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SUBNORMAL OPERATORS IN STRICTLY CYCLIC

OPERATOR ALGEBRAS

RICHARD BOLSTEIN AND WARREN WOGEN

It is shown that a subnormal operator cannot belong to a
strictly cyclic and separated operator algebra unless it is normal
and has finite spectrum. Further, a subnormal operator not
of this type cannot have a strictly cyclic commutant.

1* Let έ%f be a complex Hubert space, and let Stf be a subset
of the algebra &{έ%f) of all bounded linear operators on Sίf. A
vector x e Sίf with the property that Sxfx = {Ax: A e Ssf) is the full
Hubert space is said to be a strictly cyclic vector for j ^ and J&f is
said to be strictly cyclic if such a vector exists. A vector x is called
a separating vector for ,$/ if no two distinct operators in j y agree
at x. The set J ^ is said to be strictly cyclic and separated if there
is a vector x which is both strictly cyclic and separating for s^.

Strictly cyclic operator algebras have recently been investigated
by Mary Embry [2] and Alan Lambert [3]. Let j ^ ' denote the
commutant of the set Jzf, that is, s^fr is the set of all bounded linear
operators which commute with every operator in j ^ Note that if x
is a cyclic vector for S*f (meaning szfx is dense in £έf), then x is
separating for

LEMMA 1. Let s$? be a strictly cyclic subset of &(<βέf). If
is abelian, then it is maximal abelian, J$? = Szf\ Thus, a strictly
cyclic abelian subset is automatically a weakly closed algebra.

This lemma, which indicates the severity of the condition of strict
cyclicity, is a sharper form of a result of Lambert [3].

Proof. Let x be strictly cyclic for j ^ and let B e J ^ ' . Then
there exists A e S^f such that Ax = Bx. But J ^ c jy" by hypothe-
sis, so A e Szff. Since x is separating for jy", we have B = Ae j y ,
and the proof is complete.

If j y is strictly cyclic and abelian, then it is strictly cyclic and
separated by Lemma 1. Mary Embry [2] showed that the converse
holds if Szf is the commutant of a single operator. Thus, if A is
normal and {A}' is strictly cyclic and separated, then {A}' consists
of normal operators by Fuglede's theorem. In a private communication
to the authors, Mary Embry asked if "normal" could be replaced by
"subnormal" in this statement. An operator is called subnormal if
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it is the restriction of a normal operator to an invariant subspace.
To this end, we show that if A is subnormal then strict cyclicity of
{AY already forces A to be normal, and, moreover, its spectrum is a
finite set. Thus, the commutant of a subnormal operator cannot be
strictly cyclic and separated unless the underlying Hubert space is
finite-dimensional (since the commutant is then abelian and hence the
operator, which is normal, must have simple spectrum). More generally,
it is shown that a uniformly closed subalgebra J^ of &(βl?) which
has a separating vector x with the property that s/x is a closed
subspace of ^f (this is the case if x is also strictly cyclic) contains
no subnormal operators except possibly for normal operators with finite
spectrum.

2* Let μ be a finite positive Borel measure in the plane with
compact support X, let H2(μ) be the closure of the polynomials in
L\μ), and put H°°(μ) = H\μ) Π L~(μ). The next theorem, which is
used to derive the main result, may be of independent interest.

THEOREM 1. H°°(μ) = H2(μ) if, and only if, X is finite.

Proof. The sufficiency is trivial. Assume now that X is infinite.
Note that the inclusion map of H°°(μ) into H2(μ) is continuous. We
will show that the inverse map is not continuous, and hence, by the
Open Mapping Theorem, that H°°(μ) Φ H2(μ).

Since X is compact and infinite, its set X' of accumulation points
is compact and nonempty. Choose λ o e Γ such that |λo | = max{|λ|:
λ e X'}, and let A — {λ: | λ | ^ | λ01}. By the choice of λ, X\Dι is a
countable set. Therefore, we can choose a closed disk D2 which con-
tains D1 and is tangent to Dλ at λ0, in such a way that the boundary
of D2 intersects X only at λ0. Now note that we may as well assume
that D2 is the closed unit disc A, and that λ0 = 1.

Now X\Δ is a countable set {yl9 y2, •••}, and if this set infinite,
we must have lim yn = 1. Let K — A U (X\A). Then K is a compact
set which does not separate the plane. Define a sequence of functions
{/.} on K by

Then, for each n, fn is continuous on K and analytic in its interior.
By Mergelyan's theorem, each fn is the uniform limit on K of a
sequence of polynomials. Hence each fn e H°°(μ).

Let χ denote the function which has the value 1 at the point 1
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and the value zero elsewhere. Clearly, fn —• χ pointwise, and hence in
the metric of L\μ) by dominated convergence. In particular, χ e H°°{μ).
However, the point 1 is an accumulation point of the support of μ,
and hence \\fn — χ |L = 1 for every n. Thus, {fn} converges to χ in
H\μ) but not in H~{μ).

