SUBNORMAL OPERATOR WITH A CYCLIC VECTOR

Takashi Yoshino

(Received June 28, 1968)

In this paper, we aim to characterize the non-trivial closed invariant subspace of a subnormal operator and to study the existence of such subspaces.

An operator A acting on a Hilbert space H is said to be subnormal if, on some space K containing H, there exists a normal operator B such that $B x=A x$ for every x in H; then B is called a normal extension of A.

The normal extension B, acting on K, of a subnormal operator A, acting on H, a subspace of K, is the minimal normal extension of A if the smallest subspace of K that contains H and reduces B is K itself; Halmos has shown that any two minimal normal extensions are unitarily equivalent ([3]).

If A is subnormal on H, we call that a vector x is cyclic with respect to A if the smallest subspace containing x and invariant under A is H; in this case we say that H is cyclic with respect to A.

For our purpose, it is natural to assume that the subnormal operator A on H has a cyclic vector x; bacause, if $\vee\left\{A^{n} x ; n \geqq 0\right\}$ (which denotes the smallest closed subspace containing $A^{n} x ; n \geqq 0$) is properly included in H, then it is clearly a non-trivial closed invariant subspace of A.

Bram proved in [1] that when A is normal and acts on H, the fact that H is cyclic with respect to A in the sense just defined is equivalent to the fact that H is cyclic in the usual sense, i.e., that there exists x in H such that H is the smallest closed subspace that contains x and reduces A.

It is known that if B is a normal operator on K with a cyclic vector, then there exists a unitary mapping U of K onto a suitable function space $L^{2}(d \mu(\lambda) ; \sigma(B))$ such that $U B U^{-1}$ has the form of "multiplication by λ " ([2]).

Applying this representation theorem of normal operators to the minimal normal extension B on K of a subnormal operator A on H with a cyclic vector, we can show that H admits a representation relative to A onto a subspace $H^{2}(d \mu(\lambda) ; \sigma(B))$ of $L^{2}(d \mu(\lambda) ; \sigma(B))$.

In the next section, we show this representation of a subnormal operator with a cyclic vector and using this, we give the sufficient conditions of the existence of non-trivial closed invariant subspaces of subnormal operators.

We state here a characterization of subnormal operators given by Halmos [3] and Bram [1] without the proof.

Theorem 1. (Halmos[3]) An operator A on a Hilbert space H is subnormal if and only if
(1) $\sum_{m, n=0}^{r}\left(A^{n} x_{m}, A^{m} x_{n}\right) \geqq 0$ for every finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H, and
(2) there exists a positive constant c such that

$$
\sum_{m, n=0}^{r}\left(A^{n+1} x_{m}, A^{m+1} x_{n}\right) \leqq c \cdot \sum_{m, n=0}^{r}\left(A^{n} x_{m}, A^{m} x_{n}\right)
$$

for every finite set x_{0}, \cdots, x_{r} in H.
Theorem 2. (Bram[1]) Let A be an operator on H, and suppose that $\sum_{m, n=0}^{r}\left(A^{n} x_{m}, A^{m} x_{n}\right) \geqq 0$ for every finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H. Then

$$
\sum_{m, n=0}^{r}\left(A^{n+1} x_{m}, A^{m+1} x_{n}\right) \leqq\|A\|^{2} \cdot \sum_{m, n=0}^{r}\left(A^{n} x_{m}, A^{m} x_{n}\right)
$$

for every finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H.

Lemma 1. Let H be cyclic with respect to a subnormal operator A on H, and let B, acting on K, be the minimal normal extension of A. Then K is cyclic with respect to B.

Proof. Let x be a cyclic vector for H with respect to A, i.e., $H=$ $\vee\left\{A^{n} x ; n \geqq 0\right\}$. Let $M=\bigvee\left\{B^{* m} B^{n} x ; m, n \geqq 0\right\}$. Then, since $B^{n} x=A^{n} x$ for all $n \geqq 0$, we have $H \subset M$; moreover M reduces B. But B is the minimal normal extension of A so that $M=K, K$ is cyclic with respect to B.

