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ABSTRACT

We consider the problem of maximizing a non-negative submodular
set function f : 2Y — R, over a ground set N subject to a
variety of packing type constraints including (multiple) matroid
constraints, knapsack constraints, and their intersections. In this
paper we develop a general framework that allows us to derive a
number of new results, in particular when f may be a non-monotone
function. Our algorithms are based on (approximately) solving the
multilinear extension F' of f [5]] over a polytope P that represents
the constraints, and then effectively rounding the fractional solution.
Although this approach has been used quite successfully in some
settings [6}, 22 24, |13} [3]], it has been limited in some important
ways. We overcome these limitations as follows.

First, we give constant factor approximation algorithms to max-
imize F' over an arbitrary down-closed polytope P that has an
efficient separation oracle. Previously this was known only for
monotone functions [36]. For non-monotone functions, a constant
factor was known only when the polytope was either the intersection
of a fixed number of knapsack constraints [24] or a matroid poly-
tope (37} 30]. Second, we show that contention resolution schemes
are an effective way to round a fractional solution, even when f
is non-monotone. In particular, contention resolution schemes for
different polytopes can be combined to handle the intersection of
different constraints. Via LP duality we show that a contention
resolution scheme for a constraint is related to the correlation gap
[[1]] of weighted rank functions of the constraint. This leads to an
optimal contention resolution scheme for the matroid polytope.

Our results provide a broadly applicable framework for maxi-
mizing linear and submodular functions subject to independence
constraints. We give several illustrative examples. Contention reso-
Iution schemes may find other applications.
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1. INTRODUCTION

We consider the meta-problem of maximizing a non-negative sub-
modular set function subject to independence constraints. Formally,
let N be a finite ground set of cardinality n, and let f : 2V — R,
be a submodular set function over NV E] Let Z C 2% be a downward-
closed familyﬂ of subsets of N. Our problem is then maxgsez f(.9).
We are interested in independence families induced by natural and
useful constraints such as matroid constraints, knapsack constraints,
related special cases and their intersections. Throughout this paper
we assume that f is given via a value oracle; that is, given a set
S C N the oracle returns f(.S). The function f could be mono-
tone or non-monotong’} monotone functions typically allow better
approximation results.

Submodular function maximization has recently attracted con-
siderable attention in theoretical computer science. This is for a
variety of reasons including applications, recognition of interesting
algorithmic and structural properties, as well as the use of submod-
ular functions as utility functions in algorithmic game theory. A
number of well-known problems can be seen as special cases of
submodular function maximization. For example, the APX-hard
Max-Cut problem can be seen as (unconstrained) maximization
of the cut function f : 2 — R of a graph G = (V, E). (Note
that f here is non-monotone.) Another well-known special case
of our problem is the Max-k-Cover problem, which can be viewed
as max{f(S) : [S| < k} where f(S) = |U,cg A;l is the cover-
age function for a collection of sets {A;}. Max-k-Cover is hard
to approximate to within a factor of (1 — 1/e + ¢) for any fixed
€ > 0, unless P = NP [15]. Hence we focus on approximation
algorithmsﬂ

'A set function f : 2" — R is submodular iff f(A) + f(B) >
f(AUB)+ f(AnB) forall A,B C N.

’A family of sets Z C 2N is downward-closed if for any A C B C
N, B € T implies that A € 7.

3 f is monotone if f(A) < f(B) whenever A C B.

“If f is not assumed to be non-negative, even the unconstrained




Classical work in submodular function maximization was based
on combinatorial techniques such as the greedy algorithm and local
search. We mention the work of Cornuejols, Fisher, Nemhauser
and Wolsey [14, 29} 18], 28|| from the late 70’s which showed a vari-
ety of approximation bounds when f is monotone submodular and
7 is induced by multiple matroid constraints. Recent algorithmic
work has considerably extended and improved the classical results.
Local-search methods have been identified as particularly useful,
in particular, for non-monotone functions. This has led to the first
constant factor approximation for the unconstrained submodular
function maximization problem [16]], and a variety of approxima-
tion results for knapsack and matroid constraints [24, 25[. The
greedy algorithm has also been modified and made applicable to
non-monotone functions [20]].

Despite the above-mentioned results, combinatorial techniques
have some limitations: (i) they have not been able to achieve optimal
approximation results, except in the basic case of a single cardinality
or knapsack constraint [29] 33]]; (ii) they are not very flexible in
terms of the ability to combine constraints and develop more general
techniques (e.g., a (1 — 1/e)-approximation was known for maxi-
mizing a monotone submodular function subject to 1 knapsack con-
straint [33], but little was known even for 2 knapsack constraints). A
new approach which overcomes some of these obstacles and brings
submodular function maximization closer to the world of polyhe-
dral techniques is via the multilinear relaxation, introduced in this
context in [S]: F(x) = > gy f(S) [Lics i [1;25(1 — 2;5). The
value F'(x) is equivalently the expected value of f(R) where R is a
random set obtained by picking each element 7 independently with
probability z;. We observe that if f is modulalﬂ then F'is simply a
linear function.

Continuous extensions offer some advantages in the design of
approximation algorithms. Suppose we have a polytope Pr C
[0, 1]" that is a relaxation for Z C 2" in the sense that {1; | I €
T} C Pz. Moreover suppose there is a polynomial-time separation
oracle for Pz (we call such polytopes solvable). Then we can hope
to (approximately) solve the continuous problem maxxe p, F'(x) to
find a fractional solution x* € Pz and then round x* to an integral
solution. This is a standard paradigm in approximation via linear
and convex programming relaxations. Two natural questions arise
in applying this paradigm to submodular functions, both due to the
fact that the extension F' is neither a convex nor concave function.
First, can we (approximately) solve the problem maxxc p, F(x)?
Second, can we round a fractional solution effectively?

Recent work has addressed the above questions in several ways.
First, Vondrik [36] gave a continuous greedy algorithm that gives an
optimal (1 — 1/e)-approximation for the problem maxyep F(x)
when f is monotone submodular and P is a solvable polytope.
When f is non-monotone, the picture is less satisfactory. Lee et
al. [24] gave a local-search based algorithm that gives a (1/4 — ¢)-
approximation to maximize F' over the polytope induced by a fixed
number of knapsack constraints. Vondrak [37]] obtained a 0.309-
approximation for maximizing F' over a single matroid polytope,
and this ratio has been recently improved to 0.325 [30]. However, no
approximation algorithm was known to maximize I’ over a general
solvable polytope P.

