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Abstract

It is generally believed that submodular func-

tions—and the more general class of γ-weakly

submodular functions—may only be optimized

under the non-negativity assumption f(S) ≥ 0.

In this paper, we show that once the function is

expressed as the difference f = g − c, where g is

monotone, non-negative, and γ-weakly submod-

ular and c is non-negative modular, then strong

approximation guarantees may be obtained. We

present an algorithm for maximizing g − c under

a k-cardinality constraint which produces a ran-

dom feasible set S such that E [g(S)−c(S)] ≥
(1− e−γ−ǫ)g(OPT )−c(OPT ), whose running

time is O(n
ǫ
log2 1

ǫ
), independent of k. We ex-

tend these results to the unconstrained setting by

describing an algorithm with the same approxi-

mation guarantees and faster O(n
ǫ
log 1

ǫ
) runtime.

The main techniques underlying our algorithms

are two-fold: the use of a surrogate objective

which varies the relative importance between g
and c throughout the algorithm, and a geometric

sweep over possible γ values. Our algorithmic

guarantees are complemented by a hardness result

showing that no polynomial-time algorithm which

accesses g through a value oracle can do better.

We empirically demonstrate the success of our

algorithms by applying them to experimental de-

sign on the Boston Housing dataset and directed

vertex cover on the Email EU dataset.
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1. Introduction

From summarization and recommendation to clustering and

inference, many machine learning tasks are inherently dis-

crete. Submodularity is an attractive property when de-

signing discrete objective functions, as it encodes a natural

diminishing returns condition and also comes with an ex-

tensive literature on optimization techniques. Submodular

optimization techniques have been successfully applied in

a wide variety of machine learning tasks, including sen-

sor placement (Krause & Guestrin, 2005), document sum-

marization (Lin & Bilmes, 2011), speech subset selection

(Wei et al., 2013) influence maximization in social networks

(Kempe et al., 2003), information gathering (Golovin &

Krause, 2011), and graph-cut based image segmentation

(Boykov et al., 2001; Jegelka & Bilmes, 2011), to name a

few. However, in instances when the objective function is

not submodular, existing techniques for submodular opti-

mization many perform arbitrarily poorly, motivating the

need to study broader function classes. While several no-

tions of approximate submodularity have been studied, the

class of γ-weakly submodular functions have (arguably)

enjoyed the most practical success. For example, γ-weakly

submodular optimization techniques have been used in fea-

ture selection (Das & Kempe, 2011; Khanna et al., 2017),

anytime linear prediction (Hu et al., 2016), interpretation

of deep neural networks (Elenberg et al., 2017), and high

dimensional sparse regression (Elenberg et al., 2018).

Here, we study the constrained maximization problem

max
|S|≤k

g(S)− c(S) , (1)

where g is a non-negative monotone γ-weakly submodular

function and c is a non-negative modular function. Prob-

lem (1) has various interpretations which may extend the

current submodular framework to apply to more tasks in

machine learning. For instance, the modular cost c may be

added as a penalty to existing submodular maximization

problems to encode a cost for each element. Such a penalty

term may play the role of a regularizer or soft constraint in

a model. When g models the revenue of some collection

of products S and c models the cost of each item, then (1)

corresponds to maximizing profits.
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While Problem 1 has promising modeling potential, existing

optimization techniques fail to provide nontrivial approxi-

mation guarantees. The main reason is that most existing

techniques require the objective function to take only non-

negative values, while g(S)− c(S) may take both positive

and negative values. Moreover, g(S)− c(S) might be non-

monotone, and thus, the definition of γ-weak submodularity

does not even apply to it when γ < 1.

Our Contributions We provide several fast algorithms

for solving Problem (1) as well as a matching hardness result

and experimental validation of our methods. In particular,

1. Algorithms. In the case where γ is known, we provide

a deterministic algorithm which uses O(nk) function

evaluations and returns a set S such that g(S)−c(S) ≥
(1− e−γ)g(OPT )− c(OPT ). If g is regarded as rev-

enue and c as a cost, then this guarantee intuitively

states that the algorithm will return a solution whose

total profit is at least as much as would be obtained

by paying the same cost as the optimal solution while

gaining at least (1− e−γ) as much revenue. We extend

this to a randomized variant which uses O(n log 1
ǫ
)

function evaluations and has a similar approximation

guarantee in expectation, but with an ǫ additive loss

in the approximation factor. We also provide a ran-

domized algorithm for the unconstrained setting (when

k = n) which achieves the same 1− e−γ approxima-

tion factor in expectation using only O(n) function

evaluations. When γ is unknown, we give a meta-

algorithm for guessing γ that loses a δ additive factor

in the approximation ratio and increases the run time

by a multiplicative O( 1
δ
log 1

δ
) factor.