Let x be a cyclic vector for a subnormal operator A on H, let $\mu=(E(\lambda) x, x)$ where $E(\lambda)$ denotes the resolution of the identity for the minimal normal extension B, acting on K, of A and let D_{1} be the linear manifold in K consisting of all vectors of the form $f(B) x$ where f is a bounded Borel function on the spectrum $\sigma(B)$ of B.

By Lemma 1, D_{1} is dense in K and we see easily that the operator V_{1} from D_{1} to $L_{2}(d \mu ; \sigma(B))$ defined by $V_{1} f(B) x=f$ has a unique extension V from the closure $\widetilde{D_{1}}=K$ of D_{1} to the L^{2}-closure of the set of all bounded Borel functions, i.e., to $L^{2}(d \mu ; \sigma(B))$ and that V is an isometric isomorphism between K and $L^{2}(d \mu ; \sigma(B))$.

Lemma 2. If A is a subnormal operator on H with a cyclic vector x in H and if $H^{2}(d \mu ; \sigma(B))$ be the L^{2}-closure of the set P of all complex polynomials in λ, defined on the spectrum $\sigma(B)$ of the minimal normal extension B, acting on K, of A with respect to the Lebesgue-Stieltjes measure $d \mu=d(E(\lambda) x, x)$, then H and $H^{2}(d \mu ; \sigma(B))$ are isomorphic by the mapping V defined as above.

Proof. Since $H=\bigvee\left\{A^{n} x ; n \geqq 0\right\}$, for any y in H, there exists some sequence p_{n} in P such that $y=\lim _{n \rightarrow \infty} p_{n}(A) x$, and since $p_{n}(A) x=p_{n}(B) x$ for all $n \geqq 0$, we have

$$
\int\left|p_{n}(\lambda)-p_{m}(\lambda)\right|^{2} d(E(\lambda) x, x) \rightarrow 0 \text { as } m, n \rightarrow \infty,
$$

so that there exists a function p_{y} in $H^{2}(d \mu ; \sigma(B))$ such that

$$
\int\left|p_{y}(\lambda)-p_{n}(\lambda)\right|^{2} d(E(\lambda) x, x) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since the existence of p_{y} is independent of the choice of the sequence p_{n} in P, the operator V defined by $V y=p_{y}$ is well-defined and clearly V is an isometry from H into $H^{2}(d \mu ; \sigma(B))$.

Conversely, by the definition of $H^{2}(d \mu ; \sigma(B))$, for any p in $H^{2}(d \mu ; \sigma(B))$, there exists a sequence p_{n} in P such that

$$
\int\left|p(\lambda)-p_{n}(\lambda)\right|^{2} d \mu \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Hence, $\left\{p_{n}(B) x\right\}$ is a Cauchy sequence in H, and hence there exists a vector y in H such that $\left\|p_{n}(A) x-y\right\| \rightarrow 0$ as $n \rightarrow \infty$. This means that the operator V is an isometry from H onto $H^{2}(d \mu ; \sigma(B))$, and the proof is completed.

ThEOREM 3. If A is a subnormal operator on H with a cyclic vector x in H and if T is a bounded linear operator on H which commutes with A, then T is subnormal and there exists a Borel measurable function $p_{T}(\lambda)$ in

$$
H^{\infty}(d \mu ; \sigma(B))=H^{2}(d \mu ; \sigma(B)) \cap L^{\infty}(d \mu ; \sigma(B))
$$

such that $T y=p_{T}(B) y$ for all y in H, where B denotes the minimal normal extension of A and $d \mu=d(E(\lambda) x, x), E(\lambda)$ denotes the spectral measure of B.

