
 Open access  Proceedings Article  DOI:10.1109/CVPR.2013.266

Submodular Salient Region Detection — Source link 

Zhuolin Jiang, Larry S. Davis

Institutions: University of Maryland, College Park

Published on: 23 Jun 2013 - Computer Vision and Pattern Recognition

Topics: Salient, Greedy algorithm, Facility location problem and Submodular set function

Related papers:

 Saliency Detection via Graph-Based Manifold Ranking

 Frequency-tuned salient region detection

 Global contrast based salient region detection

 Hierarchical Saliency Detection

 A model of saliency-based visual attention for rapid scene analysis

Share this paper:    

View more about this paper here: https://typeset.io/papers/submodular-salient-region-detection-
2vbnzv2sfk

https://typeset.io/
https://www.doi.org/10.1109/CVPR.2013.266
https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk
https://typeset.io/authors/zhuolin-jiang-3spyye6cs8
https://typeset.io/authors/larry-s-davis-2ip7o8i5z8
https://typeset.io/institutions/university-of-maryland-college-park-1t055gc1
https://typeset.io/conferences/computer-vision-and-pattern-recognition-18ykss65
https://typeset.io/topics/salient-tiedscgw
https://typeset.io/topics/greedy-algorithm-1hlr1l7y
https://typeset.io/topics/facility-location-problem-2b1obe31
https://typeset.io/topics/submodular-set-function-3ca4cuca
https://typeset.io/papers/saliency-detection-via-graph-based-manifold-ranking-nlqhztfi50
https://typeset.io/papers/frequency-tuned-salient-region-detection-4po18ylvds
https://typeset.io/papers/global-contrast-based-salient-region-detection-32p5ikzth5
https://typeset.io/papers/hierarchical-saliency-detection-53jpaa2920
https://typeset.io/papers/a-model-of-saliency-based-visual-attention-for-rapid-scene-wv0n3yqxix
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk
https://twitter.com/intent/tweet?text=Submodular%20Salient%20Region%20Detection&url=https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk
https://typeset.io/papers/submodular-salient-region-detection-2vbnzv2sfk


Submodular Salient Region Detection

Zhuolin Jiang, Larry S. Davis

University of Maryland, College Park, MD, 20742

{zhuolin, lsd}@umiacs.umd.edu

Abstract

The problem of salient region detection is formulated as

the well-studied facility location problem from operations

research. High-level priors are combined with low-level

features to detect salient regions. Salient region detection

is achieved by maximizing a submodular objective function,

which maximizes the total similarities (i.e., total profits) be-

tween the hypothesized salient region centers (i.e., facil-

ity locations) and their region elements (i.e., clients), and

penalizes the number of potential salient regions (i.e., the

number of open facilities). The similarities are efficiently

computed by finding a closed-form harmonic solution on the

constructed graph for an input image. The saliency of a se-

lected region is modeled in terms of appearance and spatial

location. By exploiting the submodularity properties of the

objective function, a highly efficient greedy-based optimiza-

tion algorithm can be employed. This algorithm is guaran-

teed to be at least a (e − 1)/e ≈ 0.632-approximation to

the optimum. Experimental results demonstrate that our ap-

proach outperforms several recently proposed saliency de-

tection approaches.

1. Introduction

Visual saliency modeling is relevant to a variety of com-

puter vision problems including object detection and recog-

nition [29, 26], image editing [13, 4, 6] and image seg-

mentation [16]. Most saliency models [2, 20, 4, 6, 8] are

based on a contrast prior between salient objects and back-

grounds. Saliency models map natural images into saliency

maps, in which each image element (pixel, superpixel, re-

gion) is assigned a saliency strength or probability. These

maps can then be converted into crisp segmentations using

a variety of methods (e.g., simple thresholding).

These approaches work well in images which have sim-

ple backgrounds or high contrast between foreground and

background, but can fail in more complex images. For ex-

ample, Figure 1 illustrates saliency detection results using

four state-of-art algorithms [2, 6, 4, 26]. The three input

images have increasingly complex background but all have

high color contrast between objects and background. How-

ever, given the ground truth salient regions in Figure 1(b),

even for the first simple example, these approaches either

fail to separate the object from the background, as in Fig-

ures 1(c) and 1(e), or mostly outline the object but miss the

interior as in Figure 1(d).

