€, hE, h'¢) € PM" | PM' 0,

chy(H(X, &%), K110 prHX 8 X)) ¢ pB? ) pBT0

such that
(90 = TX _1TX X ™~
%ng(TX,g 9N =Tdg(TX, ¢ ™) — Tdy(TX,g" "),
90 £ pié 7 ¢
(2.29) 4 57 Ba(§, A%, W) = chy(& h'S) — chy (€, B,
S%Efmg(ﬂ (X, €1x), WA p HX LX)
[ = chy (H(X, §x), WHEI0) — chy (H(X, € x), hTXA1),

Let C be a smooth section of T X®End(A(T*OVX) ® ¢). Let
€1,. .., ey be an orthonormal base of Tz X. We use the notation

20
(Vé\i(T*(o,Ux)@E + C(ei))Q _ Z(VQ(T*(O,I)X)®E + C(ei))2

=1 2¢
*(0,1)
— Vol om B = 0 (Yo V).
=1

20 JTX e,
T Vilte:
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THEOREM 2.13. — The following identity holds in PB* /P5°.0;
(2.30) Ty(w™, 1€ —Ty(wM, ht) = chy (H(X, € x), AT pHXE X))
- / [T (TX, 7%, RTX) chy (€, h)
T, (TX, XY e (€, B, h’f)] .
In particular, the class of Ty(w, h®) in PB?/PE?0 only depends on (RTX RE).
Proof. — Assume first that h¢ = h'¢. Let ¢ € [0,1] — w™ be a
smooth family of G-invariant (1,1)-forms on M verifying the assumptions

of Theorem 2.2 such that w}! = wM, WM = '™ Then all the objects
considered in Section 2 a)-d) now depend on the parameter c¢. Most of the

time, we will omit the subscript ¢. The upper-dot “*” is often used instead
of @/dc.
Recall that we assume that BY = B. Set
Q = - *_1 );<7
(2.31)
QH(X,flx) — pH(XYSIX)QpH(X,ﬁlx).

Let eq,...,e9 be an orthonormal base of Tx X with respect to hz"x. Let
fi,..., fam be a base of TrB, and that f!,..., f?™ is the corresponding
dual base of T B. Set

(2:32) M, == Jles, ex)elesJeler) = Z=0(/2 )/ cle)

it 1

- (for f) F 1P Zw(ea"JTXej)-
By the arguments of [BGS2, Thm. 2.11], we know there is p € N, yu; € PB*,
(j > —p) such that as u — 0, we have the asymptotic expansion

k
(2.33) O Tr, [gMyexp(~=B2)] = > pju’ + O@urt?).

Jj=—p
By proceeding as in [BK6, §§2-3], we easily find an analogue of [BK,
Thm. 3.16],
(2:34) T, (WM, h€) = pg + @ Tr, [gQH 1) exp(—(VHX£1x))2)]
] 0 00
V2T V2 2

In (2.34), the 6°(0) (i = 1,2,3) have universal expressions in terms of
g,wM k¢ as in [BK&).

+

0'(0) + 6%(0) + — 6°(0).
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Let da, da be two odd Grassmann variables which anticommute with
the other odd elements in A(TEB) or c(TrX). Set

0B, 3}
— _R2 _ R
(2.35) L, =-B.—dau 5 w, —My] + dada( 5u (ubM,, ))
If o € C(da,da), let [a]9*9 € C be the coefficient of da da in the expansion
of a. By a formula analogous of [BK&, Thm. 3.17], we know that the class
of —pg in PB’ /P50 coincides with the class of the constant term in the
asymptotic expansion of ® Tr,[g exp(L,)]% %@ when u — 0.

Recall that the (3,0) tensor (S(:)-,-) was defined in (2.15). Let V/, be
the connection on A(da @ da)QA (T3 B)SA(T*(OV X)®¢ along the fibres X,

(2.36) V), = vATTOPXee
+%<S('>ej, >\/’ 6a)f“+— Ofa F5 1o
d

B —2%\/%6(‘) - —u_(ek")dﬁ\/;(ek) - w(ff,.)‘ﬁ%

Let KX be the scalar curvature of the fiber (X, hTX). Set
(2.37) L% =15+ % Tr[RTX].
y [BKd, Thm. 3.18], we get
da+/uc(e;)
2 X
-V, J bt Ada 24
) (w(e; €;)) /2
. af* da .
- fo (Ld(ej, JTX(EJ')) da4f + da4 aLU(ej, JTXEJ‘)
Y ote. VL' e e, u Nfor(e. fH
e Yelen)eles) L e €5) — y | 3 ele) L er, )
affB
- L e g,

Let P,(z,z',b) (b € B, z,2’ € X}) be the smooth kernel associated to
exp(L,) with respect to dvx(z')/(27)4™X. Then

(2.38) L, = g(v’

d
(2.39)  ®Tr.[gexp(L.)] = / OTr,[gPu(g " 2, 2,b)] —%
X (2m)
Let Nxo/x = TX/TX? be the normal bundle to X? in X. We identify
Nxs/x with the orthogonal bundle to T7X¢ in TX. By standard estimates
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on heat kernels, for b € B, the problem of calculating the limit of (2.39)
when © — 0 can be localized to an open neighbourhood U, of X3 on Xj.
Using normal geodesic coordinates to Xj in X,, we will identify U, to an
e-neighbourhood of X9 in Nxs/x -

Since we have used normal geodesic coordinates to X9 in X, if
(Z,Z) € NXQ/X7
(2.40) g Mz, 2) = (z,97'2).

Let dvxs, duny, , be the Riemannian volume forms on TX¢, Nx/x
induced by h™. Let k(z,z) (x € X9, z € Nxo/x R, |2| < €) be defined by
(2.41) dvx = k(z, 2) dvxe (z) duny, 5 (2)-

Then
k(z,0) = 1.

Take zo € Xj. By using the finite propagation speed as in [B5, §11b)],
we may replace X, by (TX),, ~ C¢ with 0 € (TX),, representing x, and
we may assume the extended fibration over C* coincides with the given
fibration over B(0,¢).

Take y € C%, set Y = y + §. We trivialize
A(da & da)RA (T B)SA(T* OV X)&¢

by parallel transport along the curve t — tY with respect to V.

Let p(Y) be a C* function over C* which is equal to 1 if |Y] < i—e,
and equal to 0 if |Y| > %e. Let H, be the vector space of smooth sections
of (A(da @ da)®A(TgB) ®A(T*OVX)RE)y, over (ToX )z, Let ATX be
the standard Laplacian on (TgX);, with respect to the metric h7%<o.
For u > 0, let L} be the operator

(2.42) 1L = (1= (1)) (~ Jub™) - (V)L

For u >0, s € Hy,, set

Y
(2.43) Rus(Y) = s(—\/—i) L2 = R;'LlR,.
Let ey, ..., ez be an orthonormal base of (TR X?),,, and let egpr 11, ..., €2

be an orthonormal base of Nxo/x R a-
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Let L3 be the operator obtained from L2 by replacing the Clifford
variables c(e;) (1 < j < 2¢') by the operators \/2/ue’ — \/u/2i.,.

Let Pi(z,2') (2,2 € (TkX)z,, @ = 1,2,3) be the smooth kernel
associated to exp(—L%) with respect to dvrx, (2)/(2m)*™X. By using
the finite propagation speed and (2.42), there exist ¢, C > 0 such that for
2 € Nxo/x Ryos 12 < %5, u € 10,1}, we have

-1 1, -1 ¢
(244)  |Pu(gH(zo, 2), (20, 2))k (20, 2) — Py(g™ "2, 2)| < cexp (— F)
By the discussion after (2.39), (2.41), we get

(2.45)  lim @ Tr,[gexp(Ly)]

. _ dvx(z)
=1 BTy, [gP, (g7 ', 2)] ——tn
Jm Yo [g (97 x)] (2m)dim X

“ i [ s 0T oA @ )
T e () dunge  (2)

dvxs (x vaxg/ z
k(z, 2) (@)@ X X .