Proof. Since $H=\bigvee\left\{A^{n} x ; n \geqq 0\right\}, T x=\lim _{n \rightarrow \infty} p_{n}(A) x$ for some sequence $\left\{p_{n}(A)\right\}, p_{n} \in P$ and since $p_{n}(A) x=p_{n}(B) x$, we have

$$
\int\left|p_{n}(\lambda)-p_{m}(\lambda)\right|^{2} d(E(\lambda) x, x) \rightarrow 0 \text { as } m, n \rightarrow \infty,
$$

so that there exists a Borel measurable function p_{T} in $H^{2}(d \mu ; \sigma(B))$ such that

$$
\int\left|p_{T}(\lambda)\right|^{2} d(E(\lambda) x, x)<\infty \text { and } \int\left|p_{T}(\lambda)-p_{n}(\lambda)\right|^{2} d(E(\lambda) x, x) \rightarrow 0
$$

as $n \rightarrow \infty$ (see [5; page 348]) and hence
$x \in D\left(p_{T}(B)\right)=\left\{y \in K ; \int\left|p_{T}(\lambda)\right|^{2} d(E(\lambda) y, y)<\infty\right\}$ and $p_{n}(A) x=p_{n}(B) x \rightarrow p_{T}(B) x$ from which we have $T x=p_{T}(B) x$.

Since T commutes with A, for any p in P, we have $T p(A) x=p(A) T x$ $=p(B) p_{T}(B) x=p_{T}(B) p(B) x=p_{T}(B) p(A) x$. Hence, if $y \in H$, and $q_{n}(A) x \rightarrow y$ with q_{n} in P, then $p_{T}(B) q_{n}(A) x=T q_{n}(A) x \rightarrow T y$ because T is bounded, and since $p_{T}(B)$ is closed, it follows that $H \subset D\left(p_{T}(B)\right)$ and $p_{T}(B) y=T y$ for all y in H. Hence, also, since $T H \subset H$, we have $H \subset D\left(p_{T}(B)^{n}\right)=D\left(p_{T}(B)^{* n}\right)$ for all non-negative integers n, and $p_{T}(B)^{n} y=T^{n} y$ for all y in H.

Let $N=\vee\left\{p_{T}(B)^{*} y ; y \in H, n \geqq 0\right\}$, then clearly we have $H \subset N \subset K$. If $y_{0}, y_{1}, \cdots, y_{r}$ in H, then we have

$$
\begin{aligned}
\sum_{m, n=0}^{r}\left(T^{m} y_{n}, T^{n} y_{m}\right) & =\sum_{m, n=0}^{r}\left(p_{T}(B)^{m} y_{n}, p_{T}(B)^{n} y_{m}\right) \\
& =\left\|\sum_{n=0}^{r} p_{T}(B)^{* n} y_{n}\right\|^{2} \geqq 0
\end{aligned}
$$

Hence, by Theorem 1 and 2, T is subnormal. By Theorem 2, it follows that for any finite set $y_{0}, y_{1}, \cdots, y_{r}$ in H, we have

$$
\sum_{m, n=0}^{r}\left(T^{m+1} y_{n}, T^{n+1} y_{m}\right) \leqq\|T\|^{2} \cdot \sum_{m, n=0}^{r}\left(T^{m} y_{n}, T^{n} y_{m}\right)
$$

i.e., $\quad \sum_{m, n=0}^{r}\left(p_{T}(B)^{m+1} y_{n}, p_{T}(B)^{n+1} y_{m}\right) \leqq\|T\|^{2} . \sum_{m, n=0}^{r}\left(p_{T}(B)^{m} y_{n}, p_{T}(B)^{n} y_{m}\right)$,

$$
\text { or }\left\|p_{T}(B) \cdot \sum_{n=0}^{r} p_{T}(B)^{* n} y_{n}\right\|^{2} \leqq\|T\|^{2} \cdot\left\|\sum_{n=0}^{r} p_{T}(B)^{* n} y_{n}\right\|^{2},
$$