(a) Inputs (b) GT (c) FT [2] (d) CA [6] (e) RC [4] (f) LR [26]

Figure 1. Saliency detection results using four state-of-the-art ap-

proaches on three examples of increasing background complex-

ity. (a) Input images; (b) Ground truth salient regions; (c)∼(e):

Saliency maps using [2, 6, 4] with contrast priors; (f) Saliency

map using [26] with a low-rank prior.

Using only a contrast prior has shortcomings. For ex-

ample, a small region with high contrast might be consid-

ered to be noise by humans. Hence some approaches, such

as [26, 28, 27] propose background priors to address this

problem. [26, 28] represent an image as a low-rank matrix

plus sparse noise, where the background is modeled by the

low-rank matrix and the salient regions are indicated by the

sparse noise (i.e., low-rank prior). Natural images usually

exhibit cluttered backgrounds, so models that make simpli-

fying assumptions, such that the background lies in a low-

dimensional space, might not perform well. For example,

the poor saliency detection results in Figure 1(f) using the

low-rank prior are due to the cluttered background.

We present a submodular objective function for effi-

ciently creating saliency maps from natural images; these

maps can then be used to detect multiple salient regions

within a single image. The diminishing return property

of submodularity has been successfully applied in various

applications including sensor placement [18], facility loca-

tion [24] and image segmentations [15]. Our objective func-

tion consists of two terms: a similarity term (between the se-

lected centers of salient regions and image elements (super-

pixels) assigned to that center), and the ‘facility’ costs for

the selected region centers. The first term encourages the se-

lected centers to represent the region elements well. Hence

it favors the extraction of high-quality potential salient re-

gions. The second term penalizes the number of selected

potential salient region centers, so it avoids oversegmenta-

tion of salient regions. It reduces the redundancy among se-

lected salient region centers because the small gain obtained

by splitting a region through the introduction of an extrane-
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ous region center is offset by the facility cost. This high

level prior is integrated with low level feature information

into a unified objective function to identify salient regions.

This is in contrast to previous approaches based on low level

features [2, 4] or high level information only [29, 5], or

heuristic integration approaches [13, 6] based on weighted

averages on the saliency maps from low level features and

high level priors. In contrast to some approaches [28, 27]

which use uniform image patches to represent an image,

our representation is based on super-pixels, which are less

likely to cross object boundaries and lead to more accurately

segmented salient regions. Unlike approaches that iden-

tify only one salient region in an image [7], our approach

identifies multiple salient regions simultaneously without

any strong assumptions about the statistics of the back-

grounds [28]. The main contributions of our paper are:

• Salient region selection is modeled as the facility lo-

cation problem, which is solved by maximizing a sub-

modular objective function. This provides a new per-

spective using submodularity for salient region detec-

tion, and it achieves state-of-art performance on two

public saliency detection benchmarks.

• The similarities between hypothesized region centers

and their region elements are formulated as a label-

ing problem on the vertices of a graph. It is solved by

finding a harmonic function on the graph, which has a

closed-form solution.

• We present an efficient greedy algorithm by using the

submodularity property of the objective function.

• We naturally integrate high-level priors with low-level

saliency into a unified framework for salient region de-

tection.

1.1. Related Work

Existing salient region detection approaches can be

roughly divided into two categories: bottom-up and top-

down approaches. Bottom-up approaches are data-driven

based on low level features (e.g., oriented filter responses

and color), and usually are based on a contrast prior. Both

local [20, 12] and global [4, 6, 2, 8, 11, 10] contrast priors

have been investigated. Recently, [26, 28] decompose an

image into a low-rank matrix representing the background

(low-rank prior) and a sparse noise matrix indicating the

salient regions by low-rank matrix recovery. [27] proposes

to use the boundary prior, which assumes the image bound-

ary is mostly background for saliency detection.

Top-down approaches make use of high level knowledge

about ‘interesting’ objects to identify salient regions [29,

5, 14]. [29] learns interesting region features by dictionary

learning and then generates the saliency map by modeling

spatial consistency via a CRF model. [5] proposes a top-

down saliency algorithm by selecting discriminant features

from a pre-defined filter bank.

In addition, some approaches integrate multiple saliency

maps generated from different features or priors to de-

tect salient regions. The saliency maps are combined by

weighted averaging, where the weights are predefined [6,

8], learned by a SVM [13] or estimated by a CRF [20].

Unlike previous approaches that are purely top-down or

bottom-up, we integrate high level priors with low level in-

formation into a unified framework, which is graph-based

and is optimized in a submodular framework.