2. Hardness of Approximation. To complement our al-

gorithms, we provide a matching hardness result which

shows that no algorithm which makes polynomially

many queries in the value oracle model may do better.

To the best of our knowledge, this is the first hardness

result of this kind for γ-weakly submodular functions.

3. Experimental Evaluation. We demonstrate the effec-

tiveness of our algorithm on experimental design on

the Boston Housing dataset and directed vertex cover

on the Email EU dataset, both with costs.

Prior Work The celebrated result of Nemhauser et al.

(1978) showed that the greedy algorithm achieves a (1−1/e)
approximation for maximizing a nonnegative monotone

submodular function subject to a cardinality constraint.

Das & Kempe (2011) showed the more general result

that the greedy algorithm achieves a (1 − e−γ) when g
is γ-weakly submodular. At the same time, an exten-

sive line of research has lead to the development of al-

gorithms to handle non-monotone submodular objectives

under more complicated constraints (see, e.g., (Buchbinder

& Feldman, 2016; Chekuri et al., 2014; Ene & Nguyen,

2016; Feldman et al., 2017; Lee et al., 2010; Sviridenko,

2004)). The (1 − 1/e) approximation was shown to be

optimal in the value oracle model (Nemhauser & Wolsey,

1978), but until this work, no stronger hardness result was

known for constrained γ-weakly submodular maximiza-

tion. The problem of maximizing g + ℓ for non-negative

monotone submodular g and an (arbitrary) modular func-

tion ℓ under cardinality constraints was first considered in

(Sviridenko et al., 2017), who gave a randomized poly-

nomial time algorithm which outputs a set S such that

g(S)+ ℓ(S) ≥ (1− 1/e)g(OPT )+ ℓ(OPT ) where OPT

is the optimal set. This approximation was shown to be

optimal in the value oracle model via a reduction from sub-

modular maximization with bounded curvature. However,

the algorithm of Sviridenko et al. (2017) is of mainly theo-

retical interest, as it requires continuous optimization of the

multilinear extension and an expensive routine to guess the

contribution of OPT to the modular term, yielding it prac-

tically intractable. Feldman (2018) suggested using a sur-

rogate objective that varies with time, and showed that this

removes the need for the guessing step. However, the algo-

rithm of (Feldman, 2018) still requires expensive sampling

as it is based on the multilinear extension. Moreover, neither

of these approaches can currently handle γ-weakly submod-

ular functions, as optimization routines that go through their

multilinear extensions have not yet been developed.

Organization The remainder of the paper is organized as

follows. Preliminary definitions are given in Section 2. The

algorithms we present for solving Problem (1) are presented

in Section 3. The hardness result is stated in Section 4.

Applications, experimental set-up, and experimental results

are discussed in Section 5. Finally, we conclude with a

discussion in Section 6. Due to space considerations, most

of the proofs have been omitted from the main paper and

may be found in the supplementary material.

2. Preliminaries

Let Ω be a ground set of size n. For a real-valued set

function g : 2Ω → R, we write the marginal gain of adding

an element e to a set A as g(e | S) , g(S ∪ {e}) − g(S).
We say that g is monotone if g(A) ≤ g(B) for all A ⊆ B.

