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Abstract

This paper addresses the problems of minimizing nonnegative submodular functions
under covering constraints, which generalize the vertex cover, edge cover, and set cover
problems. We give approximation algorithms for these problems exploiting the discrete
convexity of submodular functions. We first present a rounding 2-approximation algorithm
for the submodular vertex cover problem based on the half-integrality of the continuous
relaxation problem, and show that the rounding algorithm can be performed by one appli-
cation of submodular function minimization on a ring family. We also show that a rounding
algorithm and a primal-dual algorithm for the submodular cost set cover problem are both
constant factor approximation algorithms if the maximum frequency is fixed. In addition,
we give an essentially tight lower bound on the approximability of the submodular edge
cover problem.

1 Introduction

Let N be a finite nonempty set of cardinality n. A real-valued set function ρ on N is submodular
if it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ), X, Y ⊆ N.

In the areas of combinatorial optimization, game theory, and machine learning and various other
fields, submodular set functions are recognized as fundamental tools and interesting subjects of
research. Besides, submodular functions and convex functions are closely related: a set function
is submodular if and only if its Lovász extension is convex [19].

The first polynomial algorithm for submodular function minimization, described by Grötschel,
Lovász, and Schrijver [10, 11], relies on the ellipsoid method. Combinatorial strongly polyno-
mial algorithms for minimizing submodular functions were developed later by Iwata, Fleischer,
and Fujishige [15] and by Schrijver [26]. These combinatorial algorithms have been improved
in time complexity [14, 16, 25].
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In contrast, the maximization problem of submodular functions is NP-hard, as it contains the
maximum cut problem. Approximation algorithms for the maximization have been extensively
studied even under some constraints including knapsack and matroid constraints [6, 18, 30].

Constrained submodular function minimization problems have also been investigated in
various contexts. It is easy to see that we can find a nonempty proper subset X that minimizes
ρ(X) in polynomial time. When the feasible region F ⊆ 2N is a ring family, that is, F is
a collection of subsets of N closed with respect to union and intersection, the minimization
problem can be solved in polynomial time (see [26]). Goemans and Ramakrishnan [9] dealt
with the case when the feasible region is a parity family. Recently, Svitkina and Fleischer [28]
considered the submodular function minimization problem with cardinality lower bound and
gave an o(

√
n/ lnn) lower bound for the approximability.

This paper addresses the problems of minimizing nonnegative submodular functions under
covering constraints. These problems described below generalize the classical covering problems:
the set cover, vertex cover, edge cover problems.

Submodular Cost Set Cover: Let U be a finite set of cardinality k and S = {S1, . . . , Sn}
be a collection of its subsets indexed by N = {1, . . . , n}. For a subset X ⊆ N we denote
SX =

⋃{Si | i ∈ X}. We say that a subset X ⊆ N is a set cover if SX = U . Given a
nonnegative cost function c : N → R+, the set cover problem asks for finding a set cover
X ⊆ N that minimizes the cost c(X) =

∑
i∈X c(i). This problem is known to be solved

approximately in polynomial time within a factor of O(ln k) or the maximum frequency
η = maxu∈U |{i | u ∈ Si}|. Given a nonnegative submodular function ρ : 2N → R+, the
submodular set cover problem asks for finding a set cover X ⊆ N that minimizes the cost
ρ(X).

Submodular Vertex Cover: Let G = (V, E) be a graph with vertex set V and edge set E. A
vertex subset X ⊆ V is called a vertex cover in G if every edge in E is incident to a vertex
in X. Given a nonnegative cost function c : V → R+, the vertex cover problem asks for
finding a vertex cover X ⊆ V that minimizes the cost c(X) =

∑
v∈X c(v). This problem

is known to be NP-hard, and efficient 2-approximation algorithms are known [1]. Given
a nonnegative submodular function ρ : 2V → R+, the submodular vertex cover problem
asks for finding a vertex cover X ⊆ V that minimizes the cost ρ(X). This is a special
case of a submodular cost set cover problem with U = E and N = V .

Submodular Edge Cover: Let H = (W,F ) be a graph with vertex set W and edge set F .
An edge subset X ⊆ F is called an edge cover in H if every vertex in W is incident to an
edge in X. Given a nonnegative cost function c : F → R+, the edge cover problem asks
for finding an edge cover X ⊆ F that minimizes the cost c(X) =

∑
e∈X c(e). This problem

is known to be polynomial time solvable by graph matching (see, e.g., [27, §19.3]). Given
a nonnegative submodular function ρ : 2F → R+, the submodular edge cover problem asks
for finding an edge cover X ⊆ F that minimizes the cost ρ(X). This is a special case of
the submodular cost set cover problem with U = W and N = F .
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A different type of generalization of the set cover problem was introduced by Hayrapetyan,
Swamy, and Tardos [12], in which a submodular penalty cost was imposed. Chudak and Nagano
[3] developed an approximation algorithm for this problem using the Lovász extension and the
non-smooth convex minimization algorithms of Nesterov [23, 24]. The present paper aims at
providing another effective use of the Lovász extension in design of approximation algorithms.

In this paper, we first introduce a natural convex programming relaxation of the submodular
vertex cover problem using the Lovász extension and prove that the relaxation problem has a
half-integral optimal solution. This extends the result of Nemhauser and Trotter [22] for the
vertex cover problem. Accordingly, a rounding algorithm for the vertex cover problem achieves
an approximation factor of 2, and we further show that it can be performed by one application
of submodular function minimization on a ring family.