2. Preliminaries

Facility Location: [17, 22] We solve a facility location

problem to generate candidate regions for saliency-based

segmentation. The formulation of the uncapacitated facil-

ity location problem is:

max
∑

i∈I

∑

j∈J cij x̃ij −
∑

j∈J fj ỹj

s.t.
∑

j∈J x̃ij = 1, x̃ij ≤ ỹj , ∀i ∈ I, ∀j ∈ J (1)

where I is the locations of a set of clients and J denotes

the potential sites for locating facilities. fj is the cost of

opening a facility at location j and cij denotes the profit

made by satisfying the demand of client i by facility j. x̃ij

and ỹj are binary variables. ỹj = 1 if facility j is open

and ỹj = 0 otherwise; x̃ij = 1 if the demand of client

i is satisfied from facility j and x̃ij = 0 otherwise. The

combinatorial formulation of (1) is maxA⊆J Z(A), where

Z(A) =
∑

i∈I maxj∈A cij −
∑

j∈A fj . Given I , J , cij
and fj , the goal is to find a subset A of facility locations

from J and an allocation of each client to an open facility

to maximize the overall profit.

Harmonic Function on a Graph: [9, 32] Suppose we

have n (n = l + u) data points comprised of labeled

data points (x1, y1), ..., (xl, yl) with m class labels y ∈
{1...m} and unlabeled data points xl+1, ..., xl+u. Graph-

based semi-supervised learning can be modeled by con-

structing a graph G = (V,E) with nodes V represent the

n data points, with L = {1...l} being labeled data points,

and U = {l + 1...l + u} being unlabeled data points and

edges E represent similarities between them. These sim-

ilarities are given by a weight matrix W = [wij ]: wij

is nonzero if edge ei,j ∈ E. The task of assigning la-

bels to U is solved by constructing a real-valued function:

h : V → R. The optimal h minimizes the quadratic energy

function D(h) = 1
2h

t△h = 1
2

∑

ei,j∈E wij(h(i)−h(j))2,

which is the combinatorial formulation of the Dirichlet in-

tegral. It is not difficult to show that the quadratic energy

is minimized when △h = 0, where △ ≡ D − W is the

combinatorial Laplacian matrix. D is the diagonal degree

matrix, where Dii =
∑

j wi,j is the degree of vertex i. A

function that solves the Dirichlet problem is called a har-

monic function and satisfies △h = 0. The probability that

a random walker first reaches a labeled node exactly equals

the solution to the Dirichlet problem with boundary condi-
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tions at the locations of the labeled nodes: the labeled node

in question fixed to unity while the others are set to zero [9].

Let YL denote a label matrix for L of size l ×m, where

m is the number of classes and YL(i, j) = δ(yi, k). Given

labeled nodes L and unlabeled nodes U , W is divided into

4 blocks: W =

[

WLL WLU

WUL WUU

]

(and similarly D, and

the transition matrix P = D−1W ). The harmonic solution

h =

(

hL

hU

)

satisfying △h = 0 subject to hL = YL is:

hU = (DUU−WUU )
−1WULhL = (IUU−PUU )

−1PULhL

(2)

where hU is a u ×m matrix of label values for U . Note

that this is a closed-form solution that can be efficiently

computed using matrix operations.

3. Submodular Saliency

There are three main steps in our approach: First, a set of

potential region centers are extracted from an image. They

serve as a set of potential facility locations (denoted by J).

Second, given that set of potential region centers, we iden-

tify the final region centers and cluster superpixels into re-

gions by solving the facility location problem. This pro-

vides a set of potential salient regions. We combine the

high-level top-down priors with the low-level information

in the optimization process. Finally, the saliencies of the po-

tential salient regions and their constituent superpixels are

computed from color and spatial location information.

3.1. Graph Construction

We represent an image as an undirected k-nearest-

neighbor graph 1 G = (V,E), where the vertices v ∈ V
are superpixels while the edges e ∈ E model the pairwise

relations between vertices. Figure 3(b) shows an example

of superpixel segmentation for an input image. We extract

a 3-D CIE Lab color feature descriptor for each superpixel:

X = [x1, x2...xN ], where N is the number of superpixels.

Let vi denote the i-th vertex and ei,j be the edge that con-

nects vi and vj . The weight wi,j assigned to the edge ei,j
is computed as: wi,j = exp(−βd2(xi, xj)) if ei,j ∈ E,

otherwise wi,j = 0. The normalization factor β is set to

β = 1/σiσj . σi and σj are local scaling parameters for vi
and vj respectively. σi is selected by using the local statis-

tics of the neighborhood of vi. A simple choice for σi in

our experiments is σi = d(xi, xk) as in [30], where xk is

the feature descriptor of the k-th neighbor of vi.