If a € C(e,ic,)a<j<2e), let [a]™* € C be the coefficient of
e A...A e in the expansion of a. Then by proceeding as in [B5,
Prop. 11.12], if 2 € Nxq/x g, We get

(2.46) Trs[gPL(g7'2,2)]
-1 max da da

_ (_ydim X9~ dim Nxg,x 3(9_2 %
(=) [Trs{gpu(\/a ﬁ)] ] '
For q,7 € N, O4(]Y|") will denote an expression in
(A(da ® da)®A(T} B)®c(Tr X )® End(¢))

which has the following two properties:

zo

o Fork € N, k < r, its derivatives of order k are O(]Y|" %) as |Y| — 0.

o It is of total length < g with respect to the obvious Z-grading of
(A{da ® da)RA(TEB) ®c(Tr X)® End(€)),-

Let T be the connection form for V{ in the trivialization of
(A(da®da)RA(Tg B)RA(T*Y X)®¢) with respect to V4. By using [ABoP,
Prop. 3.7], we see that for Y € Tr X,

(2.47) = 3V Daal¥;) + 02(IVP).
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LEMMA 2.1. — The following identity holds:

1
(2.48) V' = —(VT%2¢,, e;)c(es)cle;) + 3 Tr[vT%:2]

1
4
+ %((SPTXS + VXS FE 5V A fP
+ %((VTXS)ez"ff%/ic(ei)f“
—i{Wex, )(S()ex, fa) — (V. O)fY, ) foda
- %(V. w)(ex, -)da c(ex) + dada(iw).

Proof of Lemma 2.1. — If da = da = 0, (2.48) is exactly [B6, Prop.
11.8]. In general, by using (2.16), (2.36), we obtain straightforwardly the
extra-contributions of da, da to V';Z. O

By [B1, Thm. 4.14] (¢f. [BS6, (11.61))), for X,Y € Tg X, Z,W € TeM

(2.49) (VIX2(X,Y)P™XZ, PTXW) + ((SPT™*S)(X,Y)Z, W)
+{(VEES)(X,Y)Z, W) = (VI3 Z,W)X,Y).

Let RTX |9, L€ ppo, - - - be the restrictions of RTX | L&, ... over MY. Let
V., be the ordinary differentiation operator on (TgX),, in the direction e;.
By (2.38), (2.47), (2.48) and (2.49), as u — 0,

1 1
(2.50) L3 — L3 = —§(vej + 3 (B™ apY,e))
; 2

—daa,(Y,e;) +da d&(%d}(Y, ej)))
dada

—daay — Q.J(Cj,JTXEj)+LI€|M9,

and a; € A2(TEX )z, ® (TpX ® Ty B)ay, a2 € (Tp X & TEB)y,. Let

/ 1 1 . 2
(251) L§ = —§(Vej + —(R™X| Y, e5) +dadc‘z(%w(Y, ej)))

2
_ da da

Ta;(ej,JTXej) + L' pps.

Let P§(z,2') (2,2 € (TkX)s,) be the heat kernel of exp(—L3') over
(T X)z, with respect to dvrx, (2')/(2m)dmX,
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By proceeding as in [B5, §§11g)-11i)], we have: There exist v > 0,
c¢>0,C >0, r € N such that for u €]0,1], 2,2 € (TrX)z,, we have
o) { B2 )| < o1 + el + 121 exp(~Cle - #P),

|(P2 = P§)(2,2)| < cu” (14 |2] +|2'|)" exp(—C|z — 2'?).
From (2.46), (2.50)—(2.52), we get

(2.53)  lim B Tr, [gP, (97" 2, 2)] dunyy, (2)

u—0 Jlz1<e/8
2€Nxa /xR

=lim | s m (=)@ Tr (g Pl (g™ 2, )™}

2€Nxg /xR

= ()4 XL P Ty [gP3 (g7 2, 2)|™ax dadavag z
0 Ix8 7 x
Nxg/x »

da da
“ avaXg/X(z)

= / (=) 3™ XL Tr,[gP (9712, )™} duny, ().
Nxa /xR
Clearly for U,V € Tg X,

(2.54) H(U,V) = <U, JTX (pTX)~1 m{;gv)
So
(2.55) L3 = —%(vei + %((RTXWQ i dadaJTX (hTX)-1 Q%?)Y, ei>>2

+ L8| o — % (71 [R™ | ase] + dada T [ (h7%) ﬂ])

Jc
Let 1, ¥, ..., e (0 < 6; < 2w, 1 < j < q) be the locally constant
distinct eigenvalues of g acting on TX over MY. Let N)e(’;, /X be the

0;
corresponding eigenbundles. Let hTX g,hNXQ/X be the Hermitian metrics

6.
on TXY, Nfgg /X induced by hTX. Let RTX?, RN%5/% be their curvatures as
in Section 1b). By proceeding as in [B4, (3.16)—(3.21)],

. 9 ’ ada dv 9
(256) (_i)dme / {‘DTYs[gP(? (9—1272)]max}d d Nxd/ii()'(z)
Nxg /xR (27T)
d —RTX? oy ORTX
) —b hTX -1
{ ob [ d ( 2iw ( ) Jdc )
Y5
Td ; —R"x/x
7( 2w

7]
_1 ORNxe/x

x (o) )| G GI)

q
j=1
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By (2.44), (2.53) and (2.56), we know the limit of (2.45) when v — 0. By
using [BGS1, Rem. 1.28 and Cor. 1.30] and proceeding as in [BK&, §3h)],
we obtain Theorem 2.13 in the case where h® = h’.

To prove (2.30) in the full generality, one only needs to consider the
case where w™ = w'M. Then by using Theorem 2.12 and by proceeding as
in [BGS1, §1f)], i.e. by replacing B by B x P!, one easily obtains (2.30) in
this special case. O

3. The equivariant Quillen norm of the
canonical section o.

This section is organized as follows. In a), we describe the canonical
section o. In b), we announce a formula for the equivariant Quillen norm
of o.

In this section, we use the same notation as in Section 1.

a) The canonical section o.

Let M, B be compact complex manifolds of complex dimension n
and m. Let 7: M — B be a holomorphic submersion with fibre X. Let £
be a holomorphic vector bundle on M. Let G be a compact Lie group. We
assume that £, M are G-equivariant holomorphic bundles over M, B.

We assume that the sheaves RFr,.£ (0 < k < dim X) are locally free.

If given W € G, Aw,uw are complex lines, if A = Bweaw,
"= @Weauw, set

(3.1) =P N Aen= P v uw.
wed wed

Now we use the notation of Section 1. Set

(A\a(6) = det(H(M,€),G) " = P aw(©),
wed
(3.2) Ao (RFm,£) = det(H(B, R*m.£),G) ",
dim X N
Aa(Bmé) = R (a(Bm)) ™ = @ aw(Rem.e).

k=0 WGé\
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By proceeding as in [BerB, §1b)] and [B5, §3b)], for W € G, the line
Aw () ® )\;Vl (R*m.&) has a canonical nonzero section oy . Set

(3.3) o= P ow € Aa(§) ® A\G (R'm.E).
wed
b) A formula for the Quillen norm of the canonical section o.

Let h™  hTB be G-invariant Kihler metrics on TM and TB. Let hATX
be the metric induced by h™ on TX. Let hé be a G-invariant Hermitian
metric on £. Let A (X:€1X) be the L2-metric on H(X,& x) with respect to
hTX Rt as in Section 2 c).

We have the exact sequence of G-equivariant holomorphic Hermitian
vector bundles on M,

(3.4) 0-TX —TM — 7n*TB — 0.

By a construction of [BGS1,§1f)], there is a uniquely defined class of forms
Td,(TM,TB, k™ hTB) € PM*/PM°.0 such that

(3.5) ggﬁg(TM,TB, h™ RTBY = Td,(TM,h™)
— 7" (Tdg(TB, h"™®)) Tdy(TX, h™X).