In addition, we describe approximation algorithms for the submodular cost set cover prob-
lem. Extending the algorithm of Hochbaum [13], we devise a rounding algorithm based on
a convex programming relaxation. We also present a primal-dual algorithm that extends the
algorithm of Bar-Yehuda and Even [1]. Both of these algorithms successfully achieve an ap-
proximation guarantee of η.

Alternatively, one can obtain a k-approximation solution for the submodular cost set cover
problem in a very simple way. Interestingly, we will see that this bound k is an essentially tight
bound on the approximability for the submodular cost set cover problem. This will be shown
by exhibiting the difficulty of the submodular edge cover problem. Our analysis depends on
a technique similar to that of Svitkina and Fleischer [28], and utilizes a celebrated result of
Erdős and Rényi [5] on random graphs. We also show that the submodular edge cover problem
is NP-hard, whereas the edge cover problem can be solved efficiently by weighted matching
algorithms.

The present paper is organized as follows. Section 2 provides preliminaries on submodular
functions and associated polyhedra. In Section 3, we give an efficient rounding 2-approximation
algorithm for the submodular vertex cover problem. In Section 4, we describe approximation
algorithms for the submodular cost set cover problem. Finally, in Section 5, we present hardness
results on the submodular edge cover problem.

2 Submodular Functions and Convexity

In this section, we provide preliminaries on submodular functions and associated polyhedra.
We denote N = {1, . . . , n}. Let f : 2N → R be a set function with f(∅) = 0. The function

f is called nonnegative if f(X) ≥ 0 for each X ⊆ N . The function f is called monotone if
f(X) ≤ f(Y ) for each pair of subsets X, Y ⊆ N with X ⊆ Y ⊆ N . Obviously, a monotone
function f with f(∅) = 0 is nonnegative.

Throughout this paper, we assume that ρ : 2N → R is a nonnegative submodular function
with ρ(∅) = 0, which is not necessarily monotone. We also assume that the function ρ is given
by a value-giving oracle. Note that the nonnegative submodularity of ρ implies the subadditivity,
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that is, we have ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) for all X, Y ⊆ N . For a vector z ∈ RN and a subset
X ⊆ N , we denote z(X) =

∑
i∈X z(i).

Associated with the submodular function ρ, we consider a polyhedron

P(ρ) = {z | z ∈ RN , z(Y ) ≤ ρ(Y ), ∀Y ⊆ N},

which is called a submodular polyhedron. A vector in P(ρ) is called a subbase. For any subbase
z, we say X ⊆ N is z-tight if z(X) = ρ(X). The submodularity of ρ implies that for any subbase
z the collection of all z-tight subsets is closed under union and intersection.

Linear optimization over the submodular polyhedron can be solved efficiently by the greedy
algorithm of Edmonds [4]. Given a nonnegative vector p ∈ RN

+ , consider a linear ordering
L = (i1, · · · , in) such that p(i1) ≥ p(i2) ≥ · · · ≥ p(in). For any ij ∈ N , we denote L(ij) =
{i1, · · · , ij}. The greedy algorithm with respect to L generates a vector zL ∈ RN determined
by

(1) zL(i) := ρ(L(i))− ρ(L(i) \ {i}).

Then zL is an extreme point of P(ρ) maximizing the inner product 〈p, z〉 =
∑

i∈N p(i)z(i) among
z ∈ P(ρ).

Let p1 > p2 > · · · > pm be the distinct values of p. For each j = 1, . . . , m, we denote
Nj = {i | p(i) ≥ pj}. We now define ρ̂(p) by

ρ̂(p) =
m∑

j=1

(pj − pj+1)ρ(Nj),

where pm+1 = 0. Then it follows from the validity of the greedy algorithm that

(2) ρ̂(p) = max{〈p, z〉 | z ∈ P(ρ)},

which implies the convexity of ρ̂.
Note that the above definition of ρ̂ is free from the submodularity of ρ. For a set function

f in general, we define f̂ in the same way. Then f̂(χX) = f(X) holds for any X ⊆ N , where
χX ∈ RN is the characteristic vector defined by χX(i) = 1 for i ∈ X and χX(i) = 0 for
i ∈ N \X. Hence we may regard f̂ as an extension of f .

The restriction of f̂ to the hypercube [0, 1]N can be interpreted as follows. A linear ordering
L corresponds to the simplex whose extreme points are given by the characteristic vectors of
L(i) for i ∈ N and the empty set. Since there are n! linear orderings of N , the hypercube [0, 1]N

can be partitioned into n! congruent simplices obtained by this way. Determine the function
values of f̂ in each simplex by the linear interpolation of the values at the extreme points. The
resulting function f̂ is a continuous function on the hypercube.

The following theorem provides a connection between submodularity and convexity.

Theorem 1 (Lovász [19]). A set function f is submodular if and only if f̂ is convex.
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3 The Submodular Vertex Cover Problem

In this section, we introduce a natural continuous relaxation of the submodular vertex cover
problem using the Lovász extension of ρ : 2V → R. We prove that the relaxation has a half-
integral optimal solution and the rounding algorithm achieves an approximation guarantee of
2 for the submodular vertex cover problem. Furthermore, we show that a half-integral optimal
solution can be obtained by one execution of submodular function minimization over a ring
family.

3.1 Half-integrality

We start with the vertex cover problem, which can be formulated as an integer programming
problem. The linear programming relaxation is given as follows.

(LPR) Minimize
∑

v∈V

c(v)x(v)

subject to x(u) + x(v) ≥ 1 ((u, v) ∈ E)

x(v) ≥ 0 (v ∈ V ).

Nemhauser and Trotter [22] showed that (LPR) has a half-integral optimal solution. This can
be derived from the following lemma in matrix theory.