THEOREM 2. Let S be a subnormal operator on the Hubert space
βέf, let Sf be the uniformly closed algebra generated by S. If *Sf has
a separating vector x such that Sϊfx is a closed subspace of £ίf, then
the spectrum of S is a finite set, and hence S is normal.

Proof. Let & be the uniformly closed algebra generated by S
and the identity operator /. Since ^x is the sum of Szfx and the
one-dimensional space spanned by x, and since we assume that Jϊfx
is closed, we also have that &% is a closed subspace of Sίf.

Now ^x is invariant under S and the restriction operator
50 — SI &x is subnormal. Since the uniformly closed algebra ^
generated by So and I contains & \ ^x, it follows that x is a strictly
cyclic vector for &0, that is, ,^ox = ̂ x. By the representation
theorem for subnormal operators with a cyclic vector, Bram [1], So is
unitarily equivalent to the operator of multiplication by the identity
function on some H2(μ) space. Furthermore, the unitary equivalence
can be constructed so that x corresponds to the constant function 1.

Now ^ corresponds via the unitary equivalence to the algebra of
multiplication operators Mφ:f—>Φf on H\μ), where φ belongs to the
.//"(//(-closure of the polynomials. Since any such function φ belongs
to H°°(μ), it follows that the constant function 1 is a strictly cyclic
vector for {Mφ: φ e H~(μ)}, and hence that H°°(μ) = H\μ). By Theo-
orem 1, H2(μ) is finite-dimensional.

It follows that έ%x is finite-dimensional, and, since j / c ^ , so
is Ssfx. Since x separates j y , it follows that j y is finite-dimensional.
So there is a polynomial p such that p(S) = 0. Since p(σ(S)) = σ(p(S))
= {0}, σ(S) in finite and hence S is normal.

COROLLARY 1. Let Ssf be a uniformly closed subalgebra of .<
which has a separating vector x such that J^fx is a closed subspace of

(This is the case if s*f is strictly cyclic and separated.) Then
contains no subnormal operator with infinite spectrum.

Proof. Suppose Se j y is subnormal, and let Jzf(S) be the uni-
formly closed algebra generated by S. Since j^f(S) c j y , x separates
Ssf(S). Since the linear transformation A—>Ax of J^f onto s^x is
continuous and one-to-one, and since Szfx is closed by hypothesis, the
transformation has a continuous inverse by the Open Mapping Theorem.
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Therefore, s*f(S)x is closed, and the result follows from Theorem 2.

COROLLARY 2. The commutant of a subnormal operator S is strictly
cyclic if, and only if, S is normal and has finite spectrum.

Proof. Suppose {S}' has a strictly cyclic vector x. Then x
separates {S}", and it follows from [2, Lemma 2.1 (i)] that {S}"x is
a closed subspace. Thus, by Corollary 1, S has finite spectrum and
hence is normal.

Conversely, if σ(S) = {Xl9 •••, λn}, then each λy is an eigenvalue
and 3ίf is the direct sum of the corresponding eigensubspaces £Zfά.
It follows that {S}'= ^ ( ^ ) © ••• φ ^ ( ^ ) . Hence any vector
x — xι + + xn where 0 Φ x3- e £ίfά, j = 1, , n9 is strictly cyclic
for {Sy.

COROLLARY 3. Let S be a subnormal operator on a Hilbert space
£%f. If {Sy is strictly cyclic and separated, then Sίf is finite-dimen-
sional.

Proof. By Corollary 2, S is normal, its spectrum is finite, and
{S}f = &(<%O(B "•• Θ ^ ( ^ t ) with notation as in the proof of that
corollary. If x is strictly cyclic for {£?}', then x — x± + + xn where
0 Φ Xj G β^ , all j . If some β^ has dimension greater than 1, then
there is a nonzero operator Bj on ̂  which annihilates xj9 and hence
there is a nonzero Be{S}' such that Bx = 0. Therefore, if {S}' is
strictly cyclic and separated, each ĝy is one-dimensional and hence

is finite-dimensional.

COROLLARY 4. Let S be a subnormal operator on a Hilbert space
If {S}" is strictly cyclic, then §ίf is finite-dimensional.

Proof. If x is strictly cyclic for {S}"c{S}', then it is strictly
cyclic and separating for {S}' and the result follows from Corol-
lary 3.

An operator A is said to be strictly cyclic if the weakly closed
algebra generated by A and / has this property. Since this algebra
is contained in the second commutant of A, it follows that the second
commutant of a strictly cyclic operator is strictly cyclic. In view of
Corollary 4, we have

COROLLARY 5. There exist no strictly cyclic subnormal operators
on an infinite-dimensional Hilbert space.
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