We say that g is submodular if for all sets A ⊆ B ⊆ Ω and

element e /∈ B,

g(e | A) ≥ g(e | B) . (2)

When g is interpreted as a utility function, (2) encodes

a natural diminishing returns condition in the sense that

the marginal gain of adding an element decreases as the

current set grows larger. An equivalent definition is that
∑

e∈B g(e | A) ≥ g(A ∪B)− g(A), which allows for the
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following natural extension. A monotone set function g is

γ-weakly submodular for γ ∈ (0, 1] if

∑

e∈B\A

g(e | A) ≥ γ (g(A ∪B)− g(A)) (3)

holds for all A ⊆ B. Here, γ is referred to as the submod-

ularity ratio. Intuitively, such a function g may not have

strictly diminishing returns, but the increase in the returns is

bounded by the marginals. Note that g is submodular if and

only if it is γ-weakly submodular with γ = 1. A real-valued

set function c : 2Ω → R is modular if (2) holds with equal-

ity. A modular function may always be written in terms of

coefficients as c(S) =
∑

e∈S ce and is non-negative if and

only if all of its coefficients are non-negative.

Our algorithms are specified in the value oracle model,

namely under the assumption that there is an oracle that,

given a set S ⊆ Ω, returns the value g(S). As is standard,

we analyze the run time complexity of these algorithms in

terms of the number of function evaluations they require.

3. Algorithms

In this section, we present a suite of fast algorithms for

solving Problem 1. The main idea behind each of these algo-

rithms is to optimize a surrogate objective, which changes

throughout the algorithm, preventing us from getting stuck

in poor local optima. Further computational speed ups are

obtained by randomized sub-sampling of the ground set.1

The first algorithms we present assume knowledge of the

weak submodularity parameter γ. However, γ is rarely

known in practice (unless it is equal to 1), and thus, we

show in Section 3.4 how to adapt these algorithms for the

case of unknown γ.

To motivate the distorted objective we use, let us describe a

way in which the greedy algorithm may fail. Suppose there

is a “bad element” b ∈ Ω which has the highest overall gain,

g(b)− cb and so is added to the solution set; however, once

added, the marginal gain of all remaining elements drops

below the corresponding costs, and so the greedy algorithm

terminates. This outcome is suboptimal when there are

other elements e that, although their overall marginal gain

g(e | S)− ce is lower, have much higher ratio between the

marginal utility g(e | S) and the cost ce (see Appendix A

for an explicit construction).

To avoid this type of situation, we design a distorted objec-

tive which initially places higher relative importance on the

modular cost term c, and gradually increases the relative

importance of the utility g as the algorithm progresses. Our

analysis relies on two functions: Φ, the distorted objective,

1We note that these two techniques can be traced back to the
works of (Feldman, 2018) and (Mirzasoleiman et al., 2015), re-
spectively.

Algorithm 1 DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k
Initialize S0 ← ∅

for i = 0 to k − 1 do

ei ← argmaxe∈Ω

{(

1− γ
k

)k−(i+1)
g(e | Si)− ce

}

if
(

1− γ
k

)k−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

and Ψ, an important quantity in analyzing the trajectory

of Φ. Let k denote the cardinality constraint, then for any

iteration i = 0, . . . , k − 1 of our algorithm and any set T ,

we define

Φi(T ) ,
(

1− γ

k

)k−i

g(T )− c(T ) .

Additionally, for any i = 0, . . . , k, a set T ⊆ Ω, and an

element e ∈ Ω, let

Ψi(T, e) , max

{

0,
(

1− γ

k

)k−(i+1)

g(e | T )− ce

}

.

Most proofs in this section are deferred to Appendix B.

3.1. Distorted Greedy

Our first algorithm, DISTORTED GREEDY, is presented as

Algorithm 1. At each iteration, this algorithm chooses an el-

ement ei maximizing the increase in the distorted objective.

The algorithm then only accepts ei if it positively contributes

to the distorted objective. The analysis consists mainly of

two lemmas. First, Lemma 1 shows that the marginal gain

in the distorted objective is lower bounded by a term involv-

ing Ψ. This fact relies on the non-negativity of c and the

rejection step in the algorithm.

Lemma 1. In each iteration of DISTORTED GREEDY,

Φi+1(Si+1)− Φi(Si)

= Ψi(Si, ei) +
γ

k

(

1− γ

k

)k−(i+1)

g(Si) .

The second lemma shows that the marginal gain in the dis-

torted objective is sufficiently large to ensure the desired

approximation guarantees. This fact relies on the mono-

tonicity and γ-weak submodularity of g.