Lemma 2. Let A be a nonsingular {0,±1}-matrix each row and each column of which has at
most two nonzero entries. Then every entry of the inverse matrix A−1 is a half integer.

Proof. We prove this statement by induction on the size of A. Suppose that A is an ` × `

matrix and that the statement holds for matrices of smaller size. We call PAQ an admissible
transformation if P and Q are nonsingular {0,±1}-matrices having exactly one nonzero entry
in each row and column.

If A has a row with only one nonzero entry, then A can be brought into

Ã =

(
1 o

b D

)

by an admissible transformation, where b is a column vector and o is a row vector whose entries
are all zero. The inverse of Ã is given by

Ã−1 =

(
1 o

−D−1b D−1

)
.

By the inductive assumption, D−1 is half-integral, and so is Ã−1. Since A−1 can be obtained
from Ã−1 by an admissible transformation, A−1 is also a half-integral matrix.

Similarly, if A has a column with only one nonzero entry, then A−1 is a half-integral matrix.
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We now consider the remaining case where every row and column of A has exactly two
nonzero entries. By an admissible transformation, A can be turned into a block-diagonal matrix
having each diagonal block B in the form of

B =




1 1
1 1

. . . . . .
1 1




,

whose inverse matrix is half-integral. Thus A−1 is a half-integral matrix.

The half-integrality result on (LPR) naturally leads to an LP-rounding 2-approximation
algorithm for the vertex cover problem. Bar-Yehuda and Even [22] developed a primal-dual
2-approximation algorithm that runs in O(|E|) time.

We now introduce a continuous relaxation (CPR) of the submodular vertex cover problem:

(CPR) Minimize ρ̂(x)

subject to x(u) + x(v) ≥ 1 ((u, v) ∈ E)

x(v) ≥ 0 (v ∈ V ).

This convex programming problem can be solved in polynomial time by the ellipsoid method.

Lemma 3. The relaxation problem (CPR) has a half-integral optimal solution.

Proof. Let x◦ be an optimal solution of (CPR). Consider a linear ordering L = (v1, . . . , vn) such
that x◦(v1) ≥ x◦(v2) ≥ · · · ≥ x◦(vn). Then x◦ is an optimal solution to the following linear
programming problem.

(SLP) Minimize ρ̂(x)

subject to x(u) + x(v) ≥ 1 ((u, v) ∈ E)

x(vj)− x(vj+1) ≥ 0 (j = 1, . . . , n− 1)

x(vn) ≥ 0.

Note that the objective function is linear in the feasible region. The coefficient matrix of
(SLP) is a {0,±1}-matrix, each row of which has at most two nonzero entries. By Lemma 2,
any nonsingular submatrix has a half-integral inverse matrix. Hence (SLP) has a half-integral
optimal solution x∗, which is also optimal to (CPR).

3.2 A rounding algorithm

Let x∗ be a half-integral optimal solution to (CPR). Then X∗ := {v | x∗(v) ≥ 1
2} is a vertex

cover. The following theorem shows that X∗ is a 2-approximation solution for the submodular
vertex cover problem.
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Theorem 4. The vertex cover X∗ satisfies ρ(X∗) ≤ 2ρ(X) for any vertex cover X in G.

Proof. The half-integral optimal solution x∗ can be expressed by x∗ = 1
2χX′ + 1

2χX∗ , where
X ′ := {v | x(v) = 1}. Then ρ̂(x∗) = 1

2ρ(X ′) + 1
2ρ(X∗) ≥ 1

2ρ(X∗) holds. Since ρ(x∗) is the
optimal value of the relaxation problem (CPR), we have ρ̂(x∗) ≤ ρ̂(χX) = ρ(X) for any vertex
cover X in G. Therefore, we obtain ρ(X∗) ≤ 2ρ̂(x∗) ≤ 2ρ(X).

We now discuss a combinatorial algorithm for finding a half-integral optimal solution to the
relaxation problem (CRP). Let V + and V − be the copies of V . We denote by v+ ∈ V + and
v− ∈ V − the copies of v ∈ V . We also denote the copies of X ⊆ V by X+ ⊆ V + and X− ⊆ V −.
Construct a bipartite graph G± = (V +, V −;E±) with vertex sets V + and V −. The edge set
E± is given by E± = {(u+, v−), (v+, u−) | (u, v) ∈ E}. For a vertex cover (X+, Y −), we define
its rank by ρ(X)+ρ(Y ). Observe that if (X+, Y −) is a vertex cover, then (X+∩Y +, X−∪Y −)
and (X+ ∪ Y +, X− ∩ Y −) are also vertex covers.

Lemma 5. Let (X+, Y −) be a vertex cover in G± with minimum rank. Then x = 1
2(χX + χY )

is a half-integral optimal solution of (CPR).

Proof. For any half-integral feasible solution x of (CPR), we assign a pair of vertex subsets
X = {v | x(v) = 1} and Y = {v | x(v) ≥ 1

2}. Then (X+, Y −) is a vertex cover in G±, and
ρ̂(x) = 1

2 [ρ(X)+ρ(Y )] holds. Conversely, for any vertex cover (X+, Y −) in G±, x = 1
2(χX +χY )

is a feasible solution of (CPR), and ρ̂(x) = 1
2 [ρ(X ∩ Y ) + ρ(X ∪ Y )] ≤ 1

2 [ρ(X) + ρ(Y )] holds.
Therefore, a half-integral optimal solution x∗ of (CPR) can be obtained by x∗ = 1

2(χX + χY )
from a minimum rank vertex cover (X+, Y −) in G±.