which shows that $p_{T}(B)$ is bounded on a dense linear subset of N.
Since $p_{T}(B)$ is closed, $N \subset D\left(p_{T}(B)\right)$ and $\left\|p_{T}(B) y\right\| \leqq\|T\| \cdot\|y\|$ for all y in N. We observe that N reduces $p_{r}(\mathrm{~B})$ and also B. Hence, by the minimality of $B, N=K$ and $K=D\left(p_{T}(B)\right)$. This implies that $p_{T}(B)$ is bounded on K and hence $p_{T}(\lambda) \in L^{\infty}(d \mu ; \sigma(B))$ which completes the proof.

COROLlary 1. If A is a subnormal operator on H with a cyclic vector and if T is a bounded linear operator on H which commutes with A and A^{*}, then T is normal.

Proof. By Theorem 3, T and T^{*} are subnormal. Since every subnormal operator S on H is hyponormal (i.e., $\|S x\| \geqq\left\|S^{*} x\right\|$ for all $x \in H$), T is normal.

As the consequence, we see easily that if A is a subnormal operator with a cyclic vector and if $R(A)^{\prime}$ is the commutant of the von Neumann algebra $R(A)$ generated by a single operator A, then $R(A)^{\prime}$ is abelian, in particular, if A is normal, then $R(A)$ is maximal abelian.

Let A be a subnormal operator on H with a cyclic vector x, B its minimal normal extension and let $\alpha(A)$ be the set of all bounded linear operators on H which commutes with A, then, by Theorem 3, for any T in $\alpha(A)$, there exists a Borel measurable function $p_{T}(\lambda)$ in $H^{\infty}(d \mu ; \sigma(B))$ such that $T y=p_{T}(B) y$ for all y in H. Let $L_{\alpha(A)}$ be the set of all functions $p_{T}(\lambda), T \in \alpha(A)$, then we can show

Lemma 3. $L_{\alpha(A)}=H^{\infty}(d \mu ; \sigma(B))$.
Proof. If $p \in H^{\infty}(d \mu ; \sigma(B))$, then, by the definition of $H^{\infty}(d \mu ; \sigma(B))$, there exists a sequence p_{n} in P such that

$$
\int\left|p_{n}(\lambda)-p(\lambda)\right|^{2} d(E(\lambda) x, x) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since $p \in L^{\infty}(d \mu ; \sigma(B))$, we can define the bounded linear operator $p(B)$ on K such that $\left\|p_{n}(B) x-p(B) x\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $p(B) x \in H$. (because $\left.p_{n}(B) x=p_{n}(A) x \in H\right)$. Since $H=\bigvee\left\{A^{n} x ; n \geqq 0\right\}$ and for any q in P, $p(B) q(A) x=p(B) q(B) x=q(B) p(B) x=q(A) p(B) x \in H$, by the boundedness of $p(B)$, we have $p(B) y \in H$ for all $y \in H$. Therefore the restriction $p(B) \mid H$ of $p(B)$ on its invariant subspace H clearly commutes with A, i.e., $p(B) \mid H \in \alpha(A)$, and, by the definition of $L_{\alpha(A)}, p \in L_{\alpha(A)}$. The converse inclusion is clear by Theorem 3.

Let $\widetilde{r}_{0}(\sigma(A))$ be the uniform closure of the set $r_{0}(\sigma(A))$ of all rational functions with no pole in the spectrum $\sigma(A)$ of an operator A. If $r(\lambda) \in \widetilde{r_{0}}(\sigma(A))$, then $r(A) \in \alpha(A)$ and hence, if A is a subnormal operator on H with a cyclic vector, then, by Theorem 3 and Lemma $3, r(\lambda) \in H^{\infty}(d \mu ; \sigma(B))$. However, it might not be true that $\widetilde{r_{0}}(\sigma(B)) \subset H^{\infty}(d \mu ; \sigma(B))$ where B is the minimal normal extension of A.