In terms of rounding a fractional solution x, a natural strategy
to preserve the value of F'(x) is to independently round each coor-
dinate ¢ to 1 with probability z;. However, this rounding strategy

problem is inapproximable since deciding whether the optimum
value is positive or zero requires an exponential number of queries.
> A function is modular if f(A) 4 f(B) = f(AU B) + f(AN B)
forall A, B C N.If fis modular then f(A) = wo+ >, 4 w; for
some weight function w : N — R.

does not typically preserve the constraints imposed by Z. Various
dependent rounding schemes have been proposed. It was shown in
[5]] that "pipage rounding” can be used to round solutions in the ma-
troid polytope without losing in terms of the objective function F'(x)
([13]] achieves the same via "swap-rounding"). In [22} 24} 3| [23]
randomized rounding coupled with alteration was used for knapsack
constraints. More recently, [|13|] showed concentration properties
for rounding in a single matroid polytope when f is monotone, and
[38]] showed concentration for independent rounding even when f
is non-monotone. These led to a few additional results. Despite this
progress, the “integrality gap” of max{F'(x) : x € P} has been so
far unknown even when f is monotone and P the intersection of
two matroid polytopes. (We remark that for pure intersections of
matroids, combinatorial algorithms are known to yield good approx-
imations [24}25].) However, even for modular functions, combining
constraints such as matroids and knapsack constraints has been diffi-
cult, and no general result was known that matched the best bounds
one can get for them separately.

Our contribution at a high level: In this paper we overcome exist-
ing limitations by obtaining a general framework via the following
results.

e We give the first constant factor approximation for the prob-
lem max{F(x) : x € P} where P is any down-monotone
solvable polytope and F' the multilinear extension of any
non-negative submodular function.

e We propose a general (dependent) randomized rounding frame-
work for modular and submodular functions under indepen-
dence constraints via what we call contention resolution
schemes (CR schemes). A key advantage is the ability to
easily combine schemes for different constraints to obtain a
scheme for their intersection.

e We give an optimal (1 — 1/e)-factor CR scheme for any ma-
troid. Previously this was known only for the uniform matroid
of rank 1 [[17]]. More generally, we give a tight connection be-
tween CR schemes and the correlation gap of the associated
weighted rank functions.

The above ingredients can be put together to give a variety of new
results that we discuss in more detail in Section2] We summarize
some of our results in Table[I]

1.1 Maximizing the multilinear extension over
a general polytope

We now give a more detailed description of our technical results
and the general framework. First, we give a constant factor approx-
imation for the problem max{F(x) : x € P}, where F is the
multilinear extension of a non-monotone submodular function f
and P is a down-monotone solvable polytope; the monotone case
admits a (1 — 1/e)-approximation [36] as we mentioned already.
The condition of down-monotonicity of the polytope is necessary for
the non-monotone case; it follows from [37]] that no constant factor
approximation is possible for the matroid base polytope which is
not down-monotone.

The main algorithmic technique for non-monotone functions is
local search. Fractional local search with additional ideas has been
the tool to solve the continuous problem in special cases of poly-
topes [24} |37, 130]. Previous fractional local search methods for a
constant number of knapsack constraints ([24] and [37]]) improved
a current solution x by considering moves along a small number
of coordinates of x. The analysis took advantage of the combi-
natorial structure of the underlying discrete structure (knapsacks
or matroids) which was sufficiently simple that swaps along a few



[ Constraint type [ Linear maximization | Monotone submod. max. | Non-negative submod. max. ||
O(1) knapsacks [1—¢] [1—1/e—¢] 0.325 [0.25]
k matroids & ¢ = O(1) knapsacks 0.6/k 0.38/k [Q(1/(k + 0))] 0.19/k [Q(1/(k + ¢))]
k-matchoid & ¢-sparse PIP Q1/(k+0)) Q(1/(k+0) [QA/EO] | Q/(k+£)) [Q1/k0)]
Unsplittable flow in paths and trees [Q(1)] Q(1) Q(1)

Table 1: Approximation factors for different types of constraints and objective functions. Results in brackets were previously known.

coordinates sufficed. How do we obtain an algorithm that works for
any polytope P?

A new insight: Our key high-level idea is simple yet insightful.
Any point x € P can be written as a convex combination of the
vertices of P. We view the problem of max{F(x) : x € P} as
optimizing a submodular function over the ground set consisting
of the (exponentially many) vertices of P (duplicated many times
in the limit). This effectively reduces the polytope constraint to a
cardinality constraint and one can apply known algorithmic ideas
for the discrete problem. From this viewpoint we obtain a new
fractional local search procedure: given a current point x, a local
swap corresponds to removing a vertex in the convex combination of
x and adding a new vertex of P (with appropriate scalar multipliers).
To implement this efficiently we can use linear optimization over P.
(We remark that the continuous greedy algorithm for the monotone
case [36]] can also be interpreted with this insight.)

Our algorithms are derived using the above high-level idea. We
note that when specialized to the matroid polytope or knapsack
polytope which have combinatorial structure, our algorithms become
simpler and in fact resemble previous algorithms. This is perhaps
not a coincidence; it could be argued that our interpretation via the
vertices of the underlying polytope P is perhaps the “right” view.
Our algorithms and proofs of approximation guarantees are in fact
simpler than the previously given proofs for particular polytopes (24}
37,130]. We present three algorithms of varying complexity. The
first algorithm is close in spirit to the local-search algorithm of Lee
et al. for knapsack constraints [24] and gives a 0.25-approximation.
The second algorithm uses some ideas of [37] for the case of a
matroid polytope and gives a 0.309-approximation with respect to
the best integer solution in P. The most involved algorithm is a
generalization of a recent algorithm inspired by simulated annealing
[30] which gives a 0.325-approximation, also with respect to the
best integer solution in P. We remark that a known limit on the
approximability of max{F(x) : x € P} is a hardness of 0.478-
approximation in the value oracle model, even in the special case of
a matroid polytope, also due to [30]. We summarize our results in
the following theorem.

THEOREM 1.1. For any nonnegative submodular function f and
a solvable down-monotone polytope P, there is a 0.25-approximation
algorithm for the problem max{F(x) : x € P} where F is
the multilinear extension of f. There is also an algorithm for
this problem which returns a solution'’y € P of value F(y) >
0.325 - max{F(x) : x € Pn{0,1}V}.

1.2 Contention resolution schemes

We show that a certain natural class of rounding schemes that we
call contention resolution schemes (CR schemes) provides a useful
and general framework for rounding submodular functions. For
a ground set IV, let Pz be a convex relaxation of the constraints
imposed by Z C 2V, and let x € Pz. From the definition of F,
a natural strategy to round a point x is to independently round the
coordinates; however, this is unlikely to preserve the constraints
imposed by Z. Let R(x) C N be a random set obtained by in-
cluding each element ¢ € NN independently with probability ;.

The set R(x) is not necessarily feasible. We would like to remove
(randomly) some elements from R(x), so that we obtain a feasible
set I C R(x). The property we would like to achieve is that every
element ¢ appears in [ with probability at least cx; for some parame-
ter ¢ > 0. We call such a scheme “c-balanced contention resolution”
for Pz. We stress that the scheme needs to work for all x € Pz. In
several settings we need to first scale down the fractional solution
which calls for a more general definition below.