For a vertex subset Z ⊆ V , let Γ(Z) denote the set of vertices adjacent to Z in G, namely
Γ(Z) = {v | ∃u ∈ Z, (u, v) ∈ E}. For any X, Y, Z ⊆ V with Z = V \ X, the pair (X+, Y −)
is a vertex cover in G± if and only if Γ(Z) ⊆ Y . We now consider a family D of subsets
D = Z+ ∪ Y − of V + ∪ V − such that Γ(Z) ⊆ Y . Then D forms a ring family, i.e., D is closed
with respect to union and intersection. Note that (X+, Y −) is a vertex cover in G± if and only
if X+ = V + \D and Y − = D ∩ V − for some D ∈ D. For each D = Z+ ∪ Y − in D, we assign
f(D) := ρ(V \Z)+ρ(Y ). Then f is a submodular function on D. Thus finding a minimum rank
vertex cover reduces to minimizing the submodular function f on the ring family D. Therefore,
by Lemma 5, a half-integral optimal solution of (CPR) can be obtained by one execution of
submodular function minimization over a ring family.

4 The Submodular Cost Set Cover Problem

In this section, we present approximation algorithms for the submodular cost set cover problem.
For each u ∈ U , we denote Nu = {i | u ∈ Si}. The maximum frequency η is given by

η = max{|Nu| | u ∈ U}. Note that the special case with η = 2 is essentially the submodular
vertex cover problem, for which we have presented a 2-approximation algorithm in §3.
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For the standard set cover problem (which means ρ = c), it is known that the greedy
algorithm achieves an approximation guarantee of Hk, where Hk = 1 + 1

2 + · · · + 1
k = O(ln k)

(see, e.g., [29]). As for the submodular cost set cover problem, the performance of the greedy
set cover algorithm is no better than a simple k-approximation algorithm of §4.1. This will be
shown in §4.2.

In contrast, the LP-rounding algorithm of Hochbaum [13] can be extended to achieve the
same performance guarantee of the maximum frequence η for the submodular cost set cover
problem. The resulting algorithm, presented in §4.3, requires to solve a convex optimization
problem by the ellipsoid method. To obviates this part, we also devise a factor η primal-dual
approximation algorithm in §4.4 by extending the algorithm of Bar-Yehuda and Even [1].

4.1 A simple algorithm

We start with a simple approximation algorithm. For u ∈ U , let Xu ⊆ N denote a minimizer
of ρ(X) among all the subsets X ⊆ N that covers u. Then X• =

⋃
u∈U Xu is a set cover.

Proposition 6. The set cover X• satisfies ρ(X•) ≤ kρ(X) for any set cover X.

Proof. Let X be an arbitrary set cover. By the definition of Xu, we have ρ(Xu) ≤ ρ(X) for
each u ∈ U . The subadditivity of ρ implies that ρ(X•) ≤ ∑

u∈U ρ(Xu) ≤ kρ(X).

For each u ∈ U , Xu can be computed by applying submodular function minimization |Nu|
times. Thus, Proposition 6 suggests a strongly polynomial k-approximation algorithm for the
submodular cost set cover problem.

4.2 A greedy algorithm

We naturally generalize the greedy algorithm for the set cover problem. The greedy algorithm
for the submodular cost set cover problem keeps a subset T ⊆ N . Given T ⊆ N , we say an
element i ∈ N is valid if Si \ ST 6= ∅. For T ⊆ N and a valid element i ∈ N , define the
cost-effectiveness of i to be ρ(T∪{i})−ρ(T )

|Si\ST | . The algorithm starts with T := ∅ and iteratively adds
a valid element with the smallest cost-effectiveness to T until T becomes a set cover.

Greedy algorithm for the submodular cost set cover problem

Step 0: Put T := ∅.

Step 1: Repeat the following (1-1) to (1-2) until T covers every element in U .

(1-1) Select a valid element i ∈ N with minimum value of ρ(T∪{i})−ρ(T )
|Si\ST | .

(1-2) Set T := T ∪ {i}.

Step 2: Return T .
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For the standard set cover problem, the above greedy algorithm achieves an approximation
guarantee of Hk = O(ln k). The following examples of the submodular cost set cover problem
show that the performance of the greedy algorithm can be no better or worse than that of the
simple k-approximation algorithm of §4.1, even if ρ is monotone.

Example. Suppose U = {u1, . . . , un−1} and S = {Si | i ∈ N} is given by Si = {ui} for
each i ∈ N \ {n}, and Sn = U . Then the set covers are {n}, N \ {n}, and N . Consider the
submodular cost set cover problem for ρ, where ρ is a nonnegative submodular function defined
by

ρ(X) = min{1, |X|, |N \X|} (X ⊆ N),

The greedy algorithm returns the subset {n} which has a cost of 1, whereas the optimal value
is ρ(N) = 0. Next, we suppose that ρ is a monotone submodular function defined by

ρ(X) = min{1, |X \ {n}|}+ (k − ε) ·min{1, |X ∩ {n}|} (X ⊆ N),

where k = |U | = n− 1. The greedy algorithm returns the subset {n} which has a cost of k− ε,
whereas the optimal value is ρ(N \ {n}) = 1.

4.3 A rounding algorithm

Consider a convex programming relaxation of the submodular cost set cover problem:

(SCP) Minimize ρ̂(x)

subject to
∑

i∈Nu

x(i) ≥ 1 (u ∈ U)

x(i) ≥ 0 (i ∈ N).