Let w™ be the Kihler form of h™™. Let T,(w™,h¢) € PP’ be the
analytic torsion form constructed in Section 2¢). Let || [[y_(¢)e A5 (ROm)

be the G-equivariant Quillen metric on the line Ag(£)®A5" (R 7.€) attached
to the metrics ATM  h& RTB pH(XAEIX) on TM, €, TB, R*x,£.

Now we state the main result of this paper, which extends [BerB,
Thm. 3.1].

TueoreMm 3.1. — For g € G, the following identity holds:

(36) 108 (101 eronzirmn.e) @) = - /B T, (T, KT 0, 1

+/ Tdg(TM,TB, h™  hTB) ch, (€, ht).
Mg

Proof. — The proof of Theorem 3.1 will be given in Sections 4-9. O
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Remark 3.2. — By Theorem 2.13, to prove Theorem 3.1 for any
Kihler metrics k™ hTB| we only need to establish (3.6) for one given
metrics ™™ hTB. So by replacing h™ by h™ 4+ 7*hTB we may and we
will assume that A7 is a Kéhler metric on TM and

(3.7) RTM = pT™ | ppTB,

4. A proof of Theorem 3.1.

This section is organized as follows. In a}), we introduce a 1-form
on R} x R% as in [BerB, §3a)]. In b), we state eight intermediate results
which we need for the proof of Theorem 3.1 whose proofs are delayed to
Sections 5-9. In ¢), we prove Theorem 3.1.

In this section, we make the same assumption as in Section 3. Also,
we assume that h™™ is given by formula (3.7). In the sequel, g € G is fixed
once and for all.

a) A fundamental closed 1-form.

Recall that Ny denotes the number operator of A(T*(%V) X). Let Ny
be the number operator of A(T*(®1) B). By (2.2), we have the identification
of smooth vector bundles over M
(4.1) T™M ~TX »THM, THM ~=*TB.

This identification determines an identification of Z-graded bundles of
algebra on M
(4.2) ATV = ATV BRA(T* OV X).

So the operators Ny and Ny act naturally on A(T*©DAf). Of course,
N = Ny + Ny defines the total grading of A(T*®V M) @ ¢ and Q(M, €).

DEFINITION 4.1. — For T > 0, let hIM be the Kéhler metric on TM
L+ .
(4.3) hiM = EﬁhTM + m*hTE,

Let { )r be the Hermitian product (1.2) on Q(M,¢) attached to
the metrics hTM h¢. Let DM be the corresponding operator constructed
in (1.3) acting on Q(M, £). Let 7 be the Hodge operator associated to the
metric hXM . Then *r acts on A(Tx M) ® &.
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THEOREM 4.2. — Let o, 7 be the 1-form on RY x R

2du
(4.4) QT = o Tr [QN eXp(—UQD:lA“/LQ)]

+dT Tr, [g *;1 %;—T exp(——uZD%lz)] .

Then ay, T is closed.

Proof. — Clearly g is an even operator which commutes with the
operators OM,0M*  xp, Ny, Ny. By using [BerB, (4.27), (4.28), (4.30)],
the proof of Theorem 4.2 is identical to the proof of [BerB, Thm. 4.3]. 0O

Take €, A, T, 0 <e <1 <A< 400, 1 Ty < +oo. LetT' =T a1,
be the oriented contour in R} x R

u
I,
F3 A Fl
e |--
. : T
0 1 T
The contour I' is made of four oriented pieces I'y,...,I'y indicated
above. For 1 < k < 4, set
(4.5) I} = / a.
Ty
TueoreM 4.3. — The following identity holds:
4
(4.6) Y R=o.
k=1
Proof. — This follows from Theorem 4.2. O

b) Eight intermediate results.

Let 8B* be the formal adjoint of the operator 07 acting on
Q(B, R°7,.£), with respect to the metrics h75, RHXEIX) | Get,

(4.7) DB =58 + 5B* F =Ker DP.
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By Hodge theory,
(4.8) H*(B,R*m.) ~ F.

Let @ be the orthogonal projection from Q(B, R*m,.£) on F with respect
to the Hermitian product (1.2) attached to the metrics hTZ, hH(X:€1x),
Set QY =1-Q.

Let a € ]0,1] be such that the operator D2 has no eigenvalues
in ]0, 2a].

DEerFINITION 4.4. — For T > 0, set

(4.9) Er = Ker D2

Let Pr be the orthogonal projection operator from Q(M,€) on Er
with respect to { ).

Let Eg«)’a] (resp. E}O’a]) be the direct sum of the eigenspaces of
DY? associated to eigenvalues A € [0,a] (resp. A € ]0,a]). Let Dqﬂfj 2,04
(resp. DM21%4) be the restriction of D2 to EX (resp. E}™). Let
Pp 4 (resp. P}O’a]) be the orthogonal projection operator from Q(M, ¢) on
Egg,a] (resp. E}O’a]) with respect to ( )r. Set PT]a’+°°[ =1- PI[P’Q].

For0<k<n,ge€Qq,set

(4.10) Xo(€) = Trs[gimmre)]s  Xo(RFME) = Tro[g1 (B, REm ) -

Then by the Lefchetz fixed point formula of Atiyah-Bott [ABo],

Xo(6) = / Td, (TM)chy (€),
(4.10) Me

xg(RFm,€) = /B ) Td,(TY)ch,(R*7.£).

We now state eight intermediate results contained in Theorems 4.5~
4.12 which play an essential role in the proof of Theorem 3.1. The proof of
Theorems 4.5-4.12 are deferred to Sections 5-9.

THEOREM 4.5. — For any u > 0,

(4.12) TETOO Tr, [gN exp(—u2DM?)] = Tr, [gN exp(-u?DB2)].
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For any u > 0, there exists C > 0 such that for T > 1,
dim X

(113) | D[y exp(~u?DE)] = 3 (<17 jx, (RIm.8)| < =
j=0

For any € > 0, there exists C > 0 such that foru>¢e, T > 1,

(4.14) | Tr[g exp(——uquAfl’z)]! <C.

THEOREM 4.6. — For any u > 0,
(415)  lim Tr, [gN exp(—u2D?) Pl
= Tr, [gN exp(——uQDB’Z)QJ‘].
There exist ¢ > 0,C > 0 such that foru>1,T > 1,
(4.16) | Tr[gN exp(—quyiz)P%a’er[” < cexp(—Cu).

THEOREM 4.7. — The following identity holds:
3 M727[0,(1] —_
(4.17) Tllem Tr (gD ]=0.

For T > 1 large enough, for 0 < i < dim M,

(4.18) Tr [gplodi] = Y Tr (9159 (B, Imag)] -
=0

Let (E,,d,) (r > 2) be the Leray spectral sequence associated to , §.
By [Mal, Thm. I1.2.1], the Dolbeault complex (2(M, £),0M) filtered as in
[BerB, §1a)] calculates the Leray spectral sequence. Then as in [BerB, §4],
for r > 2, E, is equipped with a metric h® associated to h™ , hTB h¢. For
T > 2, let »| |xg(e) be the corresponding metric on Ag(€) ~ det(E,,G)™!
defined as in (1.8).

For r > 1, let Nyg_, NgE,, Nv|E, be the restrictions of N, Ny, Ny
to E,.

TuEOREM 4.8. — The following identity holds:
. M,2,]0,a]
(418)  lim { Tr, [gN log(D221%]))

+2 3 (r = D(TrelgN| 5] — TrelgN s,,.]) log(1) |

r>2
ool Ire(e) \2
— log (2L 2e© ) ()
( 2| lx\c(ﬁ) >

For T > 1,let | |x;(¢),r be the Ly metric on the line Ag(£) associated
to the metrics hTM  hé on TM, ¢ defined in (1.8).
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THEOREM 4.9. — The following identity holds:

1) i s (L0

| o)
2( ~ dim Xxg(€) + Tr,[gNv|z,.]) log(T) }

= log (———OOI EEL) )z(g).

