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Abstract We show that forms of Bayesian and MDL inference that are often applied to

classification problems can be inconsistent. This means that there exists a learning prob-

lem such that for all amounts of data the generalization errors of the MDL classifier and

the Bayes classifier relative to the Bayesian posterior both remain bounded away from the

smallest achievable generalization error. From a Bayesian point of view, the result can be

reinterpreted as saying that Bayesian inference can be inconsistent under misspecification,

even for countably infinite models. We extensively discuss the result from both a Bayesian

and an MDL perspective.

Keywords Bayesian statistics . Minimum description length . Classification . Consistency .

Inconsistency . Misspecification

1 Introduction

Overfitting is a central concern of machine learning and statistics. Two frequently used

learning methods that in many cases ‘automatically’ protect against overfitting are Bayesian

inference (Bernardo & Smith, 1994) and the Minimum Description Length (MDL) Principle

(Rissanen, 1989; Barron, Rissanen, & Yu, 1998; Grünwald, 2005, 2007). We show that, when

applied to classification problems, some of the standard variations of these two methods can

be inconsistent in the sense that they asymptotically overfit: there exist scenarios where, no

matter how much data is available, the generalization error of a classifier based on MDL
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or the full Bayesian posterior does not converge to the minimum achievable generalization

error within the set of classifiers under consideration.

This result may be viewed as a challenge to Bayesian inference. Given a powerful piece of

information (an objectively correct “prior” on a set of classifiers), transforming this informa-

tion into a Bayesian prior on a set of distributions in a straightforward manner and applying

Bayes rule yields significantly suboptimal behavior—while another simple approach yields

optimal behavior. The key is the transformation from classifiers (functions mapping each

input X to a discrete class label Y ) to (conditional) distributions. Such a transformation is

necessary because Bayes rule cannot be directly applied to classifiers. We do the conversion

in a straightforward manner, crossing a prior on classifiers with a prior on error rates for

these classifiers. This conversion method is a completely standard tool for Bayesians active

in the field of machine learning—we tested this with some professing Bayesians, see Sec-

tion 6.3.4—yet it inevitably leads to (sometimes subtly) ‘misspecified’ probability models not

containing the ‘true’ distribution D. The result may therefore be re-interpreted as ‘Bayesian

inference can be inconsistent under misspecification for common classification probability

models’. Since, in practice, Bayesian inference for classification tasks is frequently and in-

evitably based on misspecified probability models, the result remains relevant even if (as

many Bayesians do, especially those not active in the field of machine learning) one insists

that inference starts directly with a probability model, rather than a classification model that

is then transformed into a probability model—see Section 6.

There are two possible resolutions to this challenge. Perhaps Bayesian inference is an

incomplete characterization of learning: there exist pieces of information (e.g. prior infor-

mation on deterministic classifiers rather than distributions) which can not be well integrated

into a prior distribution and so learning algorithms other than Bayesian inference are some-

times necessary. Or, perhaps there is some less naive method allowing a prior to express the

available information. We discuss this issue further in Section 6.

1.1 A preview

1.1.1 Classification problems

A classification problem is defined on an input (or feature) domain X and output domain (or

class label) Y = {0, 1}. The problem is defined by a probability distribution D over X × Y .

A classifier is a function c : X → Y . The error rate of any classifier is quantified as:

eD(c) = E(x,y)∼D I (c(x) �= y)

where (x, y) ∼ D denotes a draw from the distribution D and I (·) is the indicator function

which is 1 when its argument is true and 0 otherwise.

The goal is to find a classifier which, as often as possible according to D, correctly

predicts the class label given the input feature. Typically, the classification problem is solved

by searching for some classifier c in a limited subset C of all classifiers using a sample

S = (x1, y1), . . . , (xm, ym) ∼ Dm generated by m independent draws from the distribution

D. Naturally, this search is guided by the empirical error rate. This is the error rate on the

subset S defined by:

êS(c) := E(x,y)∼S I (c(x) �= y) = 1

|S|
∑

(x,y)∈S

I (c(x) �= y).
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where (x, y) ∼ S denotes a sample drawn from the uniform distribution on S. Note that

êS(c) is a random variable dependent on a draw from Dm . In contrast, eD(c) is a number (an

expectation) relative to D.

1.1.2 The basic result

The basic result is that certain classifier learning algorithms may not behave well as a func-

tion of the information they use, even when given infinitely many samples to learn from.

The learning algorithms we analyze are “Bayesian classification” (Bayes), “Maximum a

Posteriori classification” (MAP), “Minimum Description Length classification” (MDL) and

“Occam’s Razor Bound classification” (ORB). These algorithms are precisely defined later.

Functionally they take as arguments a training sample S and a “prior” P which is a probabil-

ity distribution over a set of classifiers C. The result applies even when the process creating

classification problems draws the optimal classifier from P(c). In Section 3 we state the basic

result, Theorem 2. The theorem has the following corollary, indicating suboptimal behavior

of Bayes and MDL:

Corollary 1 (Classification Inconsistency). There exists an input domainX and a prior P(c)

on a countable set of classifiers C such that:

1. (inconsistency according to true distribution). There exists a learning problem (distribu-
tion) D such that the Bayesian classifier cBAYES(P,S), the MAP classifier cMAP(P,S), and the
MDL classifier cMDL(P,S) are asymptotically suboptimal with respect to the ORB classifier
cORB(P,S). That is, for c∗ ∈ {cBAYES(P,S), cMAP(P,S), cMDL(P,S)},

lim
m→∞ Pr

S∼Dm
(eD(cORB(P,S)) + 0.05 < eD(c∗)) = 1. (1)

2. (inconsistency according to prior). There exists a randomized algorithm selecting learning
problems D in such a way that

– (a) the prior P(c) is ‘objectively correct’ in the sense that, for all c ∈ C, with probability
P(c), c is the optimal classifier, achieving minc∈C eD(c).

– (b) (1) holds no matter what learning problem D/classifier c is selected. In particular, (1)

holds with prior probability 1.

How dramatic is this result? We may ask

1. Are the priors P for which the result holds natural?

2. How large can the suboptimality become and how small can eD(cORB(P,S)) be?

3. Does this matter for logarithmic loss (which is what MDL approaches seek to minimize

(Grünwald, 2007)) rather than 0-1 loss?