This problem can be solved in polynomial time with the aid of the ellipsoid method.
Let ρ◦ : 2N → R be defined by

ρ◦(X) = min{ρ(Z) | X ⊆ Z ⊆ N} (X ⊆ N).

Clearly, ρ◦ is monotone. It is known that ρ◦ is submodular (see, e.g., [8, Section 3.1(b)]). By
definition, we have ρ(X) ≥ ρ◦(X) for all X ⊆ N . Therefore, for all x ∈ RN

+ we have ρ̂(x) ≥
ρ̂ ◦(x). For each X ⊆ N , let X◦ denote the unique minimal subset Z such that X ⊆ Z ⊆ N

and ρ(Z) = ρ◦(X). Then ρ◦(X) = ρ(X◦) holds for any X ⊆ N .
Let x∗ ∈ RN be an optimal solution to (SCP). Then T = {i | x∗(i) ≥ 1/η} is a set cover,

and so is T ◦. Note that T ◦ can be obtained by executing submodular function minimization.
The following theorem shows that T ◦ is an η-approximate solution for the submodular cost set
cover problem.

Theorem 7. The set cover T ◦ satisfies ρ(T ◦) ≤ ηρ(X) for any set cover X.
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Proof. Since ρ̂(x∗) is the optimal value of the relaxation problem (SCP), we have ρ̂ ◦(x∗) ≤
ρ̂(x∗) ≤ ρ(χX) = ρ(X) for any set cover X. The function ρ̂ ◦ is monotone and positively
homogeneous. Then it follows from ηx∗ ≥ χT that ηρ̂ ◦(x∗) = ρ̂ ◦(ηx∗) ≥ ρ̂ ◦(χT ) = ρ◦(T ) =
ρ(T ◦). Thus, we obtain ρ(T ◦) ≤ ηρ(X).

4.4 A primal-dual algorithm

We now present a primal-dual algorithm using the relaxation problem (SCP). Given a vector
x ∈ RV

+, we have ρ̂(x) = max{〈x, z〉 | z ∈ P(ρ)}. Thus, the value ρ̂(x) is equal to the optimal
value of the following dual problem with variables ξ(X) for all nonempty X ⊆ N .

Minimize
∑

X⊆N

ρ(X) · ξ(X)

subject to
∑

X:i∈X⊆N

ξ(X) = x(i) (i ∈ N)

ξ(X) ≥ 0 (X ⊆ N).

Therefore, the problem (SCP) can be written as a linear program:

Minimize
∑

X⊆N

ρ(X) · ξ(X)

subject to
∑

i∈Nu

x(i) ≥ 1 (u ∈ U)

∑

X:i∈X⊆N

ξ(X) = x(i) (i ∈ N)

ξ(X) ≥ 0 (X ⊆ N).

Here, we neglect the redundant nonnegativity constraint of x(i) for i ∈ N . Therefore, the dual
problem to (SCP) is given as follows.

(DCP) Maximize
∑

u∈U

y(u)

subject to z ∈ P(ρ),∑

u∈Si

y(u) = z(i) (i ∈ N),

y(u) ≥ 0 (u ∈ U).

The primal-dual algorithm keeps a feasible solution (y, z) of (DCP) and a subset T ⊆ N

that is z-tight. The algorithm starts with y := 0, z := 0 and T := ∅. Since ρ is a nonnegative
submodular function with ρ(∅) = 0, this gives a feasible solution of (DCP) and we have z(T ) =
ρ(T ). While T is not a set cover, there must be an element u ∈ U which is not covered by
T . The algorithm augments y(u) and z(i) for i ∈ Nu as much as possible without violating
the constraints in (DCP). Then the algorithm updates T to be the unique maximal set with
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z(T ) = ρ(T ). The algorithm iterates this procedure until T becomes a set cover. The algorithm
is now described more precisely as follows.

Primal-dual algorithm for the submodular cost set cover problem

Step 0: Put y := 0, z := 0, and T := ∅.
Step 1: Repeat the following (1-1) to (1-4) until T covers all elements of U .

(1-1) Select an element u ∈ U \ ST and put Y := Nu.

(1-2) Compute α := max{λ | z + λχY ∈ P(ρ)}.
(1-3) Put y(u) := y(u) + α and z := z + αχY .

(1-4) Update T to be the unique maximal set with z(T ) = ρ(T ).

Step 2: Return T .

It is easy to see that the primal-dual algorithm indeed keeps a feasible solution of (DCP)
and a z-tight set T ⊆ N . We now analyze the running time of the primal-dual algorithm. Since

z + λχY ∈ P(ρ) if and only if λ|X ∩ Y | ≤ ρ(X)− z(X) (X ⊆ N),

the computation of α in Step (1-2) is tantamount to minimizing [ρ(X)− z(X)]/|X ∩Y | subject
to X∩Y 6= ∅. This minimization problem can be solved by the Newton method within the same
running time as submodular function minimization [7, 21]. The obtained minimizer X satisfies
ρ(X) = z(X)+α|X ∩Y | and |X ∩Y | ≥ 1. Note that ρ(T ) = z(T ) and |T ∩Y | = 0. Then, after
the subsequent update of z in Step (1-3), it holds that z(X) = ρ(X) and z(T ) = ρ(T ), which
implies z(X ∪ T ) = ρ(X ∪ T ) by the submodularity of ρ. Therefore, T gets larger as a result of
Step (1-4). Thus, the algorithm terminates after at most n iterations.

We now analyze the approximation ratio of the primal-dual algorithm. The following theo-
rem shows that the primal-dual algorithm is an η-approximation algorithm.