ThEOREM 4. If A is a subnormal operator on H with a cyclic vector and if B is its minimal normal extension on K, then $\widetilde{r_{0}}(\sigma(B)) \subset H^{\infty}(d \mu ; \sigma(B))$ if and only if $\sigma(A)=\sigma(B)$.

Proof. Since $\widetilde{r_{0}}(\sigma(A)) \subset H^{\infty}(d \mu ; \sigma(B))$, we have only to show that $\widetilde{r_{0}}(\sigma(B))$ $\subset H^{\infty}(d \mu ; \sigma(B))$ implies $\sigma(A)=\sigma(B)$.

It is known that $\sigma(B) \subset \sigma(A)$ by Halmos [4] and that $\sigma(A) \subset \sigma(B) \cup h(B)$ by $\operatorname{Bram}[1]$, where $h(B)$ denotes the union of all holes of $\sigma(B)$. Hence we have only to show that $\widetilde{r_{0}}(\sigma(B)) \subset H^{\circ}(d \mu ; \sigma(B))$ implies $h(B) \subset \rho(A)$, where $\rho(A)$ denotes the resolvent set of A.

If λ_{0} is an arbitrary point in $h(B)$ and if $r(\lambda)=\left(\lambda-\lambda_{0}\right)^{-1}$, then $r(\lambda) \in \widetilde{r_{0}}(\sigma(B))$ and hence $r(\lambda) \in H^{\infty}(d \mu ; \sigma(B))$. Therefore, by Lemma 3, there exists an operator T in $\alpha(A)$ such that $T y=r(B) y$ for all $y \in H$. Hence, for any $y \in H$, we have

$$
\begin{aligned}
\left(A-\lambda_{0} I\right) T y & =T\left(A-\lambda_{0} I\right) y=r(B)\left(B-\lambda_{0} I\right) y \\
& =\int r(\lambda)\left(\lambda-\lambda_{0}\right) d E(\lambda) y=y .
\end{aligned}
$$

This means that $A-\lambda_{0} I$ has a bounded inverse T, i.e., $\lambda_{0} \in \rho(A)$. Therefore $h(B) \subset \rho(A)$.

Example. To show that a subnormal operator A need not be normal even when A has a cyclic vector and $\sigma(A)=\sigma(B)$, where B is the minimal normal extension of A, let D be the closed unit disk, μ the normalized Lebesgue measure in $D, K=L^{2}(d \mu ; D), B=L_{z}$, i.e., $L_{z} f(z)=z \cdot f(z)$ for all $f(z) \in L^{2}(d \mu ; D)$. Let H be the L^{2}-closure of the set P of all complex polynomials in z, defined on D, with respect to μ, and set $A=L_{z} \mid H$, then clearly A is a subnormal operator on H with a cyclic vector $u(z)=1$ and its minimal normal extension is B on K. Since $\sigma(B)=D, h(B)=\emptyset$. And hence, by the same reason as in the proof of Theorem 4, $\sigma(A)=\sigma(B)$.

If we set $z=r \exp (i \theta)$, then $d \mu(z)=\frac{1}{\pi} r d r d \theta$; and hence,

$$
\int_{D} z z^{n} d \mu(z)=\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} r^{n+1} e^{i(n+1) \theta} r d r d \theta
$$

$$
=\frac{1}{\pi} \int_{0}^{1} r^{n+2} d r \cdot \int_{0}^{2 \pi} e^{i(n+1) \theta} d \theta=0
$$

for all $n \geqq 0$. This implies that $\bar{z} \perp H$ and $\bar{z} \in K$. Therefore $H \subsetneq K$ and A is non-normal by the minimality of B.

THEOREM 5. If B is the minimal normal extension of a subnormal operator A on H and if $\widetilde{r}_{0}(\sigma(B)) \cap \overline{\tilde{r}_{0}(\sigma(B))} \neq\{c \cdot 1\}$ (the bar denotes the complex conjugate), then there exists a non-trivial closed invariant subspace of H for A.