3.2. Identifying A Set of Potential Region Centers

It is computationally too expensive to use the whole set

V as the set, J , of potential region centers to identify the

final region centers, denoted by A. For example, there are

many ‘wall’ superpixels in Figure 3(b); no matter which is

1We select k nearest neighbors for each superpixel from a set of spa-

tially proximate candidates based on feature similarity.

chosen as a region center, the region extracted is more or

less the same. Thus we employ agglomerative clustering

on G to obtain the hypothesis set J . J is generally less than

100 in our experiments. Then we evaluate the marginal gain

of elements in J to iteratively construct the subset A. In

Figure 3(c), the candidate set J is marked in blue.

3.3. Extraction of Potential Salient Regions

We model the problem of identifying high quality po-

tential salient regions as selecting a subset, A, of J as the

final region centers. A is regarded as the set of locations for

opening facilities, and the similarities between elements of

A and superpixels eventually assigned to elements of A as

the profits made by satisfying the demand of clients by fa-

cilities from A. As discussed previously, this problem can

be modeled as the facility location problem [22]. Let NA

denote the number of open facilities. With the constraint

NA = |A| ≤ K , the combinatorial formulation of the facil-

ity location problem in [22] can be applied to our problem:

max
A

H(A) =
∑

i∈V

max
j∈A

cij −
∑

j∈A

fj

s.t. A ⊆ J ⊆ V, NA ≤ K (3)

where cij denotes the similarity between a vertex vi (con-

sidered as clients) and its potential region center vj (consid-

ered as facilities), and the cost fj of facility opening is fixed

to λ. The overall profit H : 2J → R on the graph G is a

submodular function [24, 22].

The first term encourages the similarity between vi and

its assigned region center to have the greatest value. The op-

timization favors region centers that are visually similar to

their ‘clients’. The second term is the penalty for extraneous

facilities. It mitigates against fragmentation of visually ho-

mogenous regions, since the small gain in visual similarity

to marginally ‘productive’ region centers is more than offset

by the cost of opening such a facility. This makes A both

representative (i.e., centrality) and compact (i.e., diversity).

K is the maximum number of salient regions that the

algorithm might identify, and is a parameter specified by the

user. Generally, fewer than K locations are chosen because

the marginal gain does not outweigh the facility cost.

3.3.1 Computation of cij
cij serves as the profit made by satisfying the demand of

client i from a facility at location j ∈ J . It should be com-

puted before the optimization of (3) since it is an input vari-

able for the facility location problem. Given a j ∈ J , we

discuss how to compute the similarities cij . The follow-

ing is performed for each j in J . Since not all nodes in G
should be assigned to any j, we add a background node vg
to G with label 0 so vi ∈ U can also be assigned to back-

ground. vg is fully connected to all the nodes in G. The

weight wi,g for the edge ei,g is a constant z 2. z can be

2z = 0.1 is used for all our experiments.
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Figure 2. Examples of facility location and facility assignment results (clustering) on two synthetic datasets. The selected region centers

(facility locations) are marked as circles. Our approach successfully captures the structure of the data. (a) Input datasets. (b)∼(e): a1, a2,

a3 are selected based on their marginal gains in H(A∪ {a})−H(A) in three iterations. The selected A is representative and compact. (f)

Facility assignment results by using harmonic solution to compute cij . Different colors denote different clusters. (g) Facility assignment

results by simply using naive weight wij as cij .

(a) (b) (c) (d) (e)

Figure 4. Examples of high-level prior maps. (a) Input image; (b)

Center prior map; (c) Face prior map; (d) Color prior map; (e)

Final combined and smoothed prior map.

viewed as a parameter to control the trade-off between cen-

trality and diversity of A. If z is large, the number of nodes

assigned to the background becomes larger, and only neigh-

bors within a small distance of j can have high similarity to

j. Hence the possibility of a potential region center close to

A being selected increases during the subsequent iteration

of the optimization.

cij can be computed by finding the harmonic function on

the graphG with the labeled nodesL set to node j with label

1 and the background node with label 0, while the other

nodes in G are the unlabeled nodes U . This is a two-class

labeling problem and (2) can be used to compute hU for U .

cij is the probability that a random walker starting from vi,
will reach j before reaching the background node [9, 32].

For a two-class problem, we have hL = (1, 0)t as in [32].