Theorem 8. At the termination of the primal-dual algorithm, ρ(T ) ≤ ηρ(X) holds for any set
cover X ⊆ N , where η is the maximum frequency.

Proof. By the definition of η, for any set cover X, we have
∑

u∈U

y(u) ≤
∑

i∈X

∑

u∈Si

y(u) ≤ η
∑

u∈U

y(u).

Since T ⊆ N is a set cover with z(T ) = ρ(T ), it follows from the feasibility of (y, z) in (DCP)
that

ρ(T ) = z(T ) =
∑

i∈T

∑

u∈Si

y(u) ≤ η
∑

u∈U

y(u).

On the other side, for any set cover X ⊆ N , we have

ρ(X) ≥ z(X) =
∑

i∈X

∑

u∈Si

y(u) ≥
∑

u∈U

y(u).

Thus we obtain ρ(T ) ≤ ηρ(X) for any set cover X.
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5 The Submodular Edge Cover Problem

This section is devoted to hardness results on the submodular edge cover problems. We first
show that the problem is NP-hard in §5.1, and then discuss the inapproximability in §5.2.

5.1 Intractability

The edge cover problem is solvable in polynomial time by weighted mathcing algorithms. In
contrast, we now show that the submodular edge cover problem is NP-hard. For this purpose,
it is convenient to consider the following two problems.

MIN 2-SAT: Let X = {x1, . . . , xn} be the set of Boolean variables and let C = {C1, . . . , Cm}
be the set of clauses, each of which is in the form of z1 ∨ z2, where each zj is a variable
x` or its negation x`. The MIN 2-SAT problem asks for finding a truth assignment
τ : X → {True, False} that minimizes the number of satisfied clauses.

Switching Submodular Function Minimization (SSFM): We denote [n] = {1, . . . , n}
and [n] = {1, . . . , n}. Define X := { i | i ∈ X} for each X ⊆ [n]. Given a submodular set
function f : 2[n]∪[n] → R, the switching submodular function minimization problem asks
for finding a bipartition (X, Y ) of [n] that minimizes f(X ∪ Y ).

The MIN 2-SAT problem is known to be NP-hard [17]. First, we show that the MIN 2-SAT
problem is a special case of the SSFM problem. Next, we show that the SSFM problem is a
special case of the submodular edge cover problem. Thus, we conclude that the submodular
edge cover problem is NP-hard.

Proposition 9. The switching submodular function minimization problem is NP-hard.

Proof. We convert the MIN 2-SAT problem into the form of the SSFM problem. Let X =
{x1, . . . , xn} be the set of Boolean variables and C = {C1, . . . , Cm} be the set of clauses in
an arbitrary instance of MIN 2-SAT. Given a truth assignment τ : X → {True, False}, we
denote Zτ = {i | xi = True} ∪ {i | xi = False}. Note that {Zτ | τ is a truth assignment} =
{X ∪ ([n] \X) | X ⊆ [n]}.

Consider a complete digraph K = ([n] ∪ [n], A) with vertex set [n] ∪ [n] and arc set A. Let
σ : {x1, . . . , xn, x1, . . . , xn} → [n] ∪ [n] be a mapping such that σ(xi) = i and σ(xi) = i for
each i = 1, . . . , n. We define the capacity q ∈ RA as follows. For each clause Cj = y ∨ z, we
let Aj = {σ(y)σ(z), σ(z)σ(y), σ(y)σ(y), σ(z)σ(z)} and define the partial capacity qj ∈ RA

+ by

qj(a) =

{
1/2 if a ∈ Aj ,

0 if a ∈ A \Aj .

12



Let κj : 2[n]∪[n] → R be a cut function with respect to K and qj . It is easy to observe that for
any truth assignment τ : X → {True, False},

κj(Zτ ) = 1 if and only if Cj is satisfied,

κj(Zτ ) = 0 if and only if Cj is not satisfied.

Define the total capacity q ∈ RA
+ and the function κ : 2[n]∪[n] → R by q :=

∑m
j=1 qj and

κ :=
∑m

j=1 κj , respectively. Then κ is a cut function with respect to K and q, and hence it is
submodular. Furthermore, for any truth assignment τ : X → {True, False}, the value κ(Zτ ) is
equal to the number of satisfied clauses. Thus, the MIN 2-SAT problem is equivalent to the
problem of finding a truth assignment τ that minimizes κ(Zτ ), which is of the form of the SSFM
problem. As the MIN 2-SAT problem is NP-hard [17], the SSFM problem is also NP-hard.

The following lemma assures that the SSFM problem reduces to the one in which the
submodular function is strictly monotone.

Lemma 10. Suppose N = [n]∪ [n]. Given a submodular function f : 2N → R, let fm : 2N → R
be a function defined by

fm(Z) = f(Z) + δ|Z| (Z ⊆ N),

where δ > maxi∈N |f(N \ {i})− f(N)|. Then, fm is a strictly monotone submodular function,
and fm(X ∪ Y ) = f(X ∪ Y ) + nδ holds for any bipartition (X, Y ) of [n].

Proof. The submodularity of fm is straightforward. For each Z ⊆ N and each i ∈ Z, we have

fm(Z)− fm(Z \ {i}) = δ + f(Z)− f(Z \ {i}) ≥ δ + f(N)− f(N \ {i}) > 0.

Therefore, fm is strictly monotone. The latter assertion is obvious from the definition of fm.

Theorem 11. The submodular edge cover problem is NP-hard.