4. Is cORB(P,S) an algorithm which contains information specific to the distribution D?

5. Is this theorem relevant at small (and in particular noninfinite) sample sizes?

We will ask a number of more detailed questions from a Bayesian perspective in Section 6

and from an MDL perspective in Section 7. The short answer to (1) and (2) is: the priors P
have to satisfy several requirements, but they correspond to priors often used in practice. The

size of the suboptimality can be quite large, at least for the MAP and MDL classifiers (the

number of 0.05 was just chosen for concreteness; other values are possible) and eD(cORB(P,S))

can be quite small—see Section 5.1 and Fig. 1. The short answer to (3) is “yes”. A similar

result holds for logarithmic loss, see Section 6.1.
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Fig. 1 A graph depicting the set
of asymptotically allowed error
rates for different classification
algorithms. The x-axis depicts the
optimal classifier’s error rate μ

(also shown as the straight line).
The lower curve is just 0.5H (μ)
and the upper curve is H (μ).
Theorem 2 says that any (μ, μ′)
between the straight line and the
lower curve can be achieved for
some learning problem D and
prior P . Theorem 3 shows that
the Bayesian learner can never
have asymptotic error rate μ′
above the upper curve

The answer to (4) is “no”. The algorithm cORB(P,S), which minimizes the Occam’s Razor

bound (ORB) (see (Blumer et al., 1987) or Section 4.2), is asymptotically consistent for any

D:

Theorem 1 (ORB consistency). For all priors P nonzero on a set of classifiers C, for all
learning problems D, and all constants K > 0 the ORB classifier cORB(P,S) is asymptotically
K -optimal:

lim
m→∞ Pr

S∼Dm

(
eD(cORB(P,S)) > K + inf

c∈C
eD(c)

)
= 0.

The answer to (5) is that the result is very relevant for small sample sizes because the

convergence to the probability 1 event occurs at a speed exponential in m. Although the

critical example uses a countably infinite set of classifiers, on a finite set of n classifiers,

the analysis implies that for m < log n, Bayesian inference gives poorer performance than

Occam’s Razor Bound optimization.

Overview of the Paper. The remainder of this paper first defines precisely what we mean by

the above classifiers. It then states the main inconsistency theorem which implies the above

corollary, as well as a theorem that provides an upper-bound on how badly Bayes can behave.

In Section 4 we prove the theorems. Technical discussion, including variations of the result,

are discussed in Section 5.1. A discussion of the result from a Bayesian point of view is given

in Section 6, and from an MDL point of view in Section 7.

2 Some classification algorithms

The basic inconsistency result is about particular classifier learning algorithms which we

define next.

2.1 The Bayesian classification algorithm

The Bayesian approach to inference starts with a prior probability distribution P over a set of

distributions P . P typically represents a measure of “belief” that some p ∈ P is the process

generating data. Bayes’ rule states that, given sample data S, the posterior probability P(· | S)
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that some p is the process generating the data is:

P(p | S) = p(S)P(p)

P(S)
. (2)

where P(S) := E p∼P [p(S)] = ∑
p∈P P(p)p(S), the sum being replaced by an integral when

P is continuous and P admits a density. Note that in Bayesian statistics, p(S) is usually

denoted as P(S | p).

In classification problems with sample size m = |S|, each p ∈ P is a distribution on

(X × Y)m and the outcome S = (x1, y1), . . . , (xm, ym) is the sequence of labeled examples.

If we intend to perform classification based on a set of classifiers C rather than distributions

P , it is natural to introduce a “prior” P(c) that a particular classifier c : X → {0, 1} is the

best classifier for solving some learning problem. This, of course, is not a Bayesian prior in

the conventional sense because classifiers do not induce a measure over the training data. In

order to apply Bayesian inference, we somehow need to convert the set of classifiers into a

corresponding set of distributions P . With such a conversion, the prior P(c) will induce a

conventional Bayesian prior on P after all.

One common conversion (Jordan, 1995; Tipping, 2001; Grünwald, 1998) transforms the

set of classifiers C into a simple logistic regression model—the precise relationship to logistic

regression is discussed in Section 5.2. In the special case considered in this paper, c(x) ∈ {0, 1}
is binary valued. Then (but only then) the conversion amounts to assuming that the error

rate θ of the optimal classifier is independent of the feature value x . This is known as

“homoskedasticity” in statistics and “label noise” in learning theory. More precisely, we let

P consist of the set of distributions pc,θ , where c ∈ C and θ ∈ [0, 1]. These are defined as

conditional probability distributions over the labels given the unlabeled data:

pc,θ (ym | xm) = θmêS (c)(1 − θ )m−mêS (c). (3)

This expresses that there exists some θ such that ∀x Pc,θ (c(X ) �= y | X = x) = θ . (ho-

moskedasticity). Note that

pc,θ (y|x) =
{

θ if c(x) �= y

1 − θ if c(x) = y.

For each fixed θ < 0.5, the log likelihood log pc,θ (ym | xm) is linearly decreasing in the

empirical error that c makes on S. By differentiating with respect to θ , we see that for fixed

c, the likelihood (3) is maximized by setting θ := êS(c), giving

log
1

pc,êS (c)(ym | xm)
= m H (êS(c)), (4)

where H is the binary entropy H (μ) = μ log 1
μ

+ (1 − μ) log 1
1−μ

, which is strictly increas-

ing for μ ∈ [0, 0.5). Here, as everywhere else in the paper, log stands for binary logarithm.

Thus, the conversion is “reasonable” in the sense that, both with fixed θ < 0.5 and with the

likelihood-maximizing θ = êS(c) which varies with the data, the likelihood is a decreasing

function in the empirical error rate of c, so that classifiers which achieve small error on the

data correspond to a large likelihood of the data.

We further assume that some distribution px on Xm generates the x-values, and, in par-

ticular that this distribution is independent of c and θ . With this assumption, we can apply

Bayes rule to get a posterior on pc,θ , denoted as P(c, θ | S), without knowing px , since the

Springer



124 Mach Learn (2007) 66:119–149

px (xm)-factors cancel:

P(c, θ | S) = pc,θ (ym |xm)px (xm)P(c, θ )

P(ym | xm)px (xm)
= pc,θ (ym |xm)P(c, θ )

Ec,θ∼P [pc,θ (ym | xm)]
. (5)

As is customary in Bayesian statistics, here as well as in the remainder of this paper we

defined the prior P over (c, θ ) rather than directly over pc,θ . The latter choice would be

equivalent but notationally more cumbersome.

To make (5) applicable, we need to specify a prior measure on the joint space C × [0, 1]

of classifiers and θ -parameters. In the next section we discuss the priors under which the

theorems hold.