With cgj = 0 and cjj = 1, we can also obtain cij = hU ∈
Ru×1 for ∀i ∈ U . The computation is conducted |J | times,

each time taking one node from J and the background node.

We can obtain cij for ∀i ∈ V and ∀j ∈ J . cij is fixed during

the subsequent optimization of (3).

3.3.2 High-level Prior Integration

We can incorporate high level priors into the computation

of cij , so that solving (3) will tend to make A focus on high

probability areas indicated by the high-level prior map. The

high level priors we used are the following:

Face Prior. People often pay attention to objects such

as faces [26, 13, 6]. Here, the detected face regions Λ are

assigned higher probabilities to generate the face prior map

pf(x) = σ1, for x ∈ Λ; otherwise pf (x) = 0. σ1 is a con-

stant obtained by simple thresholding the output of a face

detector.

Center Prior. People taking photographs generally

frame an object of interest near the image center. Hence, we

generate a prior map based on the distance of a pixel to the

image center ĉ using: pl(x) = exp(−d2(x, ĉ)/σ2), where

σ2 is set to (2〈d2(x, ĉ)〉)−1, where 〈·〉 denotes expectation

over all pairwise distances, as in [25].

Color Prior. The warm colors such as red and yellow

are more attractive to people [13, 26]. We generate a pair

of 2-D histograms, Hs and Hb, in the normalized rg space

(r = R
R+G+B

, g = G
R+G+B

) for the labeled foregrounds

and backgrounds from the training data respectively. The

color prior map for each pixel x with color xc is generated

by: pc(x) = exp((Hs(xc) − Hb(xc))/σ3), where σ3 =
0.02 in our experiments.

These prior maps pl(x), pf (x) and pc(x) are

normalized to [0, 1] by using p(x) = (p(x) −
minx(p(x)))/(maxx(p(x)) −minx(p(x))). Then they are

simply averaged and spatially smoothed 3 to generate the fi-

nal combined high-level prior mapPH = [p(1), p(2)...p(N)],
where p(i) ∈ [0, 1]. Figure 4 provides some examples of

high-level prior maps. For each superpixel, we use the mean

of the prior values of its pixels, as its high-level prior value.

We introduce an ‘assignment cost’ 1 − PH for each su-

perpixel and incorporate it into the computation of cij as

follows. Given a labeled set L (comprised of a region cen-

ter node vj and the background node vg), we augment the

graph G to include a set of labeled nodes, by attaching a

labeled node viq to each unlabeled node vi (i ∈ U ) as its

prior. Note that only vi is connected to viq . Let G′ de-

note the augmented graph and Q be the set of augmented

nodes. YQ is a label matrix for Q of size u × 1, where

YQ(i) = 1 − p(i) for i ∈ U . We again use the harmonic

solution on G′ to compute the label values for U . More

3It is achieved by weighted averaging, where the weights are computed

by pair-wise distances between superpixels using a Gaussian kernel.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 3. An example of detecting salient regions with different components. (a) Input image; (b) Superpixel segmentation; (c) Hypothe-

sized set J marked as blue; (d) Combined high-level prior map; (e) Marginal gain of each point in J : H(A∪{a})−H(A) without prior for

the 1-st iteration; (f) Final selected region centers (facility locations) without prior. |A| = 9 locations marked as red are iteratively selected;

(g) Potential salient region extraction. Nine regions generated; (h) Marginal gain of each point in J with prior for the 1-st iteration. Most

data points having high gains are aggregated in the area with high prior values; (i) Final selected facility locations with prior. |A| = 5
locations marked as red are selected; (j) Potential salient region extraction with prior. Five regions generated; (k) Ground truth salient

region; (l) Saliency map without prior; (m) Saliency map with prior; (n) Salient region mask based on the saliency map in (m).

specifically, the weight matrix W ′ for G′ (and similarly D′,

and the transition matrix P ′ = (D′)−1W ′) is divided into 9

blocks:W ′ =

⎡

⎣

WLL WLQ WLU

WQL WQQ WQU

WUL WUQ WUU

⎤

⎦. h =

⎛

⎝

hL

hQ

hU

⎞

⎠,

is the harmonic solution satisfying △h = 0 on G′ subject

to hL = YL and hQ = YQ is:

hU = (D′
UU −WUU )

−1(WULhL +WUQhQ)

= (IUU − (D′
UU )

−1WUU )
−1

((D′
UU )

−1WULhL + (D′
UU )

−1WUQhQ) (4)

Assume the transition probability Piq from each vi (i ∈
U ) to its attached node viq (q ∈ Q) be a constant θ,

we have (D′
UU )

−1WUQ = θI (I is the identity matrix).