Lemma 2. In each iteration of DISTORTED GREEDY,

Ψi(Si, ei) ≥
γ

k

(

1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]

− 1

k
c(OPT ) .

Using these two lemmas, we present an approximation guar-

antee for DISTORTED GREEDY.
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Theorem 3. DISTORTED GREEDY makes O(nk) eval-

uations of g and returns a set R of size at most k with

g(R)− c(R) ≥
(

1− e−γ
)

g(OPT )− c(OPT ) .

Proof. Since c is modular and g is non-negative, the defini-

tion of Φ gives

Φ0(S0) =
(

1− γ

k

)k

g(∅)− c(∅) ≥ 0

and

Φk (Sk) =
(

1− γ

k

)0

g(Sk)− c(Sk) = g(Sk)− c(Sk) .

Using this and the fact that the returned set R is in fact Sk,

we get

g(R)− c(R) ≥ Φk(Sk)− Φ0(S0) (4)

=

k−1
∑

i=0

Φi+1(Si+1)− Φi(Si) .

Applying Lemmas 1 and 2, respectively, we have

Φi+1(Si+1)− Φi(Si)

= Ψi(Si, ei) +
γ

k

(

1− γ

k

)k−(i+1)

g(Si)

≥ γ

k

(

1− γ

k

)k−(i+1)

[g(OPT )− g(Si)]

− 1

k
c(OPT ) +

γ

k

(

1− γ

k

)k−(i+1)

g(Si)

=
γ

k

(

1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT ) .

Finally, plugging this bound into (4) yields

g(R)− c(R)

≥
k−1
∑

i=0

[

γ

k

(

1− γ

k

)k−(i+1)

g(OPT )− 1

k
c(OPT )

]

=

[

γ

k

k−1
∑

i=0

(

1− γ

k

)i
]

g(OPT )− c(OPT )

=

(

1−
(

1− γ

k

)k
)

g(OPT )− c(OPT )

≥
(

1− e−γ
)

g(OPT )− c(OPT ) .

3.2. Stochastic Distorted Greedy

Our second algorithm, STOCHASTIC DISTORTED GREEDY,

is presented as Algorithm 2. It uses the same distorted

objective as DISTORTED GREEDY, but enjoys an asymptoti-

cally faster run time due to sampling techniques of (Mirza-

soleiman et al., 2015). Instead of optimizing over the en-

tire ground set at each iteration, STOCHASTIC DISTORTED

Algorithm 2 STOCHASTIC DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k, error ǫ
Initialize S0 ← ∅, s← ⌈n

k
log( 1

ǫ
)⌉

for i = 0 to k − 1 do

Bi ← sample s elements uniformly & ind. from Ω

ei ← argmaxe∈Bi

{(

1− γ
k

)k−(i+1)
g(e | Si)− ce

}

if
(

1− γ
k

)k−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

GREEDY optimizes over a random sample Bi ⊆ Ω of size

O
(

n
k
log 1

ǫ

)

. This sampling procedure ensures that suffi-

cient potential gain occurs in expectation, which is true for

the following reason. If the sample size is sufficiently large,

then Bi contains at least one element of OPT with high

probability. Conditioned on this (high probability) event,

choosing the element with the maximum potential gain is at

least as good as choosing an average element from OPT .

Lemma 4. In each step of STOCHASTIC DISTORTED

GREEDY,

E [Ψi(Si, ei)] ≥ (1− ǫ)

(

γ

k

(

1− γ

k

)k−(i+1)
[

g(OPT )

− E [g(Si)]
]

− 1

k
c(OPT )

)

.

Theorem 5. STOCHASTIC DISTORTED GREEDY uses

O(n log 1
ǫ
) evaluations of g and returns a set R with

E [g(R)−c(R)] ≥
(

1− e−γ − ǫ
)

g(OPT )−c(OPT ) .

3.3. Unconstrained Distorted Greedy

In this section, we present UNCONSTRAINED DISTORTED

GREEDY, an algorithm for the unconstrained setting (i.e.,

k = n), listed as Algorithm 3. UNCONSTRAINED DIS-

TORTED GREEDY samples a single random element at each

iteration, adding it to the current solution if the potential

gain is sufficiently large. Note that this algorithm is faster

than the previous two, as it requires only O(n) evaluations

of g. As before, the algorithm relies on the distorted objec-

tive and the heart of the analysis is showing that the potential

increase is sufficiently large in each iteration.