Proof. For any fixed non-zero vector x in H, we may assume that $H=\bigvee\left\{A^{n} x ; n \geqq 0\right\}$, because if $\vee\left\{A^{n} x ; n \geqq 0\right\} \subsetneq H$, then $\vee\left\{A^{n} x ; n \geqq 0\right\}$ is clearly a non-trivial closed invariant subspace of A.

In the case where $\sigma(A)=\sigma(B)$, for any $r(\lambda)$ in $\widetilde{r}_{0}(\sigma(B)) \cap \overline{\widetilde{r}_{0}(\sigma(B)),} r(\lambda) \neq c \cdot 1$, we have $r(A), r(A)^{*} \in \alpha(A)$ and $r(A) \neq c \cdot I$; and hence $r(A)$ is normal by Corollary 1 . In this case, clearly, A has reducing subspaces.

In the other case, we have $\sigma(A) \cap h(B) \neq \emptyset$ by the same reason as in the proof of Theorem 4. Since $A y_{n}-\gamma y_{n}=B y_{n}-\gamma y_{n}$ for all y_{n} in $H, \sigma_{a p}(A) \subset \sigma_{a p}(B)$ and easily we have $\sigma_{p}(S) \cup \sigma_{c}(S) \subset \sigma_{a p}(S)$ for any bounded linear operator S, where $\sigma_{p}(S), \sigma_{c}(S)$ and $\sigma_{a p}(S)$ denote the point spectrum, the continuous spectrum and the approximate point spectrum of S, respectively. From this, we have $\gamma \in \sigma_{r}(A)$ if $\gamma \in \sigma(A) \cap h(B)$, where $\sigma_{r}(A)$ denotes the residual spectrum of A. Hence $\bar{\gamma} \in \sigma_{p}\left(A^{*}\right)$. Let $M=\left\{y \in H ; A^{*} y=\bar{\gamma} y\right\}$, then the subspace $H \ominus M$ is clearly a non-trivial closed invariant subspace of A.

It is known that if $\sigma(B)$ has two dimensional Lebesgue measure zero, then $\widetilde{r}_{0}(\sigma(B))=C(\sigma(B))$, where $C(\sigma(B))$ denotes the set of all continuous functions on $\sigma(B)$ (see[7]). Hence, we have

Corollary 2. (Wermer [6]) If B is the minimal normal extension of a subnormal operator A and if the spectrum $\sigma(B)$ has two dimensional Lebesgue measure zero, then there exists a non-trivial closed invariant subspace of A.

REMARK 1. It is clear that $H^{\infty}(d \mu ; \sigma(B))=L^{\infty}(d \mu ; \sigma(B))$ if and only if A is normal and also that $H^{\infty}(d \mu ; \sigma(B)) \cap \overline{H^{\circ}(d \mu ; \sigma(B))}=\{c \cdot 1\}$ if and only if the von Neumann algebra $R(A)$ generated by a single operator A is the full operator algebra on H.

As an application of the representation theorem of a subnormal operator A on H with a cyclic vector, we can give the description of the existence of a non-trivial closed invariant subspace of A in terms of $L^{2}(d \mu ; \sigma(B)), H^{2}(d \mu ; \sigma(B))$ and $H^{\circ}(d \mu ; \sigma(B))$ as follows:

A subnormal operator A on H with a cyclic vector x in H has a nontrivial closed invariant subspace if and only if
(*) there exists a function q, not identically zero, in $H^{2}(d \mu ; \sigma(B))$ such that

$$
\left[L^{2}(d \mu ; \sigma(B)) \ominus \overline{H^{\infty}(d \mu ; \sigma(B))} \cdot q\right] \cap H^{2}(d \mu ; \sigma(B)) \neq\{0\}
$$

where the bar denotes the complex conjugate and B is the minimal normal extension on K of A.