Given D′
UU = WUL + WUQ + WUU , we obtain D′

UU =
1

1−θ
(WUL +WUU ). (4) can be rewritten as:

hU = (IUU − (1− θ)PUU )
−1((1− θ)PULhL+ θhQ) (5)

where PUU and PUL are the transition probabilities on the

‘original’ graph G as in (2). We have hL = (1, 0)t for this

problem. We can compute cij = hU ∈ Ru×1 while cjj = 1
and cgj = 0. At one extreme, when θ = 1.0, hU is purely

based on high level prior information and hU = hQ. The

region center with the largest marginal gain is the location

with the lowest assignment cost. At another extreme, when

θ = 0, hU is purely data driven and can be computed using

(2). Hence this computation of cij encourages the selected

facility locations to be close to low cost areas (i.e., high

probability area indicated by high-level prior map). We use

θ = 0.05 in all of our experiments.

Figures 3(e) and 3(h) show the marginal gain for each

point in J in the first iteration of the facility location opti-

mization without and with the high level prior. After high-

level prior integration, the points with large marginal gains

are more concentrated in the perceptually important areas

(indicated by high-level prior map) such as the flower and

the flower leaf. Compared to the selected region centers A
without the prior in Figure 3(f), our approach with priors

will select most of the potential region centers for A from

the high prior areas as shown in Figure 3(i).

3.3.3 Potential Salient Region Extraction

Given a set of selected facility locations A, let the current

maximal profit from vi be ρcuri = maxj∈A cij , and the fa-

cility assignment for vi be xcur
i = argmaxj∈A cij . At each

iteration during the optimization (discussed in Sec. 3.3.4),

given the newly selected a∗, if ρcuri < cia∗ , we update

ρcuri and xcur
i for vi to be cia∗ and a∗ respectively. This

corresponds to steps 10 − 14 in Algorithm 1. Hence, we

cluster the image elements that share the same facility loca-

tion as the most profitable to obtain potential salient regions

{ri}i=1...|A|.

Figure 2 show two examples of facility location and fa-

cility assignment results (i.e., clustering results) on two syn-

thetic datasets. The results in Figure 2(f) using a harmonic

function to compute cij are better than the results in Fig-

ure 2(g) that simply uses the edge weight wij as cij . The

reason is that harmonic solution for cij enforces that nearby

points have similar harmonic function values; this better

models the geometry of the data induced by the graph struc-

ture (edges and weights W ). For these two examples, we

construct fully-connected graphs. We compute the marginal

gain for every point a in V (i.e., J = V ) and add the point

with the maximum gain to A at each iteration.

Figures 3(g) and 3(j) show the region extraction results

for the two sets of selected region centers A shown in Fig-

ure 3(f) and Figure 3(i), respectively.

3.3.4 Optimization

Direct maximization of (3) is a NP-hard problem [22].

However, one simple solution can be obtained by a greedy
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algorithm from [24, 22]. The algorithm starts from an

empty set A = ∅, and iteratively adds to A an element

a ∈ J\A that provides the largest marginal gain for H and

updates the facility assignment of vi whose current profit

ρcuri is small than the profit cia∗ from the newly selected

a∗. The iteration stops when the desired number of regions

(open facilities) is reached or H decreases.

The constraint on the number of open facilities induces a

simple uniform matriod M = (J, I). I is the collection of

subsets A ⊆ J which satisfies: the number of open facilities

NA is less than K . Maximization of a submodular func-

tion with a uniform matroid constraint yields a (1 − 1/e)-

approximation [24]. Hence the greedy algorithm provides a

performance-guarantee solution.

Instead of recomputing the gain for every location a ∈
J\A after adding a new element into A, which requires

|J | − |A| evaluations for the gain of H, we use lazy eval-

uation from [18] to speed up the optimization process, by

using the submodularity property of the objective function.

In our experiment, the lazy greedy approach achieves up to

3 ∼ 20 times speedup while having the same accuracy as

the naive greedy algorithm. Algorithm 1 presents the pseu-

docode of our algorithm.

3.4. Saliency Map Construction

After extracting {ri}i=1...|A|, we next compute the

saliency of ri in terms of its color and spatial information.