PV

For v > 0, let B, be the Bismut superconnection on Q(X,¢|x)
constructed in Definition 2.6 which is attached to ATM, h¢ on TM,¢.
Let N, be the operator defined in (2.14) associated to the metric ATM.

THEOREM 4.10. — For any T > 1,

. -1 0 M,
(421) lim Tr, [g 47, 7 (s7/e) exp(—<*Dy2)]
2 ~ 2
=7/, Td,(TB, h"8)® T, [gNr2 exp(—B3:)] — = dim Xxg(8)-
Let w™, oM w8 be the Kihler forms associated to hTM BTM RTB,
Let VEM be the holomorphic Hermitian connection on (TM,hFM), and
let RZM be its curvature.

TueoreEM 4.11. — There exists C > 0 such that for ¢ € ]0,1],
e<T <1,
(4.22) iTr [g*'l —i(* ) exp(—e¢ 2DM2)] 2/ i Tdg(TM)chy(§)
: s T/e §T T/e T/e T3 J oso o 9
g _Rg/r: ¢
— A <C.
+ Mo ob ng( 2% b(hT/e) (hT/s)> hg(£7hf ) <C

THEOREM 4.12. — There exist § € 0,1}, C > 0 such that for ¢ €10, 1],
T>1,

L0
(4.22) ITrs [g 7 /e o7 (¥r/e) exp(= e* D)2 )]
9 dim X ] ] C
= 2 (X )i (RImE) - dim Xx, ()] £ 7
j=0

Theorems 4.5-4.9 can be obtained formally from [BerB, Thms. 4.8-
4.12] by introducing in the right place the operator g. This will permit us
to transfer formally the discussion in [BerB, Sect. 4] to our situation.
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c) Proof of Theorem 3.1.
By Theorem 2.12,

(4.24) chy(R*m.€) = / Tdy(TX) chy(£).
Xa
We also have the obvious equality
(4.25) Tdy(TM) = n*(Tdy(TB)) Tdg(TX) + 7 ( Tdg(TB)) Tdy(TX).

By Theorem 4.3, Theorems 4.5-4.12, and proceeding as in [BerB,
§4c),d)], using (4.24), (4.25), we get (3.6). O

5. A proof of Theorems 4.5, 4.6 and 4.7.

The proof of Theorems 4.5, 4.6 and 4.7 is essentially the same as the
proof of [BerB, Theorems 4.8, 4.9 and 4.10] given in [BerB, §5], where the
corresponding results were established when G is trivial. Now we use the
notation of [BerB, §5].

At first, for each U € TB, (gU)¥ = gU¥, so the operator Cr in
[BerB, (5.7)] commutes with the action of G.

Let ( )oo be the Hermitian product on EJ associated to the metrics
7*hTB @ hTX | ht on TM, ¢ defined by (1.2).

Let E1r,Ey,Ef 1 (1 > 0) be the vector spaces defined in [BerB,
Def. 5.12]. Then for any T > 0, the linear isometric embedding Jr of
Bl in Eyr defined in [BerB, Def. 5.16] is G-equivariant. Let E{’z be
the orthogonal space to Ef . in E§ with respect to ( )oo. It follows from
the previous considerations that for any T > 0, the orthogonal splitting
E} =E)r©® Egy’% of EJ considered in [BerB, (5.29)] is G-invariant, i.e.
G acts on EY ;. and E{'7.

Therefore the matrix of the unitary operator g with respect to the
splitting E§ = E? 7 @ E{’z can be written in the form

gor O
5.1 = |9 ,
(5.1) g [0 gm]

and moreover
(5.2) g0,7JT = Jrg.

The proof of Theorems 4.5 , 4.6 and 4.7 then proceeds as in [BerB, §5
c)-g)]. o
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6. A proof of Theorems 4.8-4.9.

In this section, we give a proof of Theorems 4.8 and 4.9. These
generalize [BerB, §6], where the corresponding results were proved in the
case where G is trivial.

At first we can verify the formulas of [BerB,Theorems 6.1-6.5] are
G-equivariant. By using [B5, Thm. 1.4}, and by proceeding as in [BerB,
§6(d)], we obtain (4.19).

By proceeding as in [BerB, §6(e)], we get (4.20).
This completes the proof of Theorems 4.8 and 4.9. O

7. A proof of Theorem 4.10.

This section is organized as follows. In a), we show that the proof
of (4.21) can be localized near 7~(BY). In b), given by € B9, we replace M
by (TkB)s, X Xp,, and rescaling on certain Clifford variables. In c), we
prove (4.21).

Recall that in this section, we will calculate the asymptotics as € — 0

of certain supertraces involving 6D:,Af[/€ for a fixed T > 1.

In this section, we use the same notation as in Section 4.

a) The proof is local on w~1(B9).

Let dvps (resp. dup, resp. dvx) be the Riemannian volume form
on M (resp. B, resp. on the fibre X) associated to the metric 7*hTP @ h7X
on TM ~ w*TB @& TX (resp. kT8 on TB, resp. hTX on TX).

Let dB, d™ be the distance functions on B, M associated to AT2, h™™,
Let a®,a™ be the injective radius of B, M. In the sequel, we assume
that given 0 < a < ap < 1 inf{a®,aM} are chosen small enough so
that if y € B, d®(¢g7'y,y) < o, then d5(y, B?) < 1ao, and if z € M,
dM(g7'z,z) < o, then dM(z, M?) < 1ao . If z € B, let BE(z, ) be the
open ball of center x and radius « in B.

Let f be a smooth even function defined on R with values in {0, 1],
such that

(71) £(t) = {1 for [t| < 5a,

0 for|t| > .



SUBMERSIONS AND EQUIVARIANT QUILLEN METRICS 1569

Set
(7.2) 9t) = 1= £(2).
DEFINITION 7.1. — For u € ]0,1], a € C, set
“+00 _ 42
F,(a) = /_ exp(itav/2 ) exp (—;—)f(ut) %,
(7.3) oo g d
Gula) :/_ exp(itav/2) exp (T)g(ut) ord
Clearly
(7.4) Fu(a) + Gu(a) = exp(~a?).

The functions F,(a), Gu(a) are even holomorphic functions. So there
exist holomorphic functions F,(a), G,(a) such that

(7.5) Fu(a) = Fu(a?), Gu(a) = Gu(a?).

The restrictions of F,,,G,, ﬁu, éu to R lie in the Schwartz space S(R).
From (7.4), we deduce that

(7.6) exp(—szDTAfI/f) = F.(eD}%,) + Ge(¢D7h,).

ProprosiTiON 7.2. — For é > 0 fixed, there exist ¢ > 0,C > 0 such
that for0<e <6, T > 1,

7] € CT?
-1 M
(1) T forrt gr ()G (7 DM < oo (- ).
Proof. — The proof of our theorem is as same as the proof of [BerB,

Prop. 8.3]. a

For T > 1 fixed, we use (7.7) with ¢ = T and T replace by T'/e, we
find

8 | T [o4z) s (s GeleDE)] | < cexp (- ).

Let F, (z—:DqJ‘I’/E)(z, z') (z,xz’ € M) be the smooth kernel associated to
F, (EDQA,’I/E) with respect to the volume form dvas(z’)/(27)4™ M Using (7.3)
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and finite propagation speed [CP, §7.8], [T, §4.4], it is clear that for
£€10,1], T > 1, z,2' € M, if d®(nz,72') > «, then

(7.9) Fe(eD%E)(x,m') =0,

and moreover, given z € M, FE(ED,IA!/E)(:E, -) only depends on the restriction
of D3l to 71 (B®(rz,a)).

Let Npos/p be the normal bundle to BY in B. We identify Nps/p
to the orthogonal bundle to TBY in TB. Let hNB9/8 be the metric on
Npo/p induced by h™P. Let dun,,,, be the Riemannian volume form
on (Nps/pr,h"V59/2). Let ¢(Nps/pr), c(TrX) be the Clifford algebras of
(Npsp g, hNB9/8), (Tg X, h™X). For U € TgB, V € TrX, let ¢(U),c(V)
denote the corresponding Clifford multiplication operators acting on
T A(T*OVB), A(T*OD X) associated to hTE hTX defined as in (2.8).
Set

(7.10) Lp= (-Z—)Nvgp%e(g)_m.