DEFINITION 1.2. A (b, ¢)-balanced CR scheme for Pr is a
scheme such that for any x € Pz, the scheme selects an inde-
pendent subset I C R(bx) with the following property: Pr[i €
I | i € R(bx)] > cfor every element i. The scheme is said to be
monotone if Pr[i € I | R(bx) = R1] > Pr[i € I | R(bx) = R»]
whenever i € R C Ra. A scheme is said to be strict if Pr[i € I |
1 € R(bx)] = cfor every .

We emphasize that a CR scheme is defined with respect to a
specific polyhedral relaxation Pz of Z. We observe that several pre-
vious rounding procedures for packing (and also covering) problems
rely on the well-known technique of alteration of a set obtained via
independent rounding (see [32} 4} 7, |12} |3]] for some examples), and
are examples of CR schemes. However, these schemes are oblivious
in that they do not depend on x itself (other than in picking the ran-
dom set R), and the alteration is also deterministic. Our definition
is inspired by the “fair contention resolution scheme” in [[17]] which
considered the special case of contention for a single item. The
dependence on x is essential for matroids.

We observe that monotonicity of the CR scheme is a necessary
property for submodular functions while it is not required for modu-
lar functions. We prove the following theorem via the FKG inequal-
ity. We note that a similar theorem was shown earlier for monotone
submodular functions in [3]].

THEOREM 1.3. Let f : 2V — R, be a non-negative submodu-
lar function and x be a point in Pz, a convex relaxation for T C 2.
Let I(x) € Z be the random output of a monotone (b, c)-balanced
CR scheme on x € Pr. If f is non-monotone, let us assume in
addition that the CR scheme is strict. Then E[f(I)] > cE[F(bx)].

REMARK 1.4. One can show that the strictness assumption for
non-monotone CR schemes can be dropped in the above theorem,
when applying the following pruning operation to the set I obtained
by a monotone (b, c)-balanced CR scheme: Go once through all
elements of I in any order, and keep an element i in I only if its
marginal value with respect to the previously selected elements
is positive. A possible drawback of this pruning step is that the
obtained procedure to construct I from x is not oblivious to f.

For a given Pz it is natural to look for the largest ¢ such that there
is a c-balanced scheme. However, when one is interested in com-
bining several schemes we need more flexibility. In particular, we
will be interested in (b, ¢)-balanced schemes that have the property
that as b — 0 we have ¢ — 1. Note that this is a natural property
since scaling down the fractional solution and then independently
rounding should make it more likely that the resulting set belongs
to Z (since Z is downward closed). We show the following lemma.



LEMMA 1.5. LetT = ﬁ?zlL and Pz = N; Pz,. Suppose each
Pz, has a monotone (b, c¢;)-balanced CR scheme. Then Pz has a
monotone (b, ], ci)-balanced CR scheme. In the special case that
each element of N participates in at most k constraints and ¢; = ¢
for all i then Pr has a monotone (b, c¥) CR scheme. Moreover; if
the scheme for each Pz, is implementable in poly-time time then the
combined scheme for Pz can be implemented in poly-time.

REMARK 1.6. The combined CR scheme works with respect to
the natural combination of constraint relaxations — an intersection
of the respective polytopes. This ensures that the relaxed problem is
still tractable and we can apply our optimization framework.

Contention resolution via correlation gap and an optimal scheme
for matroids: A natural question is how one proves the existence
of a contention resolution scheme. As we mentioned, several ex-
isting rounding schemes are based on deterministic and oblivious
alteration to a set obtained via independent rounding. Most of these
schemes have been applied to constraint systems induced by linear
inequalities of the form Ax < b where A is a non-negative matrix.
Until recently there was no contention resolution scheme for the
matroid polytope; an optimal (b, 1_2717 )-scheme was previously
known for the very special case of the uniform matroid of rank
one [17]]. We note that the recent work of Chawla et al. [9} [10] im-
plicitly contains a (b, 1 — b)-balanced scheme for matroids, although
their motivation was different. In this paper we develop an optimal
scheme for an arbitrary matroid.

THEOREM 1.7. There is an optimal (b, I*Z_b )-balanced con-

tention resolution scheme for any matroid polytope. Moreover the
scheme is monotone and efficiently implementable.

We use randomized schemes and view them abstractly as a con-
vex combination of deterministic schemes. This allows us, via LP
duality, to show that the best contention resolution scheme for a con-
straint system is related to the notion of correlation gap for weighted
rank functions of the underlying constraint. We reiterate that the
scheme depends on the fractional solution x that we wish to round;
the alteration of the random set R(x) is itself a randomized proce-
dure that is tailored to x, and is found by solving a linear program.
We are inspired to make the general connection to correlation gap
due to the recent work of Yan [39]; he applied a similar idea in
the context of greedy posted-price ordering schemes for Bayesian
mechanism design, improving the bounds of [9,10].

1.3 A framework for rounding via contention
resolution schemes

We now describe our framework for the problem maxgsez f(S).
The framework assumes the following: (i) there is a polynomial-time
value oracle for f, and (ii) that there is a polytope Pz that contains
the set {15|S € Z} and moreover that there is a polynomial-time
separation oracle for Pz, and (iii) there is a strict and monotone
(b, ¢)-balanced contention resolution scheme for Pr. We then have
the following simple algorithm:

1. Using an approximation algorithm, obtain in polynomial time
apoint x* € Pz such that
F(x*) > amax{F(x) | x € Pzn{0,1}V} > a-max f(9).
2. Use a strict and monotone (b, ¢)-balanced contentioneresolu—
tion scheme for Pz on x* to output a random set I(x*) € Z.

THEOREM 1.8. The above algorithm is a randomized (0.325 bc)-
approximation algorithm for maxgez f(S). If f is monotone then
the approximation ratio is (1 — 1/e)be. If f is modular then the
ratio is bc and the contention resolution scheme is not restricted to
be monotone.

PROOF. We have F'(x*) > aOPT with OPT = maxsecz f(.5).
Theorem shows that if we apply a strict and monotone (b, ¢)-
balanced contention resolution scheme to x* then the random set
I output by it has the property that E[f(I)] > bcF'(x*), hence we
have that E[f(I)] > a - (bc)OPT.

For non-monotone submodular functions, Theorem [I.]] gives
a = 0.325. For monotone submodular functions, [36] gives o =
1—1/e. For modular f, F'(x) is a linear function, and hence o = 1
can be obtained by linear programming. Moreover, if F'(x) is a
linear function then by linearity of expectation, E[f ()] > bcF(x™)
without any monotonicity assumption on the scheme. []

Combining schemes for different constraints: We are particu-
larly interested in the case when Z = N}, Z; is the intersection of
several different independence systems on N; each system corre-
sponds to a different set of constraints that we would like to impose.
Assuming that we can apply the above framework to each Z; sepa-
rately, it is straightforward to obtain an algorithm for Z as follows.