Proof. By Proposition 9, it suffices to show that the SSFM problem can be reduced to the
submodular edge cover problem. Let f : 2[n]∪[n] → R be the submodular set function in an
arbitrary instance of the SSFM problem. By Lemma 10, we can assume w.l.o.g. that f is
strictly monotone. Let [n◦] = {1◦, . . . , n◦}. Consider a graph H = (W, F ) with edge set
F = [n]∪ [n]∪ [n◦] such that {1, 1, 1◦}, . . . , {n, n, n◦} are vertex disjoint triangles. The function
ρ : 2F → R defined by ρ(Z) = f(Z ∩ ([n] ∪ [n])) (Z ⊆ F ) is monotone and submodular. Let
Z∗ ⊆ F be an edge cover Z ⊆ F that minimizes ρ(Z). Since f : 2[n]∪[n] → R is strictly
monotone, we have [n◦] ⊆ Z∗ and |Z∗ ∩ {i, i}| = 1 for each i ∈ [n]. Thus, there exists a
bipartition (X∗, Y ∗) of [n] such that Z∗ = X∗ ∪ Y ∗ ∪ [n◦]. Conversely, for any bipartition
(X,Y ) of [n], the subset X ∪ Y ∪ [n◦] ⊆ F is an edge cover. Therefore, Z∗ ∩ ([n] ∪ [n]) is
an optimal solution to the SSFM problem. Hence, the SSFM problem is a special case of the
submodular edge cover problem.
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5.2 Inapproximability

In this section, we examine the inapproximability of the submodular edge cover problem. Our
analysis is based on a framework similar to that of Svitkina and Fleischer [28] for lower bounds
on submodular sparsest cut problems, and uses a sophisticated result on random graphs.

The simple algorithm of §4.1 achieves an approximation guarantee of k for general sub-
modular cost set cover problems. We will see that this factor is essentially optimal even for
the submodular edge cover problem with monotone submodular cost functions. The following
theorem is the main result of this section.

Theorem 12. Let ε > 0 be any positive real number. In the value-giving oracle model, there
is no O(|W |1−ε)-approximation algorithm with polynomial number of oracle calls for the sub-
modular edge cover problem on a graph H = (W,F ). More precisely, the submodular edge cover
problem cannot be approximated within a factor of o(|W |/ ln2 |W |).

This result immediately implies that the submodular cost set cover problem cannot be
approximated within a factor of o(k/ ln2 k). The proof of Theorem 12 will be given below. The
following lemma of [28] is used for obtaining the inapproximability result.

Lemma 13 ([28, Lemma 2.1]). Let f1 and f2 be two functions defined on 2N , where f2 is
parametrized by a string of random bits R but f1 is not. Suppose that for any subset X ⊆ N ,
chosen without knowing R, the probability over R that f1(X) 6= f2(X) is n−ω(1). Then, any
algorithm that calls a value-giving oracle a polynomial number of times can find a subset X∗ ⊆ N

such that f1(X∗) 6= f2(X∗) with probability at most n−ω(1).

To prove Theorem 12, we will give a graph H = (W, F ) and two monotone submodular
functions ρ1 and ρ2 defined on 2F such that

• The function ρ2 is parametrized by a random subset R ⊆ F but ρ1 is not.

• Without knowledge of R, it is difficult to find X ⊆ F such that ρ1(X) 6= ρ2(X).

• It holds that OPT1 = Ω(|W |) and OPT2 = O(ln2 |W |) with probability at least 3/4,
where OPTi is the optimal value of the submodular edge cover problem for H and ρi for
each i = 1, 2.

Then, the existence of a factor o(|W |/ ln2 |W |) algorithm would lead to a contradiction.

A random subgraph

Let k be an even number, and let H = (W, F ) be a complete graph with |W | = k. The edge set
F is of cardinality n = 1

2k(k − 1). If X ⊆ F is a perfect matching in H, then X ⊆ F satisfies
the edge cover constraint with respect to H.

Let R ⊆ F be a random subset for which each e ∈ F is chosen independently with an
identical probability π ∈ [0, 1], where π is the parameter that will be defined below. We show
some properties of a random subgraph Hπ = (W,R). Denote µ = E[|R|] = 1

2k(k − 1)π.

14



The parameter π will be defined so that R contains a perfect matching with high probability.
Erdős and Rényi proved the following result on random graphs (cf. [2, Theorem VII.14]).

Theorem 14 (Erdős and Rényi [5]). If π ≥ (ln k + 3 ln ln k)/2k, then the probability (over
the choice of R) that Hπ = (W,R) does not have a perfect matching is o(1).

In order to evaluate the cardinality of the random subset R, we need to know the tail
distribution of the sum of Bernoulli trials. The following well-known bound is referred to as a
Chernoff bound.

Lemma 15 (Chernoff bounds (see, e. g., [20])). Let β1, . . . , βm be independent random
variables such that Pr(βi = 1) = π and Pr(βi = 0) = 1− π. Let β =

∑m
i=1 βi and µβ = E[β] =

πm. For α ≥ 8µβ, we have Pr(β ≥ α) ≤ exp(−α).

Proof. Set r = α/µβ. For each i = 1, . . . , m, we have

E[rβi ] = πr1 + (1− π)r0 = 1 + π(r − 1) ≤ exp(π(r − 1)) ≤ exp(πr).

Since β1, . . . , βm are independent, rβ1 , . . . , rβm are also independent. Hence,

E[rβ] =
∏m

i=1 E[rβi ] ≤ ∏m
i=1 exp(πr) = exp(µβr) = exp(α).(3)

For α ≥ 8µβ, r = α/µβ ≥ e2. Using Markov’s inequality and (3), for α ≥ 8µβ

Pr(β ≥ α) = Pr(rβ ≥ rα) ≤ E[rβ]
rα

≤ exp(α)
rα

=
(e

r

)α
≤ exp(−α),

as desired.