Then by (7.10), we get
—1 8 M -1 a ’
(7.11) Tr, [Q*T/s T (*T/a)Fa(EDT/a)] = Tr, [Q*T/E 5T (*T/E)FE(AE,T)]-

Let F¢ (A;,T)(wv z') (z,z’ € M) be the smooth kernel associated to the
operator F (A, 1) with respect to dvas (') (2r)dm M.

Let U, (B9) be the set of b € B such that dB(b, BY) < ap. We identify
Uaoy(B9) to {(b,Y); be B9, Y € Ngo/ppr, |Y| < o} by using geodesic
coordinates normal to BY in B. By (7.9) and the choice of «, ag, we get

(7.12) / Tr, [g*T/E ;T(*T/(.:)F( ;,T)(g'lx,z)]@}%%—ﬁ

19}
/ /|Y|<a0/4 / Tr, [9 *T/E (')T( T/e)

Y€Npg/B R
d’UM
-1
Fo(AL7)(g (b»Y’w)a(@Y,ﬂ?))]W'
By (7.8), (7.11), (7.12), we see that the proof of Theorem 4.10 is local
near 7~ 1(BY).
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b) Rescaling of the variable Y and of the Clifford variables.

Let V7B, VTX V¢ be the holomorphic Hermitian connections on
(I'B,hTB), (TX,hTX) and (£, h¢). Let RTP, R™X | L¢ be the corresponding
curvatures.

Taking by € B9, we identify B (bo, ap) with B(0, ag) C (TB)y, = C™
by using normal coordinates.

Take y € C™, |y| < ap, set Y = y + 7. We identify TB|y to TBg
by parallel transport along the curve t — tY with respect to the
connection V7B, We lift horizontally the paths ¢t € R% + tY into paths
t e Ry — z, € M with ; € Xy, day/dt € THEM. If 29 € Xp,, we
identify TX,,, &, to TX4,, &, by parallel transport along the curve
t +— x; with respect to the connections VX V¢, These trivializations
induce corresponding trivializations of A(T*(®V B), A(T*OV M) ® ¢.

Let Qy, = Q(Xs,,|x,,) be the vector space of smooth sections of
(A(T*O) X) ®¢)|x,, on Xp,. Then €, is naturally equipped with a
Hermitian product { ) attached to BT X1Xu, b1 Xeo defined in (1.2).

Recall that the operator DX is defined in (2.7). Under our

trivialization, Ker DX | BB (bo,a0) 18 @ Z-graded smooth vector subbundle
of Qp, on BB (bg, ag).

By [BerB, §8b)], there is also a smooth Z-graded vector bundle
K C 4, over (TgB)s, ~ R®*™ which coincides with Ker DX on B(0, 2ay),

with Ker D{,’g over Tg B\B(0, 3) and such that if K is the orthogonal
bundle to K in §2,,

(7.13) K* nKer Dy = {0}.

Let Py (Y € R?™) be the orthogonal projection operator from Qp, on Ky-.
Set P)J; =1- Py.

Let ¢ :R — [0,1] be a smooth function such that

() = {1 for |t| < ap,

(7.14) =
0 for |t| > 2a0.

Let ATB be the standard Laplacian on (TgB)p, with respect to
the metric hTBlbo. Let Hy, be the vector space of smooth sections of
m* A(T* OV By, @ (MT* OV X) ® €))x,, over (TrB)s, X Xp,. Let Ll 1 be
the operator

_e2ATB

(7.15) Lk = * (V) A2 + (1= 2V D) (=

+T2PE DS P ).
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For (Y,z) € (T B)p, X Xp,, € > 0, s € Hy,, set

(7.16) Ses(Y,xz) = s(Y/e, ).
Put
(7.17) L2 =S7"Li rS..

Let O, be the set of differential operators acting on smooth sections
of (AM(T**VX) ® £)x,, over R®™ x X, . Then we find that

L2 € ((To B)®O,.

Let fi,..., fom be an orthonormal basis of (TR BY)s,, let fom 41, - -
fem be an orthonormal basis of Ngs,p g p,-

D

DEFINITION 7.3. — For € > 0, set

V2 €
7.18 V= —f AN——is, 1<j<2m.
(7.19) ) =L a-iy, 1< <m
Let L2 7, M2} be obtained from L2 ., *1_"}5‘9/ OT (x7,) by replacing
the Clifford variables c(f;) (1 < j < 2m/) by the operators c.(f;).

For by € B9, Y € Ngo/BRrpb, |Y| < o, let k(by,Y) be defined by
dvg(be,Y) = k(bg, Y)deg(bo)vaBg/B (Y). Let dv(rp),, be the Riemannian
volume form on ((TB)y,, hLE).

Let Pr((Y,),(Y", 7)), Fe(Lip)((V,2), (Y, 2)) ((V2),(Y",2)) €
(TwB)s, % Xp,) (i = 1,2,3) be the smooth kernels associated to exp(—L? 1),
ﬁE(L;T) calculated with respect to dvirg), (Y')dvx, (z')/(2m)%™M.
Using finite propagation speed [CP, §7.8], [T, §4.4], we see that if
(Y, .’E) S NBQ/B,R,bO X Xpo, [Yl < iao, then

(7.19)  F.(AL1) (g7 (b, Y, ), (bo,Y,z))k(bo,Y)
= ﬁE(L;,T) (g—l(Ya .Z), (Yv .’E))

We observe that for any k € N, ¢ > 0, there is C > 0,C" > 0 such
that for € > 0,
~ —C!
(7.20) sup |al¥- IFe(a2) — exp(—a?)| < Cexp ( 5 )
{Im(a){<e €
Using (7.20), and proceeding as in [BerB, Prop. 8.2], we find for T > 1
fixed, there exist ¢, C > 0 such that for |Y],|Y’| < iao,

- , e
(7.21) l(FE(L;,T) - exp(—Lel:,T))((Yv ), (Y,ax ))| < cexp (*6’2—)
By (7.19), (7.21), we can replace F.(A] 1) by exp(—L} ) in (7.12).
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We know that P3..((Y, ), (Y’,z')) lies in
(End (A(TR BY))8c(Npa,B &), Oc(Tr X5, )® End(£).
Then M2 P2,.(g7!(Y,z),(Y,z)) can be expanded in the form

(722) MS,TPS,T (g—l(Y7 fL‘), (Yv $))

= E AN NS /\ifj1 .../\’L-qu®f€“"'%?]1-~]g7
1<iy < <ip<2m’
1< < <G L2m/

with Ri-#idi-da(g=1(Y,z), (Y,z)) € c(NpoyBr)o®c(TrXp,)® End(£).
Set

(7.23)  [M3P3r(g7 (Y, ), (Y,2))]™™ = Rb2 (g7 L(Y, z), (Y, z)).

ProrposiTiON 74. — If Y € Npo/pRrp,, T € Xp,, the following
identity holds:

-1 0 -
(7.24) Tr [947), 57 (vrye) Por (97 (Vo). (¥, )
= (i)t B e 2am Noe 0 Ty, [g{M2p P2 (97! (7Y, 0), (7Y, @)™,

Proof. — Since g acts like the identity on A(T*®VB9) ¢ €
¢(Nps/BR)bo® (TR Xb,) @ End(€). Therefore the rescaling of the Clifford
variable in (7.18) has no effect on g. Identity (7.24) is now a trivial
consequence of [Ge]. O

¢) Proof of Theorem 4.10.

Recall that for © > 0, the Bismut superconnection B, associated
to hT™ and h¢ was constructed in Section 2b). Also we observe that B, is
unchanged if AT is changed into h™ .