Let Pz, be a polytope that is the relaxation of Z;. In other words
{1s : S € Z;} is contained in Pz,. Let Pz = N; Pz,. It follows that
{1s : S € Z} is contained in Pz and also that there is a polynomial-
time separation oracle for Pz if there is one for each Pz,. Now
suppose there is a monotone (b, ¢;) contention resolution scheme
for Pz, for some common choice of b. It follows from Lemma
that Pz has a monotone (b, [, ¢;) contention resolution scheme.
We can then apply Theorem|1.8|to obtain a (ab [ [, ¢;)-randomized
approximation for maxgez f(S) where a depends on whether f is
modular, monotone or non-monotone.

Organization: The rest of the paper is divided into three parts.
Some illustrative applications of our framework are discussed in
Section[2} Constant factor approximation algorithms for maximiz-
ing F' over a solvable polytope are described in Section 3] The
connection between contention resolution schemes and correlation
gap and its use in deriving optimal schemes for matroids are dis-
cussed in Section[d] as well as contention resolution schemes for
knapsack constraints, sparse packing systems, and UFP in paths and
trees. Several proofs are omitted due to space constraints.

2. APPLICATIONS

Contention resolution. In this section we briefly outline some con-
crete results that can be obtained via our framework. Our approxi-
mation results for various constraints are direct consequences of the
respective CR schemes, so we focus on these first. We note that the
schemes are with respect to the natural polyhedral relaxations.

Matroids and matchoids: For every matroid constraint M = (N, 7),
we develop an optimal (1 — 1/e)-balanced CR scheme. More gener-
ally, for any b € (0, 1] we design a (b, 1_2% )-balanced CR scheme,
which lends itself well to combinations with other constraints. For
the intersection of k£ matroids, or more generally for a k-uniform

matchoid (a common generalization of k-set packing and intersec-
tion of k& matroids [[26]), we obtain a (b, (#)k )-balanced CR
scheme for any b € (0, 1]. The choice of b = ki“ gives a

balanced CR scheme for every k-uniform matchoid.

2
e(k+1)

Knapsack / linear packing constraints: Given a non-negative m X n
matrix A and non-negative vector b, let Z = {S | Alg < b}
where 1g is the indicator vector of set S C N. The width of the
system of inequalities is defined as W = |min; ; bj /A; ;|. Some
special cases of interest are (i) A is a {0, 1}-matrix, (ii) A is column-
restricted, that is, all non-zero entries in each column are the same
and (iii) A is k-column sparse, that is at most k non-zero entries



in each column. Many combinatorial problems can be captured by
these constraints. Previous results implicitly contain the following:

e For a constant number of knapsack constraints (m = O(1)),
by guessing and enumeration tricks, one can “effectively” get
a (1 —e¢,1 — e)-balanced CR scheme for any fixed € > 0.

e When A is k-sparse, we derive a (b, 1 — 2kb)-balanced CR
scheme. If A has in addition width W > 2, we geta (b, 1 —
k(2eb)™" ~!) CR scheme for any b € (0, 1). These results
follow from [3]].

e When A is a {0, 1}-matrix induced by the problem of routing
unit-demand paths in a capacitated path or tree, there is a
(b,1 — O(b)) CR scheme implicit in [4} {7, |12]]. This can be
extended to the unsplittable flow problem (UFP) in capaci-
tated paths and trees via grouping and scaling techniques [21}
12} [11].

We discuss additional details of the preceding CR schemes in Sec-
tion[d] We mention that several rounding schemes in the literature
for packing problems, typically developed for modular functions,
can be reinterpreted as CR schemes. Our framework then can be
used to obtain algorithms for non-negative submodular set functions.
See [8] for an illuminating example.

Approximation algorithms. Our CR schemes with suitable choices
of parameters imply the following results for problems of the form
maxsez f(S), where f is non-negative submodular:

e If 7 is the intersection of a constant number of knapsack
constraints, we achieve a 0.325-approximation, improving
the (0.2 —¢)-approximation from [24]] and a recent (0.25—¢)-
approximation [23]].

e If 7 is the intersection of a k-uniform matchoid and ¢ knap-
sack constraints with £ a fixed constant, we obtain an ()
approximation (constant independent of ¢), which improves
the bound of Q(%_H,) from [[19]. We remark that this is a new
result even for linear objective functions.

If 7 is the intersection of a k-uniform matchoid and an ¢-

sparse knapsack constraint system of width W, we give an

Q(m)-approximation, improving () from [19].

e We obtain a constant factor approximation for maximizing
a non-negative submodular function of routed requests in a
capacitated path or tree. An O(1) approximation is known for
modular functions [4}|7, 12} |11] but no prior approach that we
are aware of could obtain a constant factor for non-monotone
submodular functions.

3. SOLVING THE MULTILINEAR RELAX-
ATION FOR NON-NEGATIVE SUBMOD-
ULAR FUNCTIONS

In this section, we address the question of solving the problem
max{F(x) : x € P} where F is the multilinear extension of a
submodular function. As we already mentioned, due to [36 6],
there is a (1 — 1/e)-approximation for the problem max{F(x) :
x € P} whenever F is the multilinear extension of a monotone
submodular function and P is any solvable polytope. Here, we
consider the maximization of a possibly non-monotone submodular
function over a down-monotone solvable polytopeE] We assume

%As we noted in the introduction, [37] implies that there is no con-
stant factor approximation for maximizing non-monotone submodu-
lar functions over general polytopes. The approximation that can be
achieved for matroid base polytopes is proportional to 1 —1/v where
v is the fractional packing number of bases, and in fact this trade-
off generalizes to arbitrary solvable polytopes. We defer, to a full
version, the details of the theorem one can prove in this direction.

in the following that P C [0,1]" is a down-monotone solvable
polytope and F' : [0,1]Y — R is the multilinear extension of a
submodular function. We present three algorithms for this problem.

3.1 Continuous local-search 0.25-approximation
First we consider the following natural local-search algorithm.

ALGORITHM 3.1. [nitialize x := 0. As long as there isy € P
such that (y — x) - VF(x) > 0 (which can be found by linear
programming), move X continuously in the direction 'y — x. If there
is no such'’y € P, return x.

Naturally, a polynomial-time implementation of this algorithm
would move in discrete steps and continue only as long as the im-
provements are sufficiently large. One possible implementation
would maintain a poly-size convex combination x = % 1 Vi
where v; are certain vertices of P (with possible repetition). Each
discrete step corresponds to replacing a vertex in the convex com-
bination by another. This is in line with our intuitive description in
Section[Tl

We ignore the implementation details here. We assume that when
the algorithm terminates, we have (y — x) - VF(x) < 0 for every
y € P. The basic lemma in the analysis of this algorithm as well as
the improved algorithms is the following.

LEMMA 3.2. For any two points x,y € [0,1]V: (y — x) -
VE(x) > F(xVy)+ F(xA\y)—2F(x).