Now, we set π = ln k/k. Theorem 14 implies that there exists an integer k0 such that

Pr(Hπ = (W,R) has a perfect matching) > 3
4 , for all k ≥ k0.

Since µ = E[|R|] = 1
2(k − 1) ln k, we see from Lemma 15 that

Pr(|R| ≥ 8µ) ≤ exp(−8µ) = exp(−4(k − 1) ln k) = k−4(k−1).(4)

Comparison of two submodular functions

Consider the following two set functions defined on 2F :

ρ1(X) = min{µ, |X|} (X ⊆ F ),

ρ2(X) = min{µ, |X \R|+ min{36 ln2 k, |X ∩R|}} (X ⊆ F ).

The function ρ2, but not ρ1, is parametrized by the random subset R. Regardless of the
choice of R, ρ2(X) ≤ ρ1(X) for all X ⊆ F , and both ρ1 and ρ2 are monotone submodular
functions. Let OPTi denote the optimal value of the monotone submodular edge cover problem
for H = (W, F ) and ρi for i = 1, 2. We now evaluate the gap between OPT1 and OPT2, which
plays an important role to prove Theorem 12.
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Lemma 16. If Hπ = (W,R) has a perfect matching, it holds that OPT1 = Ω(k) and OPT2 =
O(ln2 k).

Proof. For any edge cover X ⊆ F , we have |X| ≥ k/2. Since µ = 1
2(k − 1) ln k, we have

OPT1 ≥ min{µ, k/2} = Ω(k). Consider the case where Hπ = (W,R) has a perfect matching
X. Since X ⊆ R, we have OPT2 ≤ ρ2(X) = min{µ, 36 ln2 k, k/2} = O(ln2 k).

Note that the probability (over the choice of R) that Hπ has a perfect matching is at least 3
4

for a sufficiently large k.
The other crucial element towards the proof of Theorem 12 is that, for any fixed X ⊆ V ,

the probability (over the choice of R) that ρ1(X) 6= ρ2(X) is quite small.

Lemma 17. Fix any subset X ⊆ F . Let R be a random subset of F for which each e ∈ F is
chosen independently with probability π = ln k/k. Then, the probability (over the choice of R)
that ρ1(X) 6= ρ2(X) is at most k−ω(1).

Proof. To show the assertion, we consider the case that |X| ≥ 9µ and the case that |X| ≤ 9µ,
separately. We assume that k is sufficiently large.

(i) Suppose that |X| ≥ 9µ. Then, |R| ≤ 8µ implies µ ≤ |X \ R|. Furthermore, µ ≤ |X \ R|
implies ρ1(X) = ρ2(X) = µ. Thus, in view of (4), we obtain

Pr(ρ1(X) 6= ρ2(X)) ≤ Pr(|R| > 8µ) ≤ k−4(k−1) = k−ω(1).

(ii) Suppose that |X| ≤ 9µ. By the definitions of ρ1 and ρ2, ρ1(X) 6= ρ2(X) implies |X ∩R| >
36 ln2 k. Thus,

Pr(ρ1(X) 6= ρ2(X)) ≤ Pr(|X ∩R| > 36 ln2 k).(5)

Clearly, the right hand side of inequality (5) is maximized with respect to X when |X| = b9µc.
Let T be an arbitrary subset of F such that |T | = b9µc and let µ′ = E(|T ∩ R|) = π · b9µc.
Since 9µπ = 9

2
k−1

k ln2 k, we have 4 ln2 k ≤ µ′ ≤ 9
2 ln2 k. Lemma 15 implies

Pr(|T ∩R| > 36 ln2 k) = Pr(|T ∩R| > 8 · (9
2 ln2 k)) ≤ Pr(|T ∩R| > 8µ′) ≤ exp(−8µ′)

≤ exp(−32 ln2 k).

Hence, for any subset X ⊆ F with |X| ≤ 9µ, we have

Pr(|X ∩R| > 36 ln2 k) ≤ Pr(|T ∩R| > 36 ln2 k) ≤ k−32 ln k = k−ω(1).(6)

By (5) and (6), we have Pr(ρ1(X) 6= ρ2(X)) ≤ k−ω(1), completing the proof.

Using Lemmas 13 and 17, we obtain the following.

Corollary 18. For any algorithm that calls a polynomial number of value-giving oracle, the
probability (over the choice of R) that it can find a subset X ⊆ F such that ρ1(X) 6= ρ2(X) is
at most k−ω(1).
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Proof of the inapproximability

Finally, we give a proof of Theorem 12.

Proof of Theorem 12: Let k = |W |. Assume, to the contrary, that there is a polynomial
γ-approximation algorithm A for the submodular edge cover problem, where γ = o(k/ ln2 k),
which succeeds with high probability. Then, we can suppose w.l.o.g. that A succeeds with
probability at least 3/4.

We suppose that k is sufficiently large. Apply the algorithm A to the submodular edge
cover problem for ρ2 and H, and let X be an edge cover given by A. We only consider the
case where A succeeds and Hπ has a perfect matching, which occurs with probability at least
1 − (1 − 3

4) − (1 − 3
4) = 1

2 . It follows from Lemma 16 that ρ1(X) ≥ OPT1 = Ω(k) and
ρ2(X) ≤ γ ·OPT2 = O(ln2 k ·γ) = o(k). As a result, we obtain ρ1(X) 6= ρ2(X) with probability
at least 1/2, which contradicts Corollary 18. ¤

Acknowledgements
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