Recall that RTP is the curvature of V7B, Let RTB| go, 7H | s be the

restriction of RTB, GH#H on BY. Also V;, denote the ordinary differentiation
operator on (Tg B)s, in the direction f,. Then by (7.18), as in [BerB, (7.30),
(7.35)], we have as ¢ — 0

(7.25) Lg,T - Lg,T,
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and for Y € (Tg B)s,,

iwHH iwHH

(7.26) e~ g Lir(Y)e 2
1 1 2,1
=-3 (Vfm + §<RTB|BQK fa>hTB) ty Tr(R™ | ps) + BZz| go-

By [BerB, (7.36)], (7.18), as [BerB, (7.38)], we get , as e — 0

2
(7.27) My — Mip = T(NV ~dim X) +
By [B4, (3.16)-(3.21)], [BerB, §7d)], we have

(7.28) /N /X Tr, [g[M2 1 Pip(a™ (Y, 2), (¥, )]
Pe/E R TR dung, 5 (Y) dux,, (2)
(27-‘-)dimM

H g 2 ~ max
= idimB” 2 { Td,(TB, h¥)® Tr, [g(Ng — dim X) exp(— B2s)] } .

THEOREM 7.5. — For T > 1 fixed, there exist ¢ > 0, C > 0, r € N
such that fore € 10,1}, (Y, z), (Y',2') € (TeB)so X Xbo»

(7'29) I(Peg,T - P(?,T)((Yi ‘7;)7 (YI’ zl))|
<ce(1+|Y]+[Y')) exp(~ClY - Y'|?).

To prove Theorem 7.5, we establish at first an uniform estimate on
the kernel Pg T

THEOREM 7.6. — For T > 1 fixed, there is C > 0 such that
for k € N, there exist ¢ > 0,r € N such that for any ¢ € 10,1],
(Y,z), (Y',2) € (TrB), X Xb,,

gleltle’l
. —_— Y, Y. 1«
(7 30) |al7SIE}TSk aYaaY/a/ Ps,T(( 7(11),( » L ))I
<c(l+ Y]+ Y]) exp(=CJY — Y'|?).
Proof of Theorem 7.6. — Set

(7.31) 0:(V) =1+ (1 + ) Fo ().
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Let E° be the vector space of square integrable sections of
(AT B)BA V05 AT OV X) © €)1 x,, over (TxBe, x Xi. For
0 < ¢ < 2m' = 2dimBY, let E) be the vector space of square
integrable sections of (AY(TgBY) @A(]\_f’g,g/B))(,O@(A(T*(O’I)X) ® &)1 x,,-
Then E = @27, E). Similarly, if p € R, EP and E! denote the
corresponding p™* Sobolev spaces. If s € EY, set

dv(TB)bO (Y’) debO (.’L‘I) )
(27r)dim M

(7.32) |20 = |s(Y, 2)[*g. (v )2~
(TIRB)bO )(Xbo

Let ( )c,0 be the Hermitian product attached to | |.o. If £ € End(E?),
let ||£”2;3 be the corresponding norm of £. If s € E', put

(7.33) sl =120+ D IVsuslZo+ D Ve,sl
@ i

Let A = —ATB +D§§’2. Using the technique in [BerB, §9d)], especially
[BerB, (9.51)] (in our situation, T is fixed), where we replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we find for any k, k' € N,
there exists C' > 0 such that for ¢ € )0, 1],

(7.34) || Ak exp(—L‘:”T)Ak’Hg:g <C.

Take p € N. Let Jg,bo be the set of square integrable sections of
(AT BY)BA(N 50, 5)) 0o (AT OV X) © €) x,, over

{(va) € (T]RB)bo X Xbo ;T E Xbo?lyl < p+ %}
We equip JJ, with the Hermitian product for s € J), ,

dv Y')dv z
(735) |$|2 = / / IS(K x)l2 (TB)bo( di)m MXbO( ) )
[Y|<p+1/2 /X (2m)

bo

IfLe End(Jg’bO), let [|£||p,00 be the corresponding norm of £ with respect
to| |

Obviously, there is C > 0 such that for any p € N, s € J;?,bo

(7.36) ls| < Isle0 < C(1+p)*™|s].
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By (7.34) and (7.36), we find for any k,&’ € N, there exists C' > 0 such
that for ¢ €]0,1], p € N,

(7.37) [|A* exp(~LE ) A¥|| < C'(1+p)*™.

Using (7.37) and Sobolev’s inequalities, we see that for k, k¥’ € N, there
exist C > 0, r > 0 such that for p € N, £ € 10, 1],

sup Ay AR PE((Y,2), (Y, 2')| < C(1+p).
[YLIY'|<p+1/4

So we get the bounds in (7.30) with C = 0.

To get the required C > 0, we proceed as in the proof of [B5,
Thm. 11.14].

Let u € R — k(u) be a smooth even function such that
0 forlul <1
(7.38) k(u) = rlul sy
1 for ju| > 1.
Forqe R%,a€C,set

(7.39) K,(a) :2/0+°°cos(t\/§a) exp (- %)k(é)%

Clearly, K4(a) is an even holomorphic function of a, therefore, there is a
holomorphic function a € C — K4(a) such that

(7.40) K,(a) = K,(a?).

Given ¢ > 0, set

(Im ))? 2
V.=3XeC, Re(A) > —— -y,
(7.41) { < ) 4c }

T 2
T, = {A €C, Re(N) = & ‘;‘CQ) —02}.

Then by [B5, (11.53)], for any ¢ > 0, there exists C’ > 0 for which given
m,m' € N, there exists C > 0, such that for ¢ > 1,

(7.42) Sél‘[/) la|™ - |I~{,Sm,)(a){ < Cexp(—C'%).
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Also

Zord yo L Kq(A)

(7.43) K (L p) = 3 . X—_Lg dX.

Let I?q(LS’T)((Y, z),(Y’,z")) be the smooth kernel associated to I?q(Lg,T)
calculated with respect to dv(rgys, (Y')dvx,, (z')/(2m)4™ M Using (7.42)
and proceeding as in [BerB, §9d)], where we always replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we get the following
estimation which is an analog of [B5, (11.59)] : there is Cp > 0 such
that for £ € N, there exist C > 0, r € N for which given ¢ € N,
(Y,z),(Y',2') € (TrB)p, X Xp,, € € [0,1], then

glal+la’l
(7.44) I ISIuP|<k WKq(LS,T)((K"E)7(Yl7x/))I

< O(1+ Y]+ Y')) exp(~Cog?).

If t > g, then k(t/q) = 1. Using finite propagation speed for the
solution of hyperbolic equations for cos(s+/ L€37T) [CP, §7.8], [T, 4.4], we
find there is a fixed constant C§j > 0 such that for ¢ € N*,

(145)  Pip((%,2),(Ya) = Ko(L20)((Y,2), (v, 2")
if Y —Y'| > Clg.
From (7.44), (7.45), we deduce that there exist Cy,C§ > 0 for

which given & € N, there exist C > 0, r € N for which given ¢ € N*,
(Y,z),(Y',2') € (TrB)p, X Xbg, € € [0,1], then

(46)  sup %PQT((Y, z), (v",a)|
< C(A+Y[+|Y']) exp(—Cog®) if [Y —Y'| > Coq.
For (Y,z),(Y’',2') € (TrB)b, X Xb,, let g € N such that
Cog <Y =Y'| < Co(g+1).
By (7.30) with C = 0 and (7.46), we get
plat+la’l o
(4 sup gy (%), (V,2))|

<C(1+Y|+ |Y'|)T exp(—Coq?)

<C(1+|Y]+|Y") exp (— CO('X%(,)Y—Il - 1)2).

The proof of Theorem 7.6 is completed. 0O
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Proof of Theorem 7.5. — Using (7.25) and Theorem 7.6, and
proceeding as in [B5, §11 i)}, [BL, §11 q)], we have Theorem 7.5. |

Using Theorem 7.5, (7.19), (7.21), (7.24) and (7.28), we get over BY

g
-1
(7 48) hm |Y|<ap/4 /XTrs [g *T/s ﬁ(*T/E)

YeNpo/B R
dUNBg/B (Y) deb (xl)
(2m)dim M

= %{ng(TB,hTB)Q Trs [g(Nr2 — dim X) exp(~B22)] }™*.