PROOF. By submodularity, F' is concave along any line with a
nonnegative direction vector, such as (x V' y) — x > 0. Therefore,

FxVy)—F(x) <((xVy)—x)-VF(x), and similarly
F(xAy) = F(x) < ((xAy) =x) - VF(x),

because of the concavity of F' along (x Ay) — x < 0. Adding up
these two inequalities, we get F'(x Vy) + F(x Ay) — 2F(x) <
(xVy)+ (xAy)—2x) - VF(x). It remains to observe that
(xVy)+ (xAy) =x+y, which proves the lemma. []

COROLLARY 3.3. Ifx is a local optimum such that (y — x) -
VF(x) <0, then2F(x) > F(xVy)+ F(xAy).

Next, we show that if we combine this local optimum with a
suitable “complementary solution", we get a 1/4-approximation to
the global optimum. The following is our algorithm.

ALGORITHM 3.4. Using Algorithm[3.1] find a local optimum x
in P. Then define Q@ = {y € P :y <1 — x} and again using
Algorithm[3.1] find a local optimum'y in Q. If F(x) > F(y) return
X, otherwise y.

We use the following property of the multilinear extension of
a submodular function. Let us replace each coordinate by a [0, 1]
interval and let us represent a certain value x; of the 7’th coordinate
by a subset of [0, 1] of the corresponding measure.

DEFINITION 3.5. Let X € LY, where L denotes the set of all
measurable subsets of [0,1]. We say that X represents a vector
x € [0, 1}N, if Xi has measure x; for each i € N.

From a "discrete point of view", we can imagine that each co-
ordinate is replaced by some large number of elements M and a
value of x; is represented by any subset of size Mx;. This can
be carried out if all the vectors we work with are rational. In the
following, we consider functions on subsets of this new ground set.
We show a natural property, namely that a function derived from the
multilinear extension of a submodular function is again submodular.
(An analogous property in the discrete case was proved in [27,[24].)



LEMMA 3.6. Let F : [0,1)Y — R be a multilinear extension
of a submodular function f. Define a function F* on LN, by
F*(X) = F(x), where x € [0,1]" is the vector represented by X.
Then F™ is submodular:

F'(XUY)+ F(XNY) < F(X)+ F*(Y),
where the union and intersection is interpreted component-wise.

PROOF. We have F(x) = E[f(X)] where &; = 1 independently
with probability z;. An equivalent way to generate X is to choose any
set X € LV representing x, generate uniformly and independently
anumber r; € [0, 1] foreach ¢ € N, and set &; = 1iff r; € Aj.
Since the measure of & is x;, £; = 1 with probability exactly x;.
Therefore,

i
X
I
g
L)
I

E[f(x)] =E[f({i:r € A:})].
Similarly,
F* (V) =E[f({i : m: € Yi})].
This also holds for ¥ UY and X N Y: since (X UY); = X; UY;
and (X NY); = X; N Y, we get
F'XudY)=E[f{i:m € XIuU{i:r; € V:})]
and
Fr(XnY)=E[f{i:rmeX}n{i:r, e Vi})].
Hence, by the submodularity of f,
F*(XUY)+ F(xXnY)
= E[f{i:rieX}U{i:r; € Vi})
+f{i:rmeXiyn{i:r € Vi})]
E[f({i :ri € Xi}) + f({i: ri € Vi})]
= F*(X)+ F"(Y).

IN
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From here, we obtain our main lemma - the average of the two
fractional local optima is at least iOPT.

LEMMA 3.7. Let OPT = max{F(z) : © € P}. Letx be a
local optimum in P, and'y a local optimumin Q = {y € P :y <
1 —x}. Then 2F(x) + 2F(y) > OPT.

PROOF. Let OPT = F(z) where z € P. By Corollary [3.3] the
local optimum x € P satisfies

2F(x) > F(xVz)+ F(xAz). (1)

In the restricted polytope Q = {y € P : y < 1 — x}, consider
the point z’ = (z — x) V 0 € Q. Again by Corollary 3.3| the local
optimum y € (@ satisfies

2F(y) > F(yVvz)+ F(y Az). )

Now we use a representation of vectors by subsets as described in
Def. We choose X, Y, Z, 2" € LV to represent x,y, z, 2z’ as
follows: foreachi € N, X; = [0, x;), Vi = [zi, x; +y:) (note that
xity; < 1), Z; =(0,2)and Z{ = [0, 2]) = [0, max{z—x;,0}).
Note that (X NY); = 0 fori € N.

Defining F* as in Lemma[3.6] we have F*(X) = F(x), F* (V) =
F(y), F*(Z) = F(z) = OPT and F*(Z’) = F(z'). Using rela-
tions like [0, z;) U [0, z;) = [0, max{z;, z; }), we also get F* (X' U
Z) = F(xVz)and F*(XNZ) = F(xAz). Furthermore, we have
(ZI\X)UY; = [mi, max{x; +yi, 2 }) = [xi, z: + max{y;, 2} }).
This is an interval of length max{y;,2;} = (y V z’); and hence
FY(Z\X)UY) = Fly V7).

The property of the first local optimum (T) can be thus written as
2F(x) > F*(XUZ)+F*(XNZ). The property of the complemen-
tary local optimum (2)) can be written as 2F (y) > F*((Z\X)UY)
(we discarded the nonnegative term F'(y A z') which is not useful
in the following). By Lemma(3.6) F™* is submodular. Hence we get

F'(XNZ)+F((Z\X)UY) > F (XNZ)U(Z\X)UY)
= F*"(ZU))

(we discarded the intersection term). Finally, using the fact that
X NY = 0 and again the submodularity of F'™*, we get

F'(ZUX)+F(ZUY) > F'((ZUX)N(ZUY)) = F*(2)
(we discarded the union term). To summarize,

2F(x) +2F(y) > F*(XNZ)+ F(XUZ)+ F*((Z\X)U)Y)
> F*(Z) = OPT.

O

COROLLARY 3.8. Forany down-monotone polytope P C [0, 1]~
and multilinear extension of a submodular function F : [0, l]N —
Ry, Algorithmis a %-approximation to the problem max{F (x) :
x € P}

3.2 Restricted local-search 0.309-approximation

Next, we present a modified local-search algorithm which is a gen-
eralization of the algorithm for matroid polytopes from [37]. We re-
mark that this algorithm is in fact simpler than the i—approximation
from the previous section, in that it does not require a second-stage
complementary local search.

ALGORITHM 3.9. Initialize x := 0 and fix a parameter t €
[0,1]. As long as there isy € P [0,t]" such that (y — x) -
VF(x) > 0 (which can be found by linear programming), move x
continuously in the direction y — x. Return X.