Lemma 6. In each step of UNCONSTRAINED DISTORTED

GREEDY,

E [Ψi(Si, ei)] ≥
γ

n

(

1− γ

n

)n−(i+1)
[

g(OPT )

− E [g(Si)]
]

− 1

n
c(OPT ) .

In the same way that Theorem 3 follows from Lemma 2,
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Algorithm 3 UNCONSTRAINED DISTORTED GREEDY

Input: utility g, weak γ, cost c, cardinality k
Initialize S0 ← ∅

for i = 0 to n− 1 do

ei ← sample uniformly from Ω

if
(

1− γ
n

)n−(i+1)
g(ei | Si)− cei > 0 then

Si+1 ← Si ∪ {ei}
end if

end for

the next theorem follows from Lemma 6 (and therefore, we

omit its proof also from the appendix).

Theorem 7. UNCONSTRAINED DISTORTED GREEDY

requires O(n) function evaluations and outputs a set

R such that

E [g(R)− c(R)] ≥ (1− e−γ)g(OPT )− c(OPT ) .

3.4. Guessing Gamma: A Geometric Sweep

The previously described algorithms required knowledge of

the submodularity ratio γ. However, it is very rare that the

precise value of γ is known in practice—unless g is submod-

ular, in which case γ = 1. Oftentimes, γ is data dependent

and only a crude lower bound L ≤ γ is known. In this sec-

tion, we describe a meta algorithm that “guesses” the value

of γ. γ-SWEEP, listed as Algorithm 4, runs a maximization

algorithm A as a subroutine with a geometrically decreas-

ing sequence of “guesses” γ(k) for k = 0, 1, . . . , ⌈ 1
δ
log 1

δ
⌉.

The best set obtained by this procedure is guaranteed to

have nearly as good approximation guarantees as when the

true submodularity ratio γ is known exactly. Moreover,

fewer guesses are required if a good lower bound L ≤ γ
is known, which is true for several problems of interest.

In the following theorem, we assume that A(g, γ, c, k, ǫ)
is an algorithm which returns a set S with |S| ≤ k
and E [g(S)− c(S)] ≥ (1− e−γ − ǫ) g(OPT )− c(OPT )
when g is γ-weakly submodular, and L ≤ γ is known (one

may always use L = 0).

Algorithm 4 γ-SWEEP

Input: utility g, cost c, alg. A, lower bound L, δ ∈ (0, 1)

S−1 ← ∅, T ←
⌈

1
δ
ln
(

1
max{δ,L}

)⌉

for r = 0 to T do

γr ← (1− δ)r

Sr ← A(g, γr, c, k, δ)
end for

R← argmaxr=−1,...,T {g(Sr)− c(Sr)}

Theorem 8. γ-SWEEP requires at most O
(

1
δ
log 1

δ

)

calls to A and returns a set R with

E [g(R)− c(R)] ≥
(

1− e−γ −O(δ)
)

g(OPT )

− c(OPT ) .

In our experiments, we see that STOCHASTIC DISTORTED

GREEDY combined with the γ-SWEEP outperforms the DIS-

TORTED GREEDY with γ-SWEEP, especially for larger val-

ues of k. Here, we provide some experimental evidence

and explanation for why this may be occurring. Figure 1

shows the objective value of the sets {Sr}Tr=0 produced

by STOCHASTIC DISTORTED GREEDY and DISTORTED

GREEDY during the γ-SWEEP for cardinality constraints

k = 5, 10, and 20. Both subroutines return the highest objec-

tive value for similar ranges of γ. However, the STOCHAS-

TIC DISTORTED GREEDY subroutine appears to be better

in two ways. First, the average objective value is usually

larger, meaning that an individual run of STOCHASTIC DIS-

TORTED GREEDY is returning a higher quality set than DIS-

TORTED GREEDY. This is likely due to the sub-sampling

of the ground set, which might help avoiding the picking of

a single “bad element”, if one exists. Second, the variation

in STOCHASTIC DISTORTED GREEDY leads to a higher

chance of producing a good solution. For many values of

γ, the DISTORTED GREEDY subroutine returns a set of the

same value; thus, the extra guesses of γ are not particularly

helpful. On the other hand, the variation within STOCHAS-

TIC DISTORTED GREEDY subroutine means that these extra

guesses are not wasted; in fact, they allow a higher chance

of producing a set with good value. Figure 1 also shows

that the objective function throughout the sweep is fairly

well-behaved, suggesting the possibility of early stopping

heuristics. However, that is outside the scope of this paper.