FL(AL7)(g7 (5,Y,2), (0,Y,2)) | k(b Y)

By (7.7), (7.12) and (7.48), the proof of Theorem 4.10 is completed. O

8. A proof of Theorem 4.11.

This section is organized as follows. In a), we reformulate Theo-
rem 4.11. In b), we indicate that the proof is localized near = —1(BY) by
Proposition 7.2. In ¢), we prove the estimate (8.1).

In this section, we make the same assumption and we use the same
notation as in Sections 4 and 7.

a) A reformulation of Theorem 4.11.

THEOREM 8.1. — There exists C > 0 such that forO <u <1,T > 1,

(8.1) \Trs [g *7! %(*T) exp( T2 DM 2)]
2 oT™M
- /Mg or T Tdg(TM)chy(§)
Cu?

- T _ < 7.
* e 9 ng( pin o) 6T(h )b=oChg(§’h) =T

Remark 8.2. — Theorem 8.1 implies Theorem 4.11. In fact, for
0<e<1,e<T<1weuse (8.1), with u =T and T replaced by T'/¢, then
we find that the right-hand side of (8.1) is dominated by

CTz% = CeT < Ce.

So we have proved (4.22).
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b) Localization of the problem near =~1(B9).

By Proposition 7.2 and the argument in Section 7b}, the proof of (8.1)
can be localized near BY. Thus, we are entitled to choose by € BY as in
Section 7b), to replace M by C™ x X3, and to trivialize the vector bundles
as indicated in Section 7b). Then we will prove (8.1) in this situation.

¢) Proof of Theorem 8.1.
By (7.10),

1
(8.2) yra=TY T DY TNV,
Therefore
— 8 U2 M2
(8.3) Trs [g >t (3—7: *T) exp (—— EDT ’ )}
1/ 0
= Tr, [g *7! (B—T *T) exp ( — uzA'lz/Tﬁl)].
We will use the notation of Section 7 with ¢ replaced by 1/T, and T
by 1. By (7.25), we see that as T — +o0
(8.4) L:{/T,l - Lg,l'
Let P!7,((Y,2),(Y',2")) ((Y,2),(Y',2') € (TrB)y, x Xp,) (¢ =
1,2,3) be the smooth kernel associated to the operator exp(—u’L} 1)

calculated with respect to dvrs), (Y')dvx,,(z')/ (2m)4mM_ For Y in
NBH/B,R,bO’ T € Xbo, set

(8.5) Qeu(Y,2) = Try[g[M3, P2, (g7 (Y, 2), (Y, 2))] 7).
By (7.24), for Y € Npo/B R be» T € Xp,, We have

©6) T 977" (55 #7) Plims o™ (0), (v, 0)]

, . 1
~ (ciytmeraamae Lo, oy g)

By (8.6) and the argument of Section 7b), to calculate the asymptotics
of (8.3) as u — 0 uniformly in T > 1, we have to find the asymptotics
as u — 0 of

dUX 0(1:) va g (Y)
(87) / /Ql/T,u(Y7a") : (2 dimJIBVI/B )
YENpg/BrvX Tl')

Let d* (z,z') be the distance function on (X4,, A7%%). Then

d((Y,2), Y",2)) = ([Y = Y']? + d¥(z,2)2)"/*

is a distance function on (Tg B)p, X Xp,-
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ProrosiTioN 8.3. — There exist ¢,C > 0,p,r € N such that for any
(Y,z), (Y, 2") € (TrB)s, X Xpo, € € [0,1], u €]0,1],

88) [P ((Y,2), (Va)] < e(1+ Y]+ [Y])’
o Y —Y'|2 + d¥(z, x’)z)‘
)

X exp (—

Proof. — At first, using the technique in [BerB, §9d)], where we
replace the Sobolev norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), the
bounds in (8.8) with C = 0 are obtained. To get the required C > 0, we
proceed as in the proof of Theorem 7.6.

Using finite propagation speed for the solution of hyperbolic equations
for cos(s\/Lsgvl) [CP, §7.8], [T, §4.4], we find there is a fixed constant ¢’ > 0
such that for € € [0,1], uw € ]0,1], ¢ > 1,

8.9) P21, ((Y,),(Y',") = Kopu (WL ) (Y, ), (Y, )
if d((v,z),(Y',")) > g

By using the proof of Theorem 7.6, and [B5, Thm. 11.14], there is C > 0,
¢ > 0, p,r € N such that for ¢ € N*, (Y,x),(Y’,2') € (TrkB)by X Xy,
e€0,1], u€]o,1],

(8.10) |uPK, . (W2LE )((Y, ), (Y, )|

<e(1+|Y]+|Y')) exp (— C;—%)

By (8.8) with C = 0, (8.9) and (8.10), as (7.47), we have (8.8). O

Let Nxs/x be the normal bundle to X7 in X. We identify Nxs,x
to the orthogonal bundle to TX? in TX. Let h’™x*/x be the metric on
Nxs/x induced by h™ |k, . Let dun,,, be the Riemannian volume form
on (NXQ/Xi]R, thg/X).

By (8.8), to calculate the asymptotics of (8.7) as u — 0, we can
localize near {0} x Xj . We identify U, ({0} x X3 ) to

{(vaaX)a Y e NBg/B,R,boa TE Xg, Xe NXg/X,Ra |Y|3 |X| S aO}

by geodesic coordinates normal to {0} x X3 in (TgB)p, x X.
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For Y € (TgB)op,z € X%, X € Nxoyxg |Y|,|X| < 30, let
k' (Y,z,X) be defined by

(8.11) dox (Y, 2, X) = K'(Y, 7, X) dvny, ,  (X) dvxa ().

By standard results on heat kernel (cf. [BeGeV, Thm. 2.30]), we find there
exist smooth functions ay, _,, (), ..., a7 o(z) (x € M?) such that as u — 0,
forz € X3

812) frcn enixisenss Qu/ralYs @ XK (¥,2,%)
YENBg,/p g, |Y|<ao/4 d'UNXg/X(X) d'UNBg/B(Y)
(QW)dimM

0
= Z ar ;(x)u? + O(u?).

j=—n

Also the a7 ;(z) only depend on the operator L3 7,1 @nd its higher
derivatives on z. By (8.4), at ;(z) is continuous on T' € [1, +oc].

By (7.12), (7.27), (8.4)-(8.8), (8.12), we know that there exist ar;
depending continuously on 7' € [1,+00] such that for any » € ]0,1],
T € [1,+0o0)

b3} u? 2 1 cu?
-1 Y _ Y M2 _ 225 == .
(8.13) ]Tr5 [g*T BT(*T)eXp( T2DT )} Z apju™| < T
j=—dim M
Set
~M
s = [ 5 TA(TM)chy(6)
(8.14) mo 2W
' 2 ~RIM aey—1 R £
bog= [ g5 [Tde (T —E) T S )], chal6,0)

By [B5, (2.44), (2.63)] which extends [BGS3, Thm. 1.22], for T > 1 fixed,
asu—0

L2 2 b
(8.15) Tr, [g 7" 5 (37) exp(—u D" ] = 5 L —bog + OW).

By comparing (8.13) and (8.15), we get

e 2
(8.16) ar,; = 0 if < —1, ar,—1 = Tb_lyg, aro = —bo,g.

By (8.13) and (8.16), we get (8.1). 0
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9. A proof of Theorem 4.12.

This section is organized as follows. In a), as in [BerB, §9], we reduce
the problem to a local problem near BY. In b), we summarize very briefly
the content of [BerB, §9 c)]. In ¢), we establish key estimates on the kernel
of F.(L? ;). In d), we prove Theorem 4.12.

‘We use the same notation as in Sections 4 and 7.

a) Finite propagation speed and localization.