Bayes rule (5) is formed into a classifier learning algorithm by choosing the most likely

label given the input x and the posterior P(·|S):

cBAYES(P,S)(x) :=

⎧⎪⎨⎪⎩
1 if Ec,θ∼P(·|S)[pc,θ (Y = 1|X = x)] >

1

2
,

0 if Ec,θ∼P(·|S)[pc,θ (Y = 1|X = x)] <
1

2
.

(6)

If Ec,θ∼P(·|S)[pc,θ (Y = 1|X = x)] = 1
2
, then the value of cBAYES(P,S) is determined by an in-

dependent toss of a fair coin.

2.2 The MAP classification algorithm

The integrations of the full Bayesian classifier can be too computationally intensive, so in

practice one often predicts using the Maximum A Posteriori (MAP) classifier. This classifier

is given by:

cMAP(P,S) = arg max
c∈C

max
θ∈[0,1]

P(c, θ | S) = arg max
c∈C

max
θ∈[0,1]

pc,θ (ym | xm)P(c, θ )

with ties broken arbitrarily. Integration over θ ∈ [0, 1] is easy compared to summation over

c ∈ C, so one sometimes uses a learning algorithm (SMP) which integrates over θ (like full

Bayes) but maximizes over c (like MAP):

cSMP(P,S) = arg max
c∈C

P(c | S) = arg max
c∈C

Eθ∼P(θ ) pc,θ (ym | xm)P(c |θ ).

2.3 The MDL classification algorithm

The MDL approach to classification is transplanted from the MDL approach to density

estimation. There is no such thing as a ‘definition’ of MDL for classification because the

transplant has been performed in various ways by various authors. Nonetheless, as we discuss

in Section 7, many implementations are essentially equivalent to the following algorithm

(Quinlan & Rivest, 1989; Rissanen, 1989; Kearns et al., 1997; Grünwald, 1998):

cMDL(P,S) = arg min
c∈C

{
log

1

P(c)
+ log

(
m

mêS(c)

)}
. (7)

The quantity minimized has a coding interpretation: it is the number of bits required to

describe the classifier plus the number of bits required to describe the labels on S given
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the classifier and the unlabeled data. We call—log P(c) + log( m
mêS (c)

) the two-part MDL
codelength for encoding data S with classifier c.

3 Main theorems

We prove inconsistency for some countable set of classifiersC = {c0, c1, . . . } which we define

later. The inconsistency is attained for priors with ‘heavy tails’. Formally, for Theorem 2

(inconsistency of Bayes, MDL, MAP and SMP), we require P(ck) to be such that for all k,

log
1

P(ck)
≤ log k + o(log k). (8)

This condition is satisfied, for example, by Rissanen’s (1983) universal prior for the integers.

Another simple prior satisfying (8) can be defined as follows: group the classifiers c1, c2, . . .

as C0 := {c1}, C1 := {c2, c3}, C2 := {c4, . . . , c7} and so on, so that Ca contains 2a classifiers.

Then the prior of any classifier in Ca is defined as

P(c) = 1

a(a + 1)
2−a .

The sensitivity of our results to the choice of prior is analyzed further in Section 5.1. The prior

on θ can be any distribution P on [0, 1] with a density w that is continuously differentiable

and bounded away from 0 on [0, 0.5), i.e. for some γ > 0,

for all θ ∈ [0, 0.5), w(θ ) > γ. (9)

For example, we may take the uniform distribution on [0, 1] with w(θ ) ≡ 1. We can also take

the uniform distribution on [0, 0.5), with w(θ ) ≡ 2.

For our result concerning the full Bayesian classifier, Theorem 2, Part (b), we need to

make the further restriction1

P(θ ≥ 0.5) = 0. (10)

For ease of comparison with other results (Section 6), we shall also allow discrete priors on

θ that put all their mass on a countable set, [0, 1] ∩ Q. For such priors, we require that they

satisfy, for all a ∈ N, all b ∈ {0, 1, . . . , �a/2�}:

P

(
θ = b

a

)
≥ K1a−K2 (11)

for some fixed constants K1, K2 > 0. An example of a prior achieving (11) is P(θ = b/a) =
1/(a(a + 1)�a/2 + 1�).

1 Without this restriction, we may put nonzero prior on distributions pc,θ with θ > 1/2. For such distributions,
the log likelihood of the data increases rather than decreases as a linear function of the error that c makes on
the data. This implies that with a uniform prior, under our definition of the Bayes MAP classifier, in some
cases the MAP classifier may be the classifier with the largest, rather than the smallest empirical error. As
pointed out by a referee, for this reason the term “Bayes MAP classifier” may be somewhat of a misnomer: it
does not always coincide with the Bayes act corresponding to the MAP distribution. If one insists on defining
the Bayes MAP classifier as the Bayes act corresponding to the MAP distribution, then one can achieve this
simply by restricting oneself to priors satisfying (10), since all our results still hold under the restriction (10).
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We assume that the priors P(θ ) on [0, 1] and the prior P(c) on C are fully dependent

so that every classifier can have its own error rate. We require each classifier to have the

same prior for θ . Thus, P(c, θ ) = P(c)P(θ |c) where for every c, P(θ |c) is set to P(θ ). Note

that given a sample S, the posterior P(θ |c, S) can depend on c. In the theorem, H (μ) =
μ log 1

μ
+ (1 − μ) log 1

1−μ
stands for the binary entropy of a coin with bias μ. The function

g(μ) appearing in Part (b) of the theorem is defined as

g(μ) = μ + sup {ν |ν ≥ 0 ; H (ν) < H (μ) − 2μ}. (12)

This function will be analyzed later.

Theorem 2 (Classification inconsistency). There exists an input space X and a countable
set of classifiers C such that the following holds: let P be any prior satisfying (8) and (9).
Then, for all μ ∈ (0, 0.5),

(a) For all μ′ ∈ [μ, H (μ)/2), there exists a D with minc∈C eD(c) = eD(c0) = μ such that,
for all large m, with am = 3 exp(−2

√
m),

Pr
S∼Dm

(eD(cMAP(P,S)) = μ′) ≥ 1 − am

Pr
S∼Dm

(eD(cSMP(P,S)) = μ′) ≥ 1 − am

Pr
S∼Dm

(eD(cMDL(P,S)) = μ′) ≥ 1 − am . (13)

(b) If the prior P further satisfies (10), then for all μ′ ∈ [μ, g(μ)), there exists a D with
minc∈C eD(c) = eD(c0) = μ such that, for all large m, with am = (6 + o(1)) exp(−(1 −
2μ)

√
m),

Pr
S∼Dm

(eD(cBAYES(P,S)) ≥ μ′) ≥ 1 − am . (14)

Since H (μ)/2 > μ for all μ ∈ (0, 0.5) (Fig. 1), inconsistency of cMAP(P,S), cSMP(P,S) and

cMDL(P,S) can occur for all μ ∈ (0, 0.5). The theorem states that Bayes is inconsistent for all
large m on a fixed distribution D. This is a significantly more difficult statement than “for all

(large) m, there exists a learning problem where Bayes is inconsistent”.2 Differentiation of

0.5H (μ) − μ shows that the maximum discrepancy between eD(cMAP(P,S)) and μ is achieved

for μ = 1/5. With this choice of μ, 0.5H (μ) − μ = 0.1609 . . . so that, by choosing μ′

arbitrarily close to H (μ), the discrepancy μ′ − μ comes arbitrarily close to 0.1609 . . . .