A region which has a high color contrast with respect to

other regions should have a high saliency [2, 4]. The color

saliency of ri is defined as: fc(ri) =
∑

k τ(rk)Dc(ri, rk),
where τ(rk) is the number of superpixels in rk; this gives

more weight to contrast with larger regions. Dc is the av-

erage of all feature distances between pairs of superpixels

from ri and rk .

A region which has a wider spatial distribution is typ-

ically less salient than regions which have small spatial

spread [20, 8]. The spatial saliency of ri is computed as

fs(ri) = 1 − V (ri)
maxi V (ri)

. V (ri) =
∑

k D
(i)(µk), where

D(i)(µk) is the average of all the distances of superpixels

from ri to the spatial mean µk of region rk . This favors

regions with small spatial variance and eliminates the back-

ground color of large variance. After fc and fs are maxi-

mum normalized to [0, 1], the saliency of ri is computed as:

f(ri) = fc(ri)fs(ri). We generate the final saliency map S
by weighted averaging over superpixels, where the weights

are computed by pair-wise feature distances between super-

pixels using a Gaussian kernel to enforce that similar super-

pixels should have similar visual saliency.

Figures 3(l) and 3(m) present the saliency maps using

our approach without and with high-level priors, respec-

tively. Compared to the ground truth region in Figure 3(k),

the saliency maps with priors are better than the result with-

out priors. More results are shown in Figure 5. As shown

(a) (b) (c) (d) (e) (f)

Figure 5. Examples of extracting salient regions. (a) Input im-

ages; (b) Ground truth salient regions; (c) High-level prior map;

(d) Saliency map without high level prior; (e) Saliency map with

high level prior; (f) Salient Region extraction based on (e) by sim-

ple thresholding.

Algorithm 1 Submodular Salient Region Detection

1: Input: I , G = (V,E), cij , K and λ.

2: Output: A, xcur
i , S

3: Initialization: A ← ∅, ρcur
i ← 0, xcur

i ← 0
4: loop

5: a∗ = argmax
{A∪a}∈I

H(A ∪ {a}) − H(A)

6: if H(A ∪ {a∗}) ≤ H(A) or NA > K then

7: break;

8: end if

9: A ← A ∪ {a∗}, ρcur
a∗ ← 1

10: for ∀i ∈ V \A do

11: if ρcur
i < cia∗ then

12: ρcur
i = cia∗ , xcur

i = a∗

13: end if

14: end for

15: end loop

16: Construct the saliency map S for I;

in Figure 5(e), the saliency maps using high-level priors are

better than the results without priors in Figure 5(d).

4. Experiments

We evaluate our approach on two popular saliency

databases: MSRA-1000 database [2] and Berkeley-300
database [23]. The MSRA-1000 database is a 1000-image

subset of the MSRA database [20]. These 1000 images are

excluded when learning the color prior, which is trained

on other images from the MSRA dataset [20] and evalu-

ated on the both MSRA-1000 database and Berkeley-300
database. We refer to our approach using TurboPixels [19]

and SLIC [3] for superpixel extraction as ‘SS’ and ‘SS*’,

respectively, in the following.

For the first evaluation, a fixed threshold within [0, 255]
is used to construct a binary foreground mask from the

saliency map. Then, the binary mask is compared with

the ground truth mask to obtain a precision-recall (PR) pair.

We vary the threshold over its entire range to obtain the PR

curve for one image. The average precision-recall curve is

obtained by averaging the results from all testing images.

For the second evaluation, we follow [2, 4, 26] to seg-

ment a saliency map by adaptive thresholding. The saliency

mean is first computed over the entire image. If the saliency

of a superpixel is larger than two times the saliency mean,

the superpixel is considered as foreground. Then the preci-
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Figure 6. Experimental results on the MSRA-1000 database. ‘SS*’ means that superpixels are extracted using SLIC [3], SS with Tur-

boPixels [19]. (a) Average precision-recall curves using our approach with different superpixels and with/without priors; (b) Average

precision-recall curves using different approaches. The curves for LR [26] and GS [27] are copied from the papers; (c) Average precision,

recall and F-measure using different approaches with adaptive thresholding. The bars for LR [26] are copied from the paper.

sion (P̃ ), recall (R̃) and F-Measure (F̃ ) values can be com-

puted over the ground truth maps, where the F-Measure is

defined as F = ((1 + α)P̃ R̃)/(αP̃ + R̃). α is set to be 0.3
as in [2, 4, 26].

4.1. MSRA-1000 Database

The MSRA-1000 database provides the human labeled

object segmentation masks. We first compare the perfor-

mances of our approach with priors and without priors. The

average precision-recall curves are shown in Figure 6(a).