As spacial cases of the condition (*), we have
(case 1) there exists a function q in $H^{2}(d \mu ; \sigma(B))$ such that

$$
H^{\circ}(d \mu ; \sigma(B)) \cdot q \cap\left[L^{2}(d \mu ; \sigma(B)) \ominus H^{2}(d \mu ; \sigma(B))\right] \neq\{0\} \text { and }
$$

(case 2) there exists a function q in $H^{2}(d \mu ; \sigma(B))$ such that

$$
H^{\overline{0}}(d \bar{\mu} ; \sigma(B)) \cdot q \cap H^{2}(d \mu ; \sigma(B)) \neq\{c \cdot q\} .
$$

In the case 1 , the subnormal operator A has a non-trivial closed invariant subspace M such that M is the closure of the range of some operator T in $\alpha(A)$. In fact, by the assumption, there exists a non-constant function p in $H^{\infty}(d \mu ; \sigma(B))$ such that $\bar{p} \cdot q \in\left[L^{2}(d \mu ; \sigma(B)) \ominus H^{2}(d \mu ; \sigma(B))\right]$; and hence, for a vector y in H corresponding to q by Lemma 2 and an operator $p(B) \mid H$ in $\alpha(A)$ corresponding to p by Lemma 3, $(p(B) \mid H)^{*} y=0$. Let $H \ominus M=\left\{y \in H ;(p(B) \mid H)^{*} y=0\right\}$, then M is the desirous subspace.

In the case 2 , the subnormal operator A on H has a non-trivial closed invariant subspace M such that $M=\left\{y \in H ;\|T y\|=\left\|T^{*} y\right\|\right\}$ for some T in $\alpha(A)$. Hence, we have

Theorem 6. If A is a subnormal operator on H and if there exists a non-zero vector y in H such that $\|T y\|=\left\|T^{*} y\right\|$ for some T in $\alpha(A)$, $0 \neq T \neq c \cdot I$, then A has a non-trivial closed invariant subspace.

Proof. We may assume that A has a cyclic vector and that T is nonnormal. Let $M=\left\{y \in H ;\|T y\|=\left\|T^{*} y\right\|\right\}$, then M is non-trivial by the assumption. Since, by Theorem 3, T is subnormal and hence T is hyponormal, i.e., $(S=) T * T-T T^{*} \geqq 0$. Therefore M is the null space of the non-negative selfadjoint operator S and is a closed subspace of H. Let B be the minimal normal extension on K of A, then, by Theorem 3, there exists a function $p_{T}(\lambda)$ in $H^{\infty}(d \mu ; \sigma(B))$ such that $T y=p_{T}(B) y$ for all y in H. The invariantness of M, under A, follows from $p_{T}(B)^{*} A y=p_{T}(B)^{*} B y=B p_{T}(B)^{*} y=A p_{T}(B)^{*} y \in H$ for all y in M because, for any y in $H, p_{T}(B)^{*} y \in H$ if and only if $\|T y\|=\left\|T^{*} y\right\|$.

References

[1] J. Bram, Subnormal operators, Duke Math. Journ., 22 (1955), 75-94.
[2] P.R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, New York, 1951.
[3] P.R. Halmos, Normal dilations and extensions of operators, Summa. Brasiliensis Math., 2 (1950), 125-134.
[4] P. R. Halmos, Spectra and spectral manifolds, Ann. Soc. Polonaise Math., 25 (1952), 43-49.
[5] F. Riesz et B. Sz.-NAGY, Leçons d'analyse fonctionnélle, Budapest, 1965.
[6] J. Wermer, Report on subnormal operators, Report of an International Conference on Operator Theory and Group Representations, New York, 1955.
[7] J. Wermer, Banach Algebra and Analytic Functions, Advances in Mathematics, No. 1, Fasc. 1, Academic Press, 1961.

The College of General Education
Tôhoku University
Sendai, Japan