ProprosiTION 9.1. — There exists C > 0, such that for 0 < ¢ < 1,
T>1

(9.1) ‘Trs [g 7 /e %(*T/S)GE(ED’IA:I/E)]
2 dim X ) ] C
= 2 (3 (D ixg(RImE) - dim Xxg(€)) Ge(0)] < -

Jj=0

Proof. — For v > 0, set

Hy(a) = /—:o exp(i tV2 a) exp (—— Qt—;)g(t) vth_w.
Clearly
Go(a) = Hv(%).

By an analogue of the McKean Singer formula [MKS], we find that
dim X

(9.2) Tr,[gNvH.(DP)] = D (—1)jxg(R/m &) He(0).
=0

Using (9.2) and proceeding as in [BerB, Prop. 9.1], we have (9.1). O

By (7.6) and (9.1), to establish Theorem 4.12, we only need to
establish the following result.
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THEOREM 9.2. — If a > 0 is small enough, there exist § > 0, C > 0,
such that for0 < e <1, T >1

4 O
(93) ’ Trg [g *T}E 6—T (*T/E)FE (ED’IA"/I/E):I
dim X

2 . ) . C
— = (X Vi (B - dim Xxy () F(0)] £ s
§=0
Proof. — The remainder of the section is devoted to the proof of
Theorem 9.2. O

By (7.11), we deduce that

4 0 4, 0 ~
(94) Tr, [g *T/lg 8_T (*T/E)FE(ED’IA‘/I/E)] = Tr, [g *T/le % (*T/E)FE( ,52,T):| .

Let ﬁE(A’EQ,T)(x, z')(z,z’ € M) be the smooth kernel associated to f‘s(A;%T)
with respect to dvas(z’)/(2m)4™ M. Using finite propagation speed, as
in (7.9), it is clear that if x € M, ﬁE(AgT)(x,-) only depends on the
restriction of A, . to 7~1(B?(nz, ).

As in Section 7, the proof of (9.3) is local near 7 ~!(B9).

b) The matrix structure of the operator L2 1. as T — +oo.
We use the same trivializations and notation as in Section 7.

Also by using (7.19), (7.24), for Y € (Ngs;BR)b,, We get

95) T, [o37), or vy ) Fe(LEr) g™ (¥, 2), (¥, )

= (—i)tim PR im Moo Ty [gM3 1 Fu(L3 ) (97 (1Y, 2), (1Y, 2)]
Recall that the vector bundle K and the operators P, S, were defined
in (7.13) and (7.16). Let F? be the vector space of square integrable sections
of A(T;B?) ® A(N,,5) 8S71*K over (TeB)s,. Then F? is a Hilbert
subspace of E°. Let F&+ be its orthogonal complement in E°. Let p. be

the orthogonal projection operator from E° on FY, set p> = 1 — p.. Then
if s € E°,

(9.6) Pes(Y) = P.ys(Y,-) for Y € TgB.
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Put

(9.7) { E.Tr= paL:;Tps» Fer = peLg,Tngy

Ger =pr L2 ppe, Her =prL3 1ot
Then we write Lg}T in matrix form with respect to the splitting

E° =F2 @ Ft,

E F,
3 e, T e, T
(0.8) = [ o HE,T} .

Recall that L& RTX are the curvatures of (¢,V¢), (TX,VTX), and
that the (3,0)-tensor (S(:)-,-) is defined in Section 2b). In the sequel,
[, ]+ denotes an anticommutator.

THEOREM 9.3. — There exist operators E., F.,G., H. such that as
T — o0,

1

Ger =TG: +0(1), H.r=T?H.+0(T).

Set

1 *(0,
(910) Q. = PP(lYD{ — 5[ VAT D%,

2
2m’ . N £2 ) c(e]-)
(122_:1<S(€i)fa V€50 T (f A —3”&) N
2m
+% Z (S(es) 5,€j>thc(fa)c(ej)]+
a=2m'+1
L S o e, §43 lTrRTX
+%a§;1(f /\—?zfa)c(ej)( -{-5 [ ])(faaei)
2m
b3 Celeles) (B4 + 5 TR (ase)
a=2m'+1

Then Q. (F%) c F%+, and

&

(9'11) { F, = PerPEl, G. = péLersy

H, = pl (o (elY ) DY + (1 - 02(e|Y])) Do%)pt-

13
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Proof. — For a fixed ¢ > 0, the analysis of the matrix structure of
LS,T as T — +oo is the same as in [BerB, §9c)]. Of course, the rescaling
on the Clifford variables which depends on ¢ > 0, is different, but this does
not introduce any extra difficulty.

So Theorem 9.3 holds for essentially the same reasons as in [BerB,
Theorem 9.3]. Especially, by [BerB, (7.33), (9.37)], we get (9.10). m|

¢) Uniform bounds on the kernel of FG(L‘:’T).

We now establish an extension of {BerB, Thm. 9.6].

TuEOREM 9.4. — There exists C' > 0, for which if k € N, there exist
C’ > 0, r € N such that if |o),|o/| < k, e €]0,1}, T > 1, (Y,z),(Y’,z)
€ (T]RB)bO X Xbo,

lal+le’|

012 | syasve

FL30) (%), (V",2))]
<C'(1+ Y|+ |Y) exp(=ClY - Y'|?).

Proof. — Recall that { ) is the Hermitian product on E? defined
by (7.32). If s € E!, put
(9.13) |3|§,T,1 = TZIP:§’3|§,0 + !PsYSE:,o
+ Z IVs.8l20+T7 Z Ve, Py sl2 o
a i

The bounds in (9.12) with C = 0 are easily obtained by proceeding
as in [BerB,Thm. 9.6], where we replace the Sobolev norms [BerB, (9.49),
(9.50)] by (7.32) and (9.13). To get the required C > 0, we proceed as in the
proof of Theorem 7.6 where we use the Sobolev norms (7.32) and (9.13). 0O

d) Proof of Theorem 9.2.

Let F. be the vector space of smooth sections of A(TyB9)®
A(]V}‘BQ/B)@)SE“I*K over (TgB)y,. Let Z, be the operator from F. to
itself

(9.14) E.=E. - F.H'G..

One verifies easily that =, is an elliptic second order differential operator
acting on F..
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The operator (¢ DP)? acts on smooth sections of A(T*( B)&® Ker DX
Therefore by proceeding as before, i.e. by rescaling the coordinate Y and
the Clifford variables ¢(f3)(1 < 8 < 2m’), we construct from (eD?)?
an operator X2, which acts on smooth sections of A(TyBY)®A(NY, /B)
® S-1*K over B(0,2a/¢). Then as [BerB, Prop. 9.9], we have

ProrosrTioN 9.5. — Over B(0, a/¢), one has the identity

(9.15) = =32,

Let F.(Z)(Y,Y'), F.(S3)(Y,Y')(Y,Y' € (TrB)b,) be the smooth
kernels associated to the operator E(Eg), 171(23) with respect to
dvrp(Y")/(27)4m B Using (9.15) and finite propagation speed, it is clear
that for |V, |Y'] < a/4¢,

(9‘16) ﬁe (Ee)(Y7 Y/) = ﬁa(zg)(yv Y/)'

Here, the minor difference with [BerB] is that here only the Clifford
variables ¢(fy) (1 < £ < 2dim B9) are rescaled, while in [BerB], the Clifford
variables ¢(fg) (1 < ¢ < 2dim B) were rescaled. Because our Clifford
rescaling introduces fewer diverging terms than in [BerB, §9], so we have
the following analogue of [BerB, Thm. 9.8]: There exists C > 0 such that
for0<e<1,T>1,

= = o 0,0 C
(9'17) “FE(LS,T) - PsyFE(“:’E)PEY“E’O < ﬁ

Now by using (7.27), (9.5), (9.12), (9.16), (9.17), and by proceeding
as in [BerB, §9 g)] and [B5, §13 j)], we obtain Theorem 9.2. m|
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