This algorithm also works for any down-monotone polytope P. With
the choice of t = 1 (3 — v/5), it achieves a 1 (—1 + v/5) ~ 0.309-
approximation (with respect to the optimal 0-1 solution; we are not
sure currently whether the analysis extends to optimal fractional
solutions). We omit the analysis in this extended abstract.

3.3 Simulated annealing 0.325-approximation

Finally, we present the algorithm with the best ratio, based on
the ideas of simulated annealing and the recent work of [30]]. This
algorithm can be seen as an extension of the 0.309-approximation,
where local search is applied to a restricted polytope P N [0,¢]" .
Here, we vary the "temperature parameter" ¢ continuously from 0 to
1, while performing local search in the restricted polytope.

ALGORITHM 3.10. Initialize x := 0 and t := 0. As long as
t < 1, repeat the following:
1. Run a local search inside PN[0, 1]~ until (y —x)-VF(x) <
Oforally € PN [0,t)".
2. Generate \ uniformly at random in [0, 1], let T\ (x) = {7 :
z; > Atand Q = {z € P : Vi € Tux(x);2; = 0}.
Initialize z := 0 and run a local search inside Q, to find an
auxiliary local optimum z € Q). Remember the best auxiliary
local optimum, maximizing F(z).
3. Findy € P maximizing y-V F(x), modify x := x—&—%(y—
x), t :=t+ 0, and go to step 1.
Eventually, return the better of x and the best auxiliary local opti-
mum z.



Note that the point x evolves throughout the process, while the
search for z starts separately in each iteration. In Step 3, we look for
a point y in the full polytope P rather than the restricted polytope
PN0,#)". Since x € [0,]Y and y € [0,1]", the modified point
x + 12+ (y — x) has coordinates z; + 12 (y; — z;) <t + §, and
s0 it is contained in P N [0,¢ + §]". Coming back to Step 1, we
continue local search from this point. We defer the analysis to the
full version of this paper.

4. CONTENTION RESOLUTION AND THE
CORRELATION GAP

In this section we highlight a close connection between CR
schemes and a concept known as correlation gap |1]], and discuss
how to obtain an asymptotically optimal (b, c)-balanced CR scheme
for matroids.

DEFINITION 4.1. For a set function f : 2 — Ry, the correla-
tion gap is defined as

E[f ()]

inf ,
xel0,N  fF(x)

where f*(x) = max{} g asf(9): Y gasls =x,> gas =
1,as > 0} is the maximum possible expectation of f over dis-
tributions of expectation X, and X is the product distribution with
expectation x. Furthermore, for a class of functions C, the correla-
tion gap k(C) is the infimum of correlation gaps over all functions
inC

w(f) =

In other words, the correlation gap is the worst-case ratio between
the multilinear extension F'(x) = E[f(%X)] and the concave closure
T (x). We define the correlation gap as a number & € [0, 1], to
be in line with the parameter c in our notion of a c-balanced CR
scheme (the higher the better). The definition in [[1] uses the inverse
ratio.

Relation between CR schemes and the correlation gap: The rela-
tionship between CR schemes and correlation gap arises as follows.
Let Z C 2" denote the set of feasible solutions. Consider a product
distribution on 2~ with expectation p € Pz, in other words a ran-
dom set R which contains elements independently with probabilities
p;. Let II be the family of all deterministic CR schemes 7, i.e. ways
to choose a subset 7(R) C R such that 7(R) € Z. (Although the
scheme is deterministic, there is randomness here due to R.) Any
randomized CR scheme can be written as a convex combination
of such deterministic schemes; let us denote the coefficients by A-.
Define g;,» = Prg[i € w(R)], the probability that element % is
chosen in the scheme 7. Hence, when executing a randomized CR
scheme with coefficients A, first with probability A, a deterministic
CR scheme 7 is chosen, and then 7(R) is returned. The goal of
our randomized scheme is to achieve the property that every ele-
ment ¢ appears in 7(R) with overall probability at least cp;. Let us
write down a linear program describing the optimal randomized CR
scheme, and its dual.

max C
wply St Lrendimds = pic ViEN
WEH)\” =1
= > 0 Vr eIl
min u
©Pl) St uen@syi S p Vrell
ien PiYi = 1
yi > 0 VieN

We can interpret the dual as follows. Given an assignment to
the variables y;, the value of the dual is max.en >, ¢i,=¥i =
maxren »_,; Yi Prr[i € m(R)] = maxren Er[} (g, vi]. Since
m can choose an arbitrary feasible subset for each R, the optimal 7 is
given by choosing for each R the maximum-weight subset 7 ( R) un-
der the weights y;, and the dual value is Er[maxscr,sez ) ;g ¥il-
In words, this is the expected value one can extract from a ran-
dom set R with marginals p;, when the weights are normalized by
>, piys = 1. Minimizing over the choices of weights y;, we obtain
what we call the correlation gap of the solution set Z,

DEFINITION 4.2. For T C 2V, we define the correlation gap as
H(I) = infpePLyZO S pivi ;wi E[maxng,gez Zies yiL where R
contains element v independently with probability p;.

THEOREM 4.3. The correlation gap of L is equal to the maxi-
mum c such that T admits a c-balanced CR scheme.

PROOF. As discussed above, the correlation gap of Z is equal to
the optimum value of the dual LP. By LP duality, this is equal to the
optimum of the primal LP, which is the best value of ¢ for which
there is a c-balanced CR scheme. [

The following lemma shows a close connection between the
correlation gap of a solution set Z and the correlation gap of the
respective rank function. More precisely, the correlation gap of
T corresponds to the worst (i.e. smallest) correlation gap of the
respective rank function over all weight vectors.

LEMMA 4.4. ForZ C 2V andweightvectory > 0, letry(R) =
MaXSCR,SeT Zies y; denote the associated weighted rank func-
tion. Then k(Z) = infy>o k(ry).

PROOEF. Using the notation 7y (R) for the weighted rank func-
tions with weights y, the correlation gap of Z can be rewritten

as k(Z) = infpepy,y>0 I%f”;_?] , where R contains elements in-

dependently with probabilities p;. We first observe that for any
p € Pz, we have r§ (p) = 3, piyi. Consider a convex combi-
nation p = Y o ;asls, > as = 1, as > 0 with r{ (p) =
> sez @sy(S). Since the weighted rank function of a feasible set
S € T is simply its weight we obtain

ry(P)=> asy(S) =y Y asls=y-p=>_ piy,

Sez ser i
E E
and hence x(Z) =  inf Elry (R)] = M
PEPL,Y>0 Y. DilYi pPEPLy>0 71y (p)
To prove the claim it remains to show that
Elry (B)] _ Ery(R)]
pePry>0 1y (p) pel0,1]N y>0 73 (p)

