

Submodular Dictionary Learning for Sparse Coding

Zhuolin Jiang Guangxiao Zhang Larry S. Davis

University of Maryland at College Park, MD, 20742

1. Overview

Goal

 Present a supervised algorithm for *efficiently* learning a compact and discriminative dictionary for sparse representation.

Approach

- -A dataset is mapped into an undirected *k*-nearest neighbor graph G=(V, E). The discriminative dictionary learning is modeled as a graph topology selection problem.
- -A monotonic and submodular objective function for dictionary learning consists of two terms: the entropy rate of a random walk on a graph and a discriminative term.
- -The objective function is optimized by a highly efficient greedy algorithm by using the submodularity and monotonic increasing properties of the objective function and the *matroid* constraint.
- This simple greedy algorithm gives a near-optimal solution with a (1/2)-approximation bound [5].

2. Related Work

- Sparse Coding has been successfully applied to a variety of problems in computer vision such as face recognition [1]. The SRC algorithm [1] employs the entire set of training samples to form a dictionary.
- K-SVD [2]: Efficiently learn an over-complete dictionary with a small size. It focuses on representational power, but it does not consider discrimination.
- · Discriminative dictionary learning approaches:

Constructing a separate dictionary for each class.

Adding discriminative terms into the objective function of dictionary learning [3].

• The diminishing return property of a submodular function has been employed in applications such as sensor placement, clustering and superpixel segmentation [4].

3. Preliminaries

Submodularity

Let E be a finite set. A set function $F:2^E\to R$ is submodular if $F(A\cup\{a_1\})-F(A)\geq F(A\cup\{a_1,a_2\})-F(A\cup\{a_2\})$

for all $A \subseteq E$ and $a_1, a_2 \in E \setminus A$. (diminishing returns property)

Matroid

Let *E* be a finite set and \mathcal{I} a collection of subsets of *E*. A matroid is an ordered pair $\mathcal{M} = (E, \mathcal{I})$ satisfying three conditions:

(a) $\emptyset \in \mathcal{I}$; (b) if $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$; (c) if $A \in \mathcal{I}$, $B \in \mathcal{I}$ and |A| < |B|, then there is an element $x \in B - A$ such that $A \cup x \in \mathcal{I}$.

4. Submodular Dictionary Learning

Monotonic and Submodular Objective Function

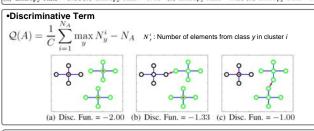
 \Box Consists of an entropy rate term $\mathcal{H}(A)$ and a discriminative term $\mathcal{Q}(A)$:

 $\max_{A} \mathcal{F}(A) = \mathcal{H}(A) + \lambda \mathcal{Q}(A) \ s.t. \ A \subseteq E \ and \ N_A \ge K,$

A: selected subset of edge set E; NA: number of connected components induced by A

4. Submodular Dictionary Learning

Entropy Rate of a Random Walk μ_i : Stationary probability of vertex v_i $\mathcal{H}(A) = -\sum \mu_i \sum P_{i,i}(A) \log P_{i,j}(A)$ $P_{i,i}$: Transition probability from v_i to v_i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a) Entropy Rate = 0.03(b) Entropy Rate = 0.43 (c) Entropy Rate = 0.22(d) Entropy Rate = 0.24



Optimization

□ The cycle free constraint and connected component constraint, $N_A \ge K$, induces a matroid $\mathcal{M} = (E, \mathcal{I})$. Dictionary learning is achieved via maximizing a submodular function subject to a matroid constraint: $\max_A \mathcal{F}(A) \ s.t. \ A \in \mathcal{I}$

Algorithm 1 Submodular Dictionary Learning (SDL)

Action Classification

First compute a sparse representations

for each frame, then employ dynamic time warping to align two sequences in

Input: $G = (V, E), w, K, \lambda$ and \mathcal{N} Output: DInitialization: $A \leftarrow \emptyset, D \leftarrow \emptyset$ for $N_A > K$ do $\tilde{e} = \operatorname*{argmax}_{\{e\} \in \mathcal{I}} \mathcal{K}(A \cup \{e\}) - \mathcal{F}(A)$ $A \cup \{e\} \in \mathcal{I}$ $A \leftarrow A \cup \{\tilde{e}\}$ end for for each subgraph S_i in G = (V, A) do $D \leftarrow D \cup \{\frac{1}{|S_i|} \sum_{j: v_j \in S_i} v_j\}$ end for

end fo

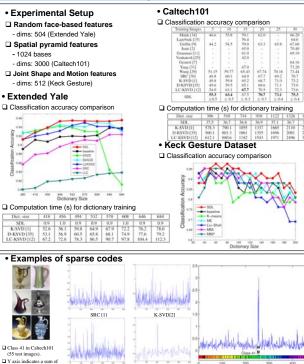
Classification

□ Face and Object recognition For a test image *y*_i, first compute its sparse representation:

 $z_i = \arg\min \|y_i - Dz_i\|_2^2 \ s.t. \ \|z_i\|_0 \le s$

Then the label of y_1 is the index *i* corresponding to a K-NN classifier is used for recognition. the largest element of a class label vector $l = W_{2n}$.

5. Experiments



 J. Wright, A. Yang, A. Ganesh, S. Sastry and Y. Ma. Robust face recognition via sparse representation, TPAMI 2009.

D-KSVD[3]

absolute sparse codes

- M. Aharon, M. Elad and A. Bruchstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. Sig. Proc., 2006.
- 3. Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition, CVPR 2010.
- M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy rate superpixel segmentation, CVPR 2011.
- G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 1978