4. Hardness Result

In this section, we give a hardness result which comple-

ments our algorithmic guarantees. The hardness result

shows that—in the case where c = 0—no algorithm making

polynomially many queries to g can achieve a better approx-

imation ratio than 1− e−γ . Although this was known in the

case when γ = 1 (i.e., g is submodular), the more general

result for γ < 1 was unknown until this work.

Theorem 9. For every two constants ε > 0 and

γ ∈ (0, 1], no polynomial time algorithm achieves

(1− e−γ + ε)-approximation for the problem of maxi-

mizing a non-negative monotone γ-weakly submodular

function subject to a cardinality constraint in the value

oracle model.

As is usual in hardness proofs for submodular functions,

the proof is based on constructing a family of γ-weakly

submodular functions on which any deterministic algorithm
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Figure 1: Results of the γ-SWEEP with DISTORTED GREEDY (DG) and STOCHASTIC DISTORTED GREEDY (SDG) as

subroutines. For STOCHASTIC DISTORTED GREEDY, mean values with standard deviation bars are reported over 20 trials.

will perform poorly in expectation, and then applying Yao’s

principle. We defer details to Appendix C.

5. Experiments

To demonstrate the effectiveness of our proposed algo-

rithms, we run experiments on two applications: Bayesian

A-optimal design with costs and directed vertex cover with

costs. The code was written using the Julia programming

language, version 1.0.2. Experiments were run on a 2015

MacBook Pro with 3.1 GHz Intel Core i7 and 8 GB DDR3

SDRAM and the timing was reported using the @timed

feature in Julia. 2

5.1. Bayesian A-Optimal Design

We first describe the problem of Bayesian A-Optimal design.

Suppose that θ ∈ R
d is an unknown parameter vector that

we wish to estimate from noisy linear measurements using

least squares regression. Our goal is to choose a set S of

linear measurements (the so-called experiments) which have

low cost and also maximally reduce the variance of our es-

timate θ̂. More precisely, let x1, x2, . . . xn ∈ R
d be a fixed

set of measurement vectors, and let X = [x1, x2, . . . xn] be

the corresponding d×n matrix. Given a set of measurement

vectors S ⊆ [n], we may run an experiment and obtain the

noisy linear observation, yS = XT
S θ + ζS , where ζS is nor-

mal i.i.d. noise, i.e., ζ1, . . . , ζn ∼ N(0, σ2). We estimate

θ using the least squares estimator θ̂ = (XSX
T
S )

−1XT
S yS .

Assuming a normal Bayesian prior distribution on the un-

known parameter, θ ∼ N(0,Σ), the sum of the variance

of the coefficients given the measurement set S is r(S) =

Tr
(

Σ−1 + 1
σ2XSX

T
S

)−1
. We define g(S) = r(∅)− r(S)

to be the reduction in variance produced by experiment set

S. Bian et al. (2017) showed that g is γ-weakly submodular,

providing a lower bound for γ in the case where Σ = βI .

However, their bound relies rather unfavorably on the spec-

2Source code available at https://github.com/

crharshaw/submodular-minus-linear

tral norm of X , and does not extend to general Σ. Chamon

& Ribeiro (2017) showed that g satisfies the stronger con-

dition of γ-weak DR (Definition C.1), but their bound on

the submodularity ratio γ depends on the cardinality of the

sets. We give a tighter bound here, and the proof appears in

Appendix D.

Claim 10. g is a non-negative, monotone and γ-weakly

submodular function with

γ ≥
(

1 +
s2

σ2
λmax(Σ)

)−1

,

where s = maxi∈[n] ‖xi‖2.