Lety > 0. We will prove (3) by showing that for any point p €
[0, 1] there is a point p’ € Pz with p’ < p (coordinate-wise), and
satisfying r§ (p’) > 7§ (p). Since 7y is monotone, we then obtain
E[ry(R)]/ry (p) > E[ry(R)]/ry (p’), showing that the infinum
over p on the right-hand side of (3) can indeed be restricted to the
polytope Pr. Letp = > oy @sls, Y gcy@s = 1,as > 0be
a convex combination of p such that 7y (p) = > gc x sy (S).
For every S C N, let I(S) C S be a maximum weighfindependent
set, hence 7y (S) = y(I(S)). The point p' = > gy @sli(s)
clearly satisfies p’ < p, and furthermore

mp')zz( 5 as)ry<s>:zasry<s>
SET \WCN,[(W)=8 SCN

=7y (p).
[l



Monotonicity, efficiency and strictness: In the discussion above,
we have ignored two issues: the monotonicity of our CR scheme,
and the question whether we can find it efficiently. These issues can
be also related to the concept of correlation gap, using LP duality.
If we want to obtain a monotone CR scheme, we can simply
define II to be the family of all deterministic monotone CR schemes.
(It is not true that all monotone randomized CR schemes can be
obtained as convex combinations of deterministic ones, but certainly
this construction yields monotone randomized CR schemes.) LP
duality implies that if there is a family of monotone CR schemes
IT' C II that certifies that (DP1) is lower-bounded by c, i.e. for
any weight y > 0 with 3,y piy; = 1 we have maxem 3,y
¢i,=Yi > c, then there exists a monotone c-balanced CR scheme
which is a convex combination of schemes in IT'. Rephrased
in the context of correlation gaps, IT’ is a family certifying that
the correlation gap of Z is lower-bounded by ¢, since x(Z) >
infoep,,y>0 m max,cr E[y(m(R))] > ¢ where the first in-

equality follows from ry (R) > E[y(w(R))] for all = € IL

Similarly, the question of efficiency translates into the dual as
follows. If for each weight vector y we have an efficient pro-
cedure to compute an efficient CR scheme 7 : 2V — 7 with
> ien ixYi > ¢ then we can use this procedure to approxi-
mately separate over the dual. This allows us to find efficiently
a polynomial-sized collection of constraints that certify that the dual
optimum is at least c. Hence, by solving (LP1) only over the vari-
ables corresponding to those constraints, a c-balanced CR scheme
can be obtained efficiently. Notice that the thus obtained CR scheme
is efficient, since it is a mixture of a polynomial number of efficient
schemes. Without further details, we formulate these extensions in
the following theorem.

THEOREM 4.5. There is an efficient c-balanced CR scheme for
T iff there is an efficient algorithm which for any weight vector
y > 0, and a set R containing elements independently with prob-
abilities p € P(Z), returns a feasible subset m(R) C R such

that Er [Zieﬂ(R) yl} > ¢> . yipi. In addition, if the algorithm

can be chosen so that w(R) is a monotone function of R (i.e., if
1 € R1 C Ry, andi € w(Ry2), then i € w(R1)), then there is an
efficient monotone c-balanced CR scheme for L.

Finally, we comment on the issue of strictness (i.e. obtaining an
exact conditional probability Pr[i € I | i € R] = ¢), which is
needed in the case of non-monotone submodular functions. If we
have a contention resolution scheme guaranteeing a lower bound
Prli € I | i € R] > ¢, then we can simulate this scheme for a
given distribution of R and estimate the actual probability for each
element, ¢; = Pr[i € I | i € R] > ¢, within a polynomially small
error (assuming that c is a constant). Then we can modify the con-
tention resolution scheme by removing element ¢ with probability
1 — ¢/c;. The resulting scheme is arbitrarily close to being strict,
and the approximation factor will not be affected significantly. We
omit the details.

The above framework easily extends to (b, ¢)-balanced CR schemes
by restricting p to be in the scaled-down polytope b - Pz. In the
following, we discuss how for any fixed b > 0 an asymptotically op-

. et .
timal (b, 2 #— )-balanced and monotone CR schemes for matroids

can be obtained using the above approach.

4.1 Contention resolution for matroids

Let M = (N, Z) be amatroid, b € (0,1], and let x € Pz be the
given point for which we want to find a (b, ¢)-balanced CR scheme
for c as large as possible. We denote by p = b - x the scaled-down
point, which puts us notation-wise in the same setting as discussed

above. Let R(b) be the random set including each element ¢ € N
independently with probability p; = bx;. Consider the separation
problem for (DP1), which asks for a given weight vector y > 0
with 3~ piyi = 1 and some 1, whether maxren D ; Gi,x¥i < p.
As discussed above, the maximum is achieved for any CR scheme
7 that returns for any set R(b) a maximum weight subset with
respect to y. However, in the case of matroids, such a CR scheme
7 corresponds exactly to the greedy algorithm 7y for finding a
maximum weight independent set with respect to the weights y.
Hence, to separate over the dual, it suffices to compute i,y for
i € N and check whether >, qinyy: < p. Using sample
average approximations we can, for any € > 0, check with high
probability whether .\ ¢i,xy: < p + ¢ in time polynomial in
the input and 1/ sﬂ Using this approximate separation oracle for the
dual we get the following result due to the ellipsoid method, where
we get rid of the “with high probability” statement by absorbing the
small probability of an unsuccessful estimate in the € of the claimed
(b, ¢ — €)-balanced CR scheme.

THEOREM 4.6. For any € > 0 and any matroid M that admits
a (b, c)-balanced CR scheme, we can obtain a (b, ¢ — €)-balanced
and monotone CR scheme for M running in time polynomial in the
input and 1/e.

A consequence of the fact that it is sufficient to consider greedy
algorithms for dual separation, is that all constraints in the dual, that
do not correspond to greedy algorithms, are redundant. Hence, for
the case of matroids, convex combinations of greedy algorithms
lead to the strongest CR schemes. Since all greedy CR schemes
Ty are monotone, this implies that only considering monotone CR
schemes is not restrictive in the case of matroids.

To convert Theorem |4.6finto a concrete statement about the value
¢, it suffices to prove the existence of a good (b, ¢)-balanced CR
scheme. The existence of a (1 — 1/e)-balanced CR scheme for
matroids follows by the fact that the correlation gap of monotone
submodular functions is 1 — 1 /e [5]: by Lemmathis implies that
the correlation gap of the independent sets of any matroid is bounded
by 1 — 1/e, and the result follows by applying Theorem The
result about the correlation gap of monotone submodular functions
can be refined to obtain the following statement about the existence
of (b, ¢)-balanced CR schemes for matroids.

THEOREM 4.7. For any matroid M on n elements, b € (0, 1],

1—e g0 —1
and x € Pz, there exists a (b, %) -balanced CR
scheme.

By combining Theoremnd and choosing e = O (m ) >
or

we obtain our main result R schemes in the context of matroids.

COROLLARY 4.8. For any matroid M, b € (0,1], and x € Pr,

.. _,—b
we can efficiently construct an efficient (b, 1 i )-balanced and
monotone CR scheme.