These findings are summarized in Fig. 1. Concerning cBAYES(P,S), since H (μ) − 2μ > 0 for

all μ ∈ (0, 0.5), H (0) = 0 and H (ν) is monotonically increasing between 0 and 0.5, we

have g(μ) > μ for all μ ∈ (0, 0.5). Hence, inconsistency can occur for all such μ. Since

H (ν) is monotonically increasing in ν, the largest value of ν can be obtained for the μ for

which H (μ) − 2μ is largest. We already noted that this is maximized for μ = 0.2. Then

the largest ν such that H (ν) < H (μ) − 2μ = 2 · 0.1609... can be numerically calculated as

νmax = 0.0586.... Thus, in that case we can get eD(cBAYES(P,S)) arbitrarily close to μ + νmax =
0.2586....3

2 In fact, a meta-argument can be made that any nontrivial learning algorithm is ‘inconsistent’ in this sense
for finite m.
3 While we have no formal proof, we strongly suspect that g(μ) can be replaced by H (μ)/2 in Part 2 of the
theorem, so that the suboptimality for cBAYES(P,S) would be just as large as for the other three classifiers. For
this reason we did not bother to draw the function g(μ) in Fig. 1.
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How large can the discrepancy between μ = infc eD(c) and μ′ = eD(cBAYES(P,S)) be in

the large m limit, for general learning problems? The next theorem, again summarized in

Fig. 1, gives an upper bound which holds for all learning problems (distributions D), namely,

μ′ < H (μ):

Theorem 3 (Maximal inconsistency of Bayes). Let Si be the sequence consisting of the first
i examples (x1, y1), . . . , (xi , yi ). For all priors P nonzero on a set of classifiers C, for all
learning problems D with 0 < infc∈C eD(c) = μ < 0.5, for all δ > 0, for all large m, with
Dm-probability ≥ 1 − 2 exp(−2

√
m),

1

m

m∑
i=1

∣∣yi − cBAYES(P,Si−1)(xi )
∣∣ ≤ H (μ) + δ.

The theorem says that for large m, the total number of mistakes when successively classifying

yi given xi made by the Bayesian algorithm based on Si−1, divided by m, is not larger than

H (μ). By the law of large numbers, it follows that for large m, eD(cBAYES(P,Si−1)(xi )), averaged
over all i , is no larger than H (μ). Thus, it is not ruled out that sporadically, for some i ,

eD(cBAYES(P,Si−1)(xi )) > H (μ); but this must be ‘compensated’ for by most other i . We did

not find a proof that eD(cBAYES(P,Si−1)(xi )) ≤ H (μ) for all large i .

4 Proofs

4.1 Inconsistent learning algorithms: Proof of Theorem 2

Below we first define the particular learning problem that causes inconsistency. We then

analyze the performance of the algorithms on this learning problem.

4.1.1 The learning problem

For given μ and μ′ ≥ μ, we construct a learning problem and a set of classifiers C =
{c0, c1, . . . } such that c0 is the ‘good’ classifier with eD(c0) = μ and c1, c2, . . . are all ‘bad’

classifiers with eD(c j ) = μ′ ≥ μ. x = x0x1 . . . ∈ X = {0, 1}∞ consists of one binary fea-

ture per classifier, and the classifiers simply output the value of their special feature. The

underlying distribution D depends on two parameters 0 < ph < 1 and η ∈ [0, 1/2). These

are defined in terms of the μ and μ′ mentioned in the theorem, in a way to be described later.

To construct an example (x, y), we first flip a fair coin to determine y, so y = 1 with

probability 1/2. We then flip a coin with bias ph which determines if this is a “hard” example

or an “easy” example. Based upon these two coin flips, for j ≥ 1, each x j is independently

generated according to the following 2 cases.

1. For a “hard” example, and for each classifier c j with j ≥ 1, set x j = |1 − y| with probabil-

ity 1/2 and x j = y otherwise. Thus, x1, x2, . . . becomes an infinite sequence of realizations

of i.i.d. uniform Bernoulli random variables.

2. For an “easy” example, we flip a third coin Z with bias η. If Z = 0 (‘example ok’), we

set, for every j ≥ 1, x j = y. If Z = 1, we set, for all j ≥ 1, x j = |1 − y| otherwise. Note

that for an “easy” example, all bad classifiers make the same prediction.

The bad classifiers essentially predict Y by random guessing on hard examples. On easy

examples, they all make the same prediction, which is correct with probability 1 − η > 0.5.
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It remains to define the input x0 of the “good” classifier c0 with true error rate μ. This is done

simply by setting x0 = |1 − y| with probability μ and x0 = y otherwise.

The setting of ph and η is different for, on the one hand, the (S)MAP and MDL incon-

sistency proofs, and on the other hand, the full Bayes inconsistency proof. To get a first,

intuitive idea of the proof, it is best to ignore, for the time being, the parameter values for the

full Bayes proof.

In the MAP and MDL inconsistency proof, we set ph := 2μ′ and η = 0. In the Bayes

proof, we first set ph := 2μ. We then define ν := μ′ − μ and we set η := ν/(1 − 2μ). By

the conditions of the theorem, we have 0 < H (ν) < H (μ) − 2μ. Note that for such ν, H (ν) <

1 − 2μ and therefore 2ν ≤ 1 − 2μ so that η < 1/2. As is easily checked in the (S)MAP and

MDL case, and somewhat harder to check in the full Bayes case, the error rate of each ‘bad’

classifier is eD(c j ) = μ′ for all j ≥ 1.

Discussion The inputs x are infinite-dimensional vectors. Nevertheless, the Bayesian

posterior can be arbitrarily well approximated in finite time for any finite sample size m if we

order the features according to the prior of the associated classifier. We need only consider

features which have an associated prior greater than 1
2m since the minus log-likelihood of the

data is always less than m + O(log m) bits. This follows because by (9) and (11), the prior

P(θ ) puts sufficient mass in a neighborhood of θ = 0.5. For such θ , the distribution pc,θ (y|x)

becomes uniform, independently of c.

The (constructive) proof of Theorem 2 relies upon this problem, but it’s worth mentioning

that other hard learning problems exist and that this hard learning problem can be viewed in

two other ways:

1. The input space has two bits (the hardness bit and the “correct value” bit) and the clas-

sifiers are stochastic. Stochastic classifiers might be reasonable (for example) if the task

is inferring which of several stock “experts” are the best on average. The stock pickers

occasionally make mistakes as modeled by the stochasticity.

2. The input space consists of one real valued feature. Each bit in the binary expansion of

the real number is used by a different classifier as above.

4.1.2 Bayes and MDL are inconsistent

We now prove Theorem 2. Stage 1 and 2 do not depend on the specific choices for ph and

η, and are common to the proofs for MAP, SMP, MDL and full Bayes. In Stage 1 we show

that for some function k(m), for every value of m, with probability converging to 1, there

exists some ‘bad’ classifier c∗ = c j with 0 < j ≤ k(m) that has 0 empirical error on hard

examples, whereas the good classifier has empirical error close to its expected generalization

error. Up to sublinear terms, we find that

log k(m) = mph. (15)

The precise expression is given in (18). In Stage 2 we rewrite the log posterior odds ratio

between the good classifier c0 and c∗. Up to sublinear terms (see (26)), this ratio turns out to

be equal to

m H (êS(c∗)) − m H (êS(c0)) + mph. (16)

In Stage 3 we combine (15) and (16) to show that, with the choice ph = 2μ′, η = 0, the pos-

terior on c∗ becomes exponentially larger than the posterior on c0, from which inconsistency

of MAP, SMP and MDL readily follows. In Stage 4, we show that with the choice ph = 2μ,
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η = ν/(1 − 2μ), the posterior on c∗ still becomes exponentially larger than the posterior on

c0, but now additionally, the classification performance of the Bayesian classifier (a mixture

that puts nearly all its weight on bad classifiers), cannot exceed that of c∗.

Stage 1. Let mh denote the number of hard examples generated within a sample S of size m.

Let êS,h(c) be the number of mistakes that the classifier c makes on the subset Sh of S of hard

examples, divided by mh = |Sh|. Let k be a positive integer and Ck = {c j ∈ C : 1 ≤ j ≤ k}.
For all ε > 0 and m ≥ 0, we have:

Pr
S∼Dm

(∀c ∈ Ck : êS,h(c) > 0)

(a)= Pr
S∼Dm

(
∀c ∈ Ck : êS,h(c) > 0

∣∣∣∣ mh

m
> ph + ε

)
Pr

S∼Dm

(
mh

m
> ph + ε

)
+ Pr

S∼Dm

(
∀c ∈ Ck : êS,h(c) > 0

∣∣∣∣ mh

m
≤ ph + ε

)
Pr

S∼Dm

(
mh

m
≤ ph + ε

)
(b)≤ e−2mε2 + Pr

S∼Dm

(
∀c ∈ Ck : êS,h(c) > 0

∣∣∣∣ mh

m
≤ ph + ε

)
(c)≤ e−2mε2 + (1 − 2−m(ph+ε))k (d)≤ e−2mε2 + e−k2−m(ph+ε)

. (17)

Here (a) follows because P(a) = ∑
b P(a|b)P(b). (b) follows by ∀a, P : P(a) ≤ 1 and the

Chernoff bound. (c) holds from independence and since (1 − 2−m(ph+ε))k is monotonic in ε,

and (d) by ∀x ∈ [0, 1], k > 0 : (1 − x)k ≤ e−kx . We now set εm := m−0.25 and

k = k(m) = 2mε2
m

2−m(ph+εm )
. (18)

Note that, up to sublinear terms, this is equal to (15). With (18), (17) becomes

Pr
S∼Dm

(∀c ∈ Ck(m) : êS,h(c) > 0) ≤ 2e−2
√

m (19)

On the other hand, by the Chernoff bound we have PrS∼Dm (êS(c0) < eD(c0) − εm) ≤ e−2
√

m

for the optimal classifier c0. Combining this with (19) using the union bound, we get that,

with Dm-probability larger than 1 − 3e−2
√

m , the following event holds:

∃c ∈ Ck(m) : êS,h(c) = 0 and êS(c0) ≥ eD(c0) − εm . (20)

Stage 2. In this stage, we calculate, for large m, the log ratio between the posterior on some

c∗ ∈ Ck(m) with êS,h(c∗) = 0 and the posterior on c0. We have:

log
maxθ P(c0, θ | xm, ym)

maxθ P(c∗, θ | xm, ym)
= log

maxθ P(c0)P(θ )P(ym | xm, c0, θ )

maxθ P(c∗)P(θ )P(ym | xm, c∗, θ )

= log max
θ

P(c0)P(θ )P(ym | xm, c0, θ )−log max
θ

P(c∗)P(θ )P(ym | xm, c∗, θ ). (21)

Using (4), (9) and (11), we see that, uniformly for all samples S with êS(c0) < 1/2, the

leftmost term is no larger than

log
(
max

θ
P(c0)P(θ )

) · (
max

θ ′
P(ym | xm, c0, θ

′)
) = −m H (êS(c0)) + O(1). (22)
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Similarly, uniformly for all samples S with êS,h(c∗) = 0, êS(c∗) < 1/2, the rightmost term

in (21) satisfies

− log max
θ

P(c∗)P(θ )P(ym | xm, c∗, θ ) ≤ − log P(c∗) + m H (êS(c∗)) + O(1), (23)

where the constant in the O-notation does not depend on c∗. Using condition (8) on prior

P(c∗) and using c∗ ∈ Ck(m), we find:

− log P(c∗) = log
1

P(c∗)
≤ log k(m) + o(log k(m)), (24)

where log k(m) = log 2
√

m + mph + m0.75, so that

log
1

P(c∗)
≤ mph + o(m) (25)

which implies that (23), is no larger than mph + m H (êS(c∗)) + o(m). Thus, for all large m,

the difference between the leftmost term and the rightmost term in (21) satisfies

log
maxθ P(c0, θ | xm, ym)

maxθ P(c∗, θ | xm, ym)
≤ −m H (êS(c0)) + mph + m H (êS(c∗)) + o(m), (26)

as long as êS(c0) and êS(c∗) are both less than 0.5.

Stage 3(a). (MAP) Recall that, for the MAP result, we set η := 0 and ph := 2μ′. Let us

assume that the large probability event (20) holds. This will allow us to replace the two ‘em-

pirical entropies’ in (26), which are random variables, by corresponding ordinary entropies,

which are constants. By (20), êS,h(c∗) = 0, so that we have (since η = 0) that êS(c∗) = 0

and then also H (êS(c∗)) = 0. Because H (μ) is continuously differentiable in a small enough

neighborhood around μ, by (20) we also have, for some constant K ,

H (êS(c0)) ≥ H (eD(c0)) − K εm + O(1) = H (μ) + O(m−1/2).

Plugging these expressions for H (êS(c∗)) and H (êS(c0)) into (26), and using the fact that we

set ph = 2μ′, we see that, as long as μ′ < H (μ)/2, there exists a c > 0 such that for all large

m, (26), and hence (21) is smaller than −cm. Thus, (21) is less than 0 for large m, implying

that then eD(cMAP(P,S)) = μ′. We derived all this from (20) which holds with probability ≥
1 − 3 exp(−2

√
m). Thus, for all large m, PrS∼Dm

(
eD(cMAP(P,S)) = μ′) ≥ 1 − 3 exp(−2

√
m),

and the result follows.

Stage 3(b). (SMP) We are now interested in evaluating, instead of the posterior ratio (21),

the posterior ratio with the error rate parameters integrated out:

log
P(c0 | xm, ym)

P(c∗ | xm, ym)
= log P(c0)P(ym | xm, c0) − log P(c∗)P(ym | xm, c∗). (27)

By Proposition 2 in the appendix, we see that, if (20) holds, then (21) is no larger than (27)

plus an additional term of order O(log m). To see this, apply the first inequality of (54) to
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the term involving c0, and the second inequality of (54) to the term involving c∗. The result

now follows by exactly the same reasoning as in Stage 3(a).

Stage 3(c). (MDL) By part (1) of Proposition 2 in the appendix, the MDL procedure is equal

to SMP with the uniform prior w(θ ) ≡ 1. Thus, the MDL case is a special case of the SMP

case for which we already proved inconsistency above.

Stage 3(d). (Bayes) In order to prove the inconsistency for the full Bayesian classifier, we

construct a setup where on on hard examples, all classifiers, even the ‘good’ classifier c0,

predict c(X ) = 1 with probability 1/2, independently of the true value of Y . To this end, we

refine our learning problem by setting x0 = |1 − y| with probability 1/2 for a “hard” example,

and x0 = y with probability 1 for an “easy” example. By setting ph := 2μ, we still get that

eD(c0) = μ. In order to make the error rate for the bad classifiers c1, c2, . . . still larger than

for c0, we now set η to a value larger strictly than 0.

We let êS,easy(c) denote the empirical error that classifier c achieves on the easy examples

in S, i.e. the number of mistakes on the easy examples in S divided by |S| − |Sh|. Now set

εm as in Stage 1 and define the events (sets of samples Sm of length m) A and B as

A = {Sm : ∃ j > 0 : |êS,easy(c j ) − η| > εm}; B =
{

Sm :
mh

m
≥ ph + εm

}
,

and let Ac and Bc be their respective complements. We have

Pr
S∼Dm

(A ∪ B) = Pr(A ∪ B |B) Pr(B) + Pr(A ∪ B |Bc) Pr(Bc) ≤ Pr(B) + Pr(A |Bc)

≤ e−2
√

m + 2e−2m(1−ph−εm )ε2
m = e−2

√
m + 2e−2

√
m(1−ph)+2m0.25

≤ 3e−(1−ph)
√

m(1 + o(1)), (28)

where the second inequality follows by applying the Chernoff bound to both terms (recall that

on easy examples, all classifiers c j with j > 1 output the same prediction for Y ). Combining

this with the result of Stage 1 using the union bound and using ph = 2μ, we get that, with

Dm-probability at least 1 − 6(1 + o(1))e−√
m(1−2μ), (20) and Ac and Bc all hold at the same

time. Let us assume for now that this large probability event holds. We must then have that

some c∗ ∈ Ck(m) achieves empirical error 0 on hard examples (which occur with probability

2μ) and at least η + O(m−1/2) on easy examples (which occur with probability 1 − 2μ), so

that

êS(c∗) = (1 − 2μ)η + O(m−1/2) = ν + O(m−1/2), (29)

where ν = μ′ − μ. By continuity of H , we also have that H (êS(c∗)) = H (ν) + O(m−1/2).

Entirely analogously to the reasoning in Stage 3(a), we can now replace the empirical

entropies in the expression (26) for the log-likelihood ratio between c∗ and c0 by the corre-

sponding ordinary entropies. This gives

log
maxθ P(c0, θ | xm, ym)

maxθ P(c∗, θ | xm, ym)
≤ −m H (μ) + m2μ + m H (ν) + o(m), (30)

By definition of ν, ν = μ′ − μ satisfies −H (μ) + H (ν) + 2μ < 0, so that there exists a

c > 0 such that for all large m, (30) is smaller than −cm. Reasoning entirely analogously to
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Stage 3(b), we see that (30) still holds if we integrate out θ , rather than maximize over it:

there exists a c > 0 such that for all large m,

log
P(c0 | xm, ym)

P(c∗ | xm, ym)
≤ −m H (μ) + m2μ + m H (ν) + o(m) ≤ −cm. (31)

Furthermore, by (29) and our condition on the prior, the posterior on θ given c∗ must concen-

trate on ν (even though c∗ varies with m): we must have that, for every open set A containing

ν, the posterior distribution of θ given c∗ and sample S satisfies

P(θ ∈ A |c∗, S)
m→∞→ 1. (32)

We now show that (31) and (32), both of which hold with high probability, imply that the

full Bayesian classifier based on sample S errs with probability at least μ + ν = μ′:

Pr
X,Y∼D

(Y �= cBAYES(P,S)(X ))

= Pr
X,Y∼D

(Y �= cBAYES(P,S)(X ) |Ex. hard)ph

+ Pr
X,Y∼D

(Y �= cBAYES(P,S)(X ) |Ex. easy)(1 − ph)

≥ 1

2
2μ + Pr

X,Y∼D
(Y �= cBAYES(P,S)(X ) |Ex. easy)(1 − 2μ)

≥ μ + Pr
X,Y∼D

(Y �= cBAYES(P,S)(X ) |Ex. easy, corrupted)(1 − 2μ)η

= μ + Pr
X,Y∼D

(Y �= cBAYES(P,S)(X ) |Ex. easy, corrupted, Y = 1)(1 − 2μ)η. (33)

Here the first inequality follows by symmetry: on hard examples, Y = 1 with probability

1/2 and all classifiers independently output Y = 1 with probability 1/2. The final equality

follows again by symmetry between the case Y = 1 and Y = 0. Depending on the sample

S, the probability in the final line of (33) is either equal to 1 or to 0. It is equal to 1 if

cBAYES(P,S)(X ) = 0. By (6), a sufficient condition for this to happen is if S is such that

Ec,θ∼P(·|S)[pc,θ (Y = 1|X = x)] <
1

2
. (34)

This expectation can be rewritten as∑
c∈C

∫
θ∈[0,0.5)

P(θ |c, S)P(c | S)pc,θ (Y = 1 | X = x)dθ

=
∑
c∈C

P(c | S)u(c, S, x)

= P(c0 | S)u(c0, S, x) + P(c∗ | S)u(c∗, S, x) +
∑

c �∈{c0,c∗}
P(c | S)u(c, S, x), (35)

where u(c, S, x) := ∫
θ∈[0,0.5)

P(θ |c, S)pc,θ (Y = 1|X = x)dθ. Note that we integrate here

over [0, 0.5), reflecting the extra condition (10) that we required for the full Bayesian result.

Since the example in the final line (33) is corrupted, for the x occurring there we have that

c j (x) = 0 for j ≥ 1, so that pc j ,θ (Y = 1 | X = x) < 1/2 for all θ < 1/2. It follows that for
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this x , (35) is no greater than

P(c0 | S) + P(c∗ | S)u(c∗, S, x) +
∑

c �∈{c0,c∗}
P(c | S)

1

2
.

By (31) and (32), for all δ > 0, for all large m this is no greater than

a(e−cm · 1 + (1 − e−cm)(ν + δ)) + (1 − a)
1

2
. (36)

for some a that may depend on m but that satisfies 0 < a < 1 for all m. Therefore, and since

ν < 1/2, (36) is less than 1/2 for all large m. But this implies (by the reasoning above (34))

that cBAYES(P,S)(x) = 0. It follows by (33) that, for large m,

Pr
X,Y∼D

(Y �= cBAYES(P,S)(X )) ≥ μ + (1 − 2μ)η = μ + ν = μ′.

All this is implied under an event that holds with probability at least 1 − 6(1 +
o(1))e−√

m(1−2μ) (see above), so that the result follows.

4.2 A consistent algorithm: Proof of Theorem 1

In order to prove the theorem, we first state the Occam’s Razor Bound classification algorithm,

based on minimizing the bound given by the following theorem.

Theorem 4 (Occam’s Razor Bound). (Blumer et al., 1987) For all priors P on a countable
set of classifiers C, for all distributions D, with probability 1 − δ:

∀c : eD(c) ≤ êS(c) +
√

ln 1
P(c)

+ ln 1
δ

2m
.

The algorithm stated here is in a suboptimal form, which is good enough for our purposes

(see (McAllester, 1999) for more sophisticated versions):

cORB(P,S) := arg min
c∈C

⎧⎨⎩êS(c) +
√

ln 1
P(c)

+ ln m

2m

⎫⎬⎭ .

Proof of Theorem 1: Set δm := 1/m. It is easy to see that

min
c∈C

eD(c) +
√

ln 1
P(c)

+ ln m

2m

is achieved for at least one c ∈ C = {c0, c1, . . . }. Among all c j ∈ C achieving the minimum,

let c̃m be the one with smallest index j . By the Chernoff bound, we have with probability at

least 1 − δm = 1 − 1/m,

eD(c̃m) ≥ êS(c̃m) −
√

ln(1/δm)

2m
= êS(c̃m) −

√
ln m

2m
, (37)
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whereas by Theorem 4, with probability at least 1 − δm = 1 − 1/m,

eD(cORB(P,S)) ≤ min
c∈C

êS(c) +
√

− ln P(c) + ln m

2m

≤ êS(c̃m) +
√

− ln P(c̃m) + ln m

2m
.

Combining this with (37) using the union bound, we find that

eD(cORB(P,S)) ≤ eD(c̃m) +
√

− ln P(c̃m) + ln m

2m
+

√
ln m

2m
,

with probability at least 1 − 2/m. The theorem follows upon noting that the right-hand side

of this expression converges to infc∈C eD(c) with increasing m.

4.3 Proof of Corollary 1

The corollary relies on Theorem 1 and a slight generalization of the proof of Theorem 2.

For Theorem 1 pick K < 0.05. In Theorem 2 choose μ = 1/5, μ′ = 1/5 + .15. Now part

1 follows. For part 2, consider Theorem 2 with the same μ and μ′. From the theorem we

see that for the learning problem for which (13) holds, c0 is the optimal classifier. Denote

this learning problem by D0. We define D j as the learning problem (distribution) in the

proof (see Section 4.1.1), but with the role of x0 and x j interchanged. As a result, c j will be

the ‘good’ classifier with error rate μ and c0 will be one of the bad classifiers with rate μ′.
Then the good classifier and one of the bad classifiers will have a different prior probability,

but otherwise nothing changes. Since the proof of Theorem 2 does not depend on the prior

probability of the good classifier—it can be as large or small as we like as long as it is greater

than 0 –, the proof goes through unchanged, and for all learning problems D j , (13) will

hold.

We now generate a learning problem D j by first sampling a classifier c j according to

P(c), and then generating data according to D j . Then, no matter what c j we chose, it will

be the optimal (‘good’) classifier, and, as we just showed, (13) will hold. Theorem 1 (with

K < 0.05) can now be applied with D = D j , and the result follows.

4.4 Proof of Theorem 3

Without loss of generality assume that c0 achieves minc∈C eD(c). Consider both the 0/1-loss

and the log loss of sequentially predicting with the Bayes predictive distribution P(Yi = ·|
Xi = ·, Si−1) given by P(yi | xi , Si−1) = Ec,θ∼P(·|Si−1) pc,θ (yi |xi ). Every time i ∈ {1, . . . , m}
that the Bayes classifier based on Si−1 classifies yi incorrectly, P(yi | xi , Si−1) must be ≤ 1/2

so that − log P(yi | xi , Si−1) ≥ 1. Therefore, if for some α > 0, êS(c0) < 0.5 − α, then
m∑

i=1

− log P(yi | xi , Si−1) ≥
m∑

i=1

|yi − cBAYES(P,Si−1)(xi )|. (38)
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On the other hand we have

m∑
i=1

− log P(yi | xi , Si−1) = − log
m∏

i=1

P(yi | xi , xi−1, yi−1)

= − log
m∏

i=1

P(yi | xm, yi−1)

= − log
m∏

i=1

P(yi |xm)

P(yi−1|xm)

= − log P(ym | xm)

= − log
∑

j=0,1,2...

P(ym | xm, c j )P(c j )

(a)≤ − log P(ym | xm, c0) − log P(c0)
(b)≤ m H (êS(c0)) + O(log m),

(39)

where the constant in the O(log m) term may depend on α. Here inequality (a) follows because

a sum is larger than each of its terms, and (b) follows by Proposition 2 in the appendix. By the

Chernoff bound, for all small enough ε > 0, with probability larger than 1 − 2 exp(−2mε2),

we have |êS(c0) − eD(c0)| < ε. We now set εm = m−0.25. Using the fact that H (μ) in (39)

is continuously differentiable in a neighborhood of μ and μ < 1/2, it follows that with

probability larger than 1 − 2 exp(−2
√

m), for all large m,

m∑
i=1

− log P(yi | xi , Si−1) ≤ m H (eD(c0)) + K m0.75 + O(log m), (40)

where K is a constant not depending on m. Combining (40) with (38) we find that with prob-

ability ≥ 1 − 2 exp(−2
√

m),
∑m

i=1 |yi − cBAYES(P,Si−1)(xi )| ≤ m H (eD(c0)) + o(m), which is

what we had to prove.

5 Technical discussion

5.1 Variations of Theorem 2 and dependency on the prior

Prior on classifiers. The requirement (8) that − log P(ck) ≥ log k + o(log k) is needed to

obtain (25), which is the key inequality in the proof of Theorem 2. If P(ck) decreases at

polynomial rate, but at a degree d larger than one, i.e. if

− log P(ck) = d log k + o(log k), (41)

then a variation of Theorem 2 still applies but the maximum possible discrepancies between
μ and μ′ become much smaller: essentially, if we require μ ≤ μ′ < 1

2d H (μ) rather than

μ ≤ μ′ < 1
2

H (μ) as in Theorem 2, then the argument works for all priors satisfying (41).

Since the derivative d H (μ)/dμ → ∞ as μ ↓ 0, by setting μ close enough to 0 it is possible

to obtain inconsistency for any fixed polynomial degree of decrease d . However, the higher

d , the smaller μ = infc∈C eD(c) must be to get any inconsistency with this argument.
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Prior on error rates. Condition (9) on the prior on the error rates is satisfied for most rea-

sonable priors. Some approaches to applying MDL to classification problems amount to

assuming priors of the form p(θ∗) = 1 for a single θ∗ ∈ [0, 1] (Section 7). In that case, we

can still prove a version of Theorem 2, but the maximum discrepancy between μ and μ′ may

now be either larger or smaller than H (μ)/2 − μ, depending on the choice of θ∗.

5.2 Properties of the transformation from classifiers to distributions

Optimality and Reliability. Assume that the conditional distribution of y given x according

to the ‘true’ underlying distribution D is defined for all x ∈ X , and let pD(y|x) denote its

mass function. Define 	(pc,θ ) as the Kullback-Leibler (KL) divergence (Cover & Thomas,

1991) between pc,θ and the ‘true’ conditional distribution pD:

	(pc,θ ) := KL(pD‖pc,θ ) = E(x,y)∼D[− log pc,θ (y|x) + log pD(y|x)],

and note that for each fixed c, minθ∈[0,1] 	(pc,θ ) is uniquely achieved for θ = eD(c) (this

follows by differentiation) and satisfies

min
θ

	(pc,θ ) = 	(pc,eD (c)) = H (eD(c)) − K D, (42)

where K D = E[− log pD(y|x)] does not depend on c or θ , and H (μ) is the binary entropy.

Proposition 1. Let C be any set of classifiers, and let c∗ ∈ C achieve minc∈C eD(c) = eD(c∗).

1. If eD(c∗) < 1/2, then

min
c,θ

	(pc,θ ) is uniquely achieved for (c, θ ) = (c∗, eD(c∗)).

2. minc,θ 	(pc,θ ) = 0 iff pc∗,eD (c∗) is ‘true’, i.e. if ∀x, y : pc∗,eD (c∗)(y|x) = pD(y|x).

Proof: Property 1 follows from (42) and the fact that H (μ) is monotonically increasing for

μ < 1/2. Property 2 follows directly from the information inequality (Cover & Thomas,

1991), using the fact that we assume pD(y|x) to be well-defined for all x , which implies that

X has a density pD(x) with pD(x) > 0 for all x . �

Proposition 1 implies that the transformation is a good candidate for turning classifiers into

probability distributions.

Namely, let P = {pα : α ∈ A} be a set of i.i.d. distributions indexed by parameter set A
and let P(α) be a prior on A. By the law of large numbers, for each α ∈ A, −m−1 log pα(ym |
xm)P(α) − K D → KL(pD‖pα). By Bayes rule, this implies that if the class P is ‘small’

enough so that the law of large numbers holds uniformly for all pα ∈ P , then for all ε > 0, the

Bayesian posterior will concentrate, with probability 1, on the set of distributions inP within ε

of the p∗ ∈ P minimizing KL-divergence to D. In this case, if C is ‘simple’ enough so that the

correspondingP = {pc,θ : c ∈ C, θ ∈ [0, 1]} admits uniform convergence (Grünwald, 1998),

then the Bayesian posterior asymptotically concentrates on the pc∗,θ∗ ∈ P = {pc,θ } closest

to D in KL-divergence. By Proposition 1, this pc∗,θ∗ corresponds to the c∗ ∈ C with smallest

generalization error rate eD(c∗) (pc∗,θ∗ is optimal for 0/1-loss), and for the θ∗ ∈ [0, 1] with

θ∗ = eD(c∗) (pc∗,θ∗ gives a reliable impression of its prediction quality). This convergence

to an optimal and reliable pc∗,θ∗ will happen if, for example, C has finite VC-dimension

(Grünwald, 1998). We can only get trouble as in Theorem 2 if we allow C to be of infinite

VC-dimension.
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Analogy to Regression. In ordinary (real-valued) regression, Y = R, and one tries to learn

a function f ∈ F from the data. Here F is a set of candidate functions X → Y . In order

to apply Bayesian inference to this problem, one assumes a probability model P expressing

Y = f (X ) + Z , where Z is independent noise with mean 0 and variance σ 2. P then consists

of conditional density functions p f,σ 2 , one for each f ∈ F and σ 2 > 0. It is well known

that if one assumes Z to be normally distributed independently of X , then the p f,σ 2 become

Gaussian densities and