Suppose that each experiment xi has an associated non-

negative cost ci. In this application, we seek to maximize

the “revenue” of the experiment,

g(S)−c(S) = Tr (Σ)−Tr
(

Σ−1 +
1

σ2
XSX

T
S

)−1

−c(S) ,

which trades off the utility of the experiments (i.e., the

variance reduction in the estimator) and their overall cost.

Unlike submodular functions, lazy evaluations (Minoux,

1978) of γ-weakly submodular g are generally not pos-

sible, as the marginal gains vary unpredictably. How-

ever, for specific functions, one can possibly speed up the

greedy search. For the utility g considered here, we im-

plemented a faster greedy search using the matrix inver-

sion lemma. The naive approach of computing g(e | S)
by constructing Σ−1 + XSX

T
S , explicitly computing its

inverse, and summing the diagonal elements is not only

expensive—inversion alone costs O(d3) arithmetic opera-

tions—but also memory-inefficient. Instead, one can use

the matrix inversion lemma to show that

g(e | S) = ‖ze‖2
σ2 + 〈xe, ze〉

,

where ze = M−1
S xe and MS = Σ−1 +XSX

T
S . Moreover,

M−1
S may be stored and updated directly without any matrix

https://github.com/crharshaw/submodular-minus-linear
https://github.com/crharshaw/submodular-minus-linear
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(a) (b)

(c) (d)

Figure 2: An algorithmic performance comparison for Bayesian A-Optimal design on the Boston Housing dataset. We report

values for stochastic algorithms with mean and standard deviation bars, over 20 trials. (2a) objective values, varying the

cardinality k, for a fixed cost penalty α = 0.8. (2b) runtime for a fixed cardinality k = 15. (2c) objective values, varying the

cost penalty α for a fixed cardinality k = 15. (2d) objective values, varying the cost penalty α in an unconstrained setting.

inversion. In this way, marginal gains g(e | S) may be

queried using only matrix-vector multiplication with a fixed

M−1
S and inner product computations, which requires O(d2)

arithmetic operations and is more memory efficient. More

details are given in Appendix D.

For this experiment, we used the Boston Housing dataset

(Jr. & Rubenfield, 1978), a standard benchmark dataset

containing d = 14 attributes of n = 506 Boston homes,

including average number of rooms per dwelling, proximity

to the Charles River, and crime rate per capita. We prepro-

cessed the data by normalizing the features to have a zero

mean and a standard deviation of 1. As there is no specified

cost per measurement, we assigned costs proportionally to

initial marginal gains in utility; that is, ce = αg(e) for some

α ∈ [0, 1]. We set σ = 1/
√
d, and randomly generated

a normal prior with covariance Σ = ADAT , where A is

randomly chosen as Ai,j ∼ N(0, 1) and D is diagonal with

Di,i = (i/d)2. We choose not to use Σ = βI , as we found

this causes g to be nearly modular along solution paths,

yielding it an easy problem instance for all algorithms and

not a suitable benchmark.

In our first experiment, we fixed the cost penalty α = 0.8,

and ran the algorithms for varying cardinality constraints

from k = 1 to k = 15. We ran the greedy algorithm, DIS-

TORTED GREEDY with γ-SWEEP (setting δ = 0.1), and

two instances of STOCHASTIC DISTORTED GREEDY with

γ-SWEEP (with δ = ǫ = 0.1 and δ = ǫ = 0.05). All γ-

SWEEP runs used L = 0. In Figure 2a, one can observe that

the marginal gain obtained by the greedy algorithm is not

non-increasing (at least for the first few elements), which is

a result of the fact that g is weakly submodular with γ < 1.

For small values of k, all algorithms produce comparable so-

lutions; however, the greedy algorithm gets stuck in a local

maximum of size k = 7, while our algorithms are able to

produce larger solutions with higher objective value. More-

over, γ-SWEEP with STOCHASTIC DISTORTED GREEDY

performs better than γ-SWEEP with DISTORTED GREEDY

for larger values of k, for reasons discussed in Section 3.4.

Figure 2b shows CPU times of each algorithm run with the

single cardinality constraint k = 20. We see that the greedy

algorithm runs faster than our algorithms. This difference in

the runtime is a result of both the added complexity of the

γ-SWEEP procedure, and that greedy terminates early, when

a local maximum is reached. Figure 2b also shows that the

sub-sampling step in STOCHASTIC DISTORTED GREEDY

results in a faster runtime than DISTORTED GREEDY, as

predicted by the theory. We did not display the number of

function evaluations, as it exhibits nearly identical trends to

the actual CPU run time. In our next experiment, we fixed
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the cardinality k = 15 and varied the cost penalty α ∈ [0, 1].
Figure 2c shows that all algorithm return similar solutions

for α = 0 and α = 1, which are the cases in which either

c = 0 or the function g− c is non-positive, respectively. For

all other values of α, our algorithms yield improvements

over greedy. In our final experiment, we varied the cost

penalty α ∈ [0, 1], comparing the output of greedy and

γ-SWEEP with UNCONSTRAINED DISTORTED GREEDY

for the unconstrained setting. Figure 2d shows that greedy

outperforms our algorithm in this instance, which can occur,

especially in the absence of “bad elements” discussed in

Section 3.

5.2. Directed Vertex Cover with Costs

The second experiment is directed vertex cover with costs.

Let G = (V,E) be a directed graph and let w : V → R

be a weight function on the vertices. For a vertex set S ⊆
V , let N(S) denote the set of vertices which are pointed

to by S, N(S) , {v ∈ V | (u, v) ∈ E for some u ∈ S}.
The weighted directed vertex cover function is g(S) =
∑

u∈N(S)∪S wu. We also assume that each vertex v ∈
V has an associated nonnegative cost cv. Our goal is to

maximize the resulting revenue,

g(S)− c(S) =
∑

u∈N(S)∪S

wu −
∑

u∈S

cu .

Because g is submodular, we can forgo the γ-SWEEP routine

and apply our algorithms directly with γ = 1. Moreover,

we implement lazy evaluations of g in our code.

For our experiments, we use the EU Email Core network,

a directed graph generated using email data from a large

European research institution (Yin et al., 2017; Leskovec

et al., 2007). The graph has 1k nodes and 25k directed edges,

where nodes represent people and a directed edge from u to

v means that an email was sent from u to v. We assign each

node a weight of 1. Additionally, as there are no costs in the

dataset, we assign costs in the following manner. For a fixed

q, we set c(v) = 1 + max{d(v)− q, 0}, where d(v) is the

out-degree of v. Thus, all vertices with out-degree larger

than q have the same initial marginal gain g(v)− c(v) = q.

In our first experiment, we fixed the cost factor q = 6, and

ran the algorithms for varying cardinality constraints from

k = 1 to k = 130. We see in Figure 3a that our meth-

ods outperform greedy. DISTORTED GREEDY achieves

the highest objective value for each cardinality constraint,

while STOCHASTIC DISTORTED GREEDY achieves higher

objective values as the accuracy parameter ǫ is decreased.

Figure 3b shows the number of function evaluations made by

the algorithms when k = 130. We observe that STOCHAS-

TIC DISTORTED GREEDY requires much fewer function

evaluations, even when lazy evaluations are implemented.3

3We do not report CPU time, which does not reflect function

(a)

(b)

(c)

Figure 3: A performance comparison for directed vertex

cover on the EU Email Core network. We report values for

stochastic algorithms with mean and standard deviation bars,

over 20 trials. (3a) objective values, varying the cardinality

k, for a fixed cost factor q = 6. (3b) g evaluations for a

fixed cardinality k = 130. (3c) objective values, varying

the cost factor q in an unconstrained setting.

Finally, we ran greedy and UNCONSTRAINED DISTORTED

GREEDY while varying the cost factor q from 1 to 12, and

we note that in this setting (as can be seen in Figure 3c) our

algorithm performs similarly to the greedy algorithm.

6. Conclusion

We presented a suite of fast algorithms for maximizing the

difference between a non-negative monotone γ-weakly sub-

modular g and a non-negative modular c in both the cardi-

nality constrained and unconstrained settings. Moreover, we

gave a matching hardness result showing that no algorithm

can do better with only polynomially many oracle queries

to g. Finally, we experimentally validated our algorithms on

Bayesian A-Optimality and directed vertex cover with costs,

demonstrating that they outperform the greedy heuristic.

evaluations here. This is due to the lazy evaluation implementation.
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