As shown by the following theorem, the CR schemes that can
be obtained according to Corollary are, up to an additive e,
asymptotically optimal.

THEOREM 4.9. For any b € (0,1] and ¢ > 0, there is no

(b, # + s) -balanced CR scheme for uniform matroids of rank
one.

"Exact computation of the i,y can be shown to be # P-hard even
for graphic matroids by a reduction from the s-¢ reliability problem.



4.2 Contention resolution for knapsacks

Here we sketch a contention resolution scheme for knapsack
constraints. This essentially follows from known techniques; we
remark that Kulik, Shachnai and Tamir [23]] showed how to round
a fractional solution to the problem max{F(x) : x € P} for
any constant number of knapsack constraints and any non-negative
submodular function, while losing a (1 — &) factor for an arbitrarily
small ¢ > 0. Our goal is to show that these techniques can be
implemented in a black-box fashion and integrated in our framework.
We prove the following lemma.

LEMMA 4.10. Forany §,e > 0 and a knapsack constraint F =
{S: Z'LES a; < 1} such that a; < 6 for all i, there is a monotone

2
(1 —e,1 — e M=/ balanced contention resolution scheme.

This contention resolution scheme is directly applicable only if
the item sizes are relatively small compared to the knapsack capacity.
However, standard enumeration tricks allow us to apply this scheme
to general instances as well. This can be done for any constant
number of knapsack constraints. We formulate this as follows.

COROLLARY 4.11. For any constant k > 1 and € > 0, there is
a constant no (that depends on k, €) such that for any submodular
maximization instance involving k knapsack constraints (and possi-
bly other constraints), there is a set F' of at most ng elements and a
residual instance on the remaining elements such that
e Any a-approximate solution to the residual instance together
with F' is an a(1 — ke)-approximate solution to the original
instance.
o [n the residual instance, each knapsack constraint admits a
(1 —e,1 — g)-balanced CR scheme.

An advantage of this black box approach is that knapsack con-
straints can be combined arbitrarily with other types of constraints.
They do not affect the approximation ratio significantly. However,
the enumeration stage affects the running time by an O(n"™°) factor.

4.3 Sparse packing systems

We now consider packing constraints of the type Ax < b, where
x € {0,1}" is the indicator vector of a solution. We can assume
without loss of generality that the right-hand side is b = 1. We
say that the system is k-sparse, if each column of A has at most k
nonzero entries (i.e., each element participates in at most k linear
constraints). The approximation algorithms in [3|] can be seen to
give a contention resolution scheme for k-sparse packing systems.

CR scheme for k-sparse packing systems:

e We say that element j participates in constraint 4, if a;; > 0.
We call an element j big for this constraint, if a;; > 1/2.
Otherwise we call element j small for this constraint.

e Sample R with probabilities bx;.

e For each constraint ¢: if there is exactly one big element
in R that participates in ¢, mark all the small elements in
R for this constraint for deletion; otherwise check whether
Z]. cr @ij > 1 and if so, mark all elements participating in ¢
for deletion.

e Define I to be R minus the elements marked for deletion.

Based on the analysis in [3]], we obtain the following.

LEMMA 4.12. For any b € (0, i) the above is a monotone

(b,1 — 2kb)-balanced CR scheme for k-sparse packing systems.

Recall the notion of width for a packing system: W = |

where a;; are the entries of the packing matrix (recall that we nor-
malize the right-hand side to be b = 1). Assuming that W > 2,
one can use a simpler CR scheme and improve the parameters.

e
max; j a;j 4’

CR scheme for k-sparse packing systems of width W:
e Sample R with probabilities bx;.
e For each constraint ¢ for which > JeR
elements participating in ¢ for deletion.
e Define I to be R minus the elements marked for deletion.

a;; > 1, mark all

LEMMA 4.13. Forany b € (0, 5-), the above is a monotone

(b, 1 — k(2eb)"W ~)-balanced CR scheme for any k-sparse system
of packing constraints of width W > 2.

4.4 UFP in paths and trees

We consider the following routing/packing problem. Let T' =
(V, E) be a capacitated tree with u. denoting the capacity of edge
e € /. We are given k node pairs s1t1, .. ., Sitr with pair 7 having
a non-negative demand d;; we assume dmax = max; d; < Umin =
min, ue (the no-bottleneck assumption). Let N = {1,...,k}. We
say that S C N is routable if for each ¢ € S a demand d; is routed
along the unique path from s; to t;, and the total flow on any edge
e is at most u.. Previously an O(1)-approximation has been given
for the problem of finding a maximum weight subset of routable
demands [12]]; the problem is APX-hard even for unit-demands and
unit-weights. Let Z = {S C N | S is routable}. Here we consider
maxgez f(.S) for a non-negative submodular function f. A natural
(packing) LP relaxation for Pz has a variable x; € [0, 1] for each
pair ¢ and a constraint Zi:eeQi d;z; < ue for each edge e where
Q) is the unique s;-t; pathin 7.

CR scheme for unit-demands:
e Root T arbitrarily. Let depth of pair s;¢; be the depth of the
least common ancestor of s; and ¢; in T'.
Sample R with probabilities bx;. Let I = (.
Consider pairs in R in increasing order of depth.
Add i to I if I U {i} is routable, otherwise reject i.
Output /.

The techniques in [[7,|12] give the following lemma.

LEMMA 4.14. There is an absolute constant p such that for any
b € (0,1) the above is a (b,1 — pb)-balanced CR scheme.

CR scheme for general demands: A CR scheme for general de-
mands can be obtained as follows. The linear program Pz is a
packing LP of the form Ax < b,x € [0, 1] where A is column-
restricted (all the non-zero values in a column have the same value).
For such column-restricted packing integer programs (CPIPs), when
demands satisfy the no-bottleneck assumption, one can use grouping
and scaling techniques first suggested by Kolliopoulos and Stein
[21] (see also [[12]) to show that the integrality gap for a CPIP A
is at most a fixed constant factor worse than that of the underlying
0-1 matrix A’ (obtained from A by placing a 1 in each non-zero
entry). Note that in the context of the UFP problem, the matrix
A corresponds to the problem with arbitrary demands while the
matrix A’ corresponds to the one with unit-demands. One can use
the same grouping and scaling techniques to show that a (b, 1 — b')
CR scheme for A’ can be used to obtain a (b, 1 — pb’) CR scheme
for A where p is an absolute constant. Using this general conversion
theorem and Lemma[4.14] one can obtain a (b, 1 — O(b))-balanced
CR scheme for UFP in trees for any b > 0.

Without the no-bottleneck assumption the linear program has
an Q(n) integrality gap even for UFP on paths [[7]. One can still
apply the grouping and scaling techniques without the no-bottleneck
assumption under a mild restriction; we refer the reader to [11].

Acknowledgments: We thank Mohit Singh for helpful discussions
on contention resolution schemes for matroids.
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