By combining the high-level priors, the saliency detection

performance is improved. λ is set to 5 in our experiments.

In Figure 6(b), we compare our precision-recall curve

with IT [12], MZ [21], GB [10], CA [6], RC [4], SR [11],

AC [1], LC [31] and FT [2] and two recently proposed

approaches LR [26] and GS [27]. Our result is compa-

rable to GS and outperforms the other approaches. The

average precision, recall and F-Measure using different

approaches with adaptive thresholding are shown in Fig-

ure 6(c). Among all approaches, our approach (SS) achieves

highest precision, recall and F-Measure values.

Table 1 compares the average running time of different

approaches. Here we only list the approaches which use

Matlab implementation for fair comparison. Our approach

(using either SS or SS*) is faster than CA [6] and LR [26].

Because our approach needs superpixel segmentation, it is

slower than IT [12] and GB [10] but produces superior qual-

ity saliency maps as shown in Figure 7. For SS, superpixel

extraction by [19] takes about 5 seconds per frame. We

use [3] to extract SLIC superpixels based on their more ef-

ficient algorithm and reevaluate the precision-recall perfor-

mances. As shown in Figure 6(a) and 6(c), SS* is compara-

ble to SS and outperforms most other approaches. Figure 7

shows some examples of saliency map construction using

our approach and IT, FT, GB, LC, CA, RC and LR.

4.2. Berkeley-300 database

The Berkeley-300 database is a more challenging

database introduced in [23]. Images typically contain multi-

ple foreground objects of different sizes and positions. The

foreground masks are provided by [27] as the ground truth

Table 1. Computation time per image for saliency detection, mea-

sured on an Intel 2.40GHZ CPU machine with 4GB RAM. All

approaches use Matlab implementations. For SS, it takes about 5
seconds per image for superpixel extraction by [19]. ‘SS*’, that

superpixels extracted by SLIC [3] is more efficient.
Method IT [12] GB [10] CA [6] LR [26] SS SS*

Time (s) 0.45 1.61 58.8 41.1 6.6 2.1
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Figure 8. Experimental results on the Berkeley-300 database. (a)

Average precision-recall curves using different approaches. The

curves for GS [27] are copied from the papers; (b) Average preci-

sion, recall and F-measure with adaptive thresholding.

salient regions. The color prior trained from the MSRA

dataset is used. We evaluate the precision-recall curves us-

ing SS on this database.

We compare the precision-recall curve of our approach

with IT [12], FT [2], GB [10], CA [6], RC [4], SR [11],

LR [26], LC [31] and GS [27]. We rerun their implementa-

tions for evaluation except GS. We copied the precision-

recall curve of GS from [27]. As shown in Figure 8(a),

our approach achieves the overall best performance. We

also evaluate average precision, recall and F-Measure using

adaptive thresholding, and compare with other approaches.

The result is shown in Figure 8(b). Our approach achieves

better performance on the average precision and F-measure,

and is comparable to GB on the recall measure. Figure 9

shows some saliency maps using different approaches.

5. Conclusion

We presented a greedy-based salient region detection ap-

proach by maximizing a submodular function, which can be

viewed as the facility location problem. By combing high

level prior information with low level feature information
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(a) Inputs (b) GT (c) IT [12] (d) FT [2] (e) GB [10] (f) LC [31] (g) CA [6] (h) RC [4] (i) LR [26] (j) SS (ours) (k) Detection

Figure 7. Examples of saliency map construction using different approaches on the MSRA-1000 database. The saliency maps in (j) are

used to segment the salient regions by simple thresholding. The results are shown in (k).

(a) Inputs (b) GT (c) IT [12] (d) FT [2] (e) GB [10] (f) LC [31] (g) CA [6] (h) RC [4] (i) LR [26] (j) SS (ours) (k) Detection

Figure 9. Examples of saliency map construction using different approaches on the Berkeley-300 database. The saliency maps in (j) are

used to segment the salient regions by simple thresholding. The results are shown in (k).

into the objective function, the saliency of detected regions

is improved and more consistent with human visual percep-

tion. The objective function is optimized by a highly effi-

cient greedy algorithm. The similarities between a region

center and its region elements can be modeled as a label-

ing problem on the constructed graph and solved by con-

structing the harmonic function of the graph. Experimen-

tal results indicate that the algorithm outperforms recently

proposed saliency detection techniques including FT [2],

CA [6], RC [4] and LR [26] and is comparable to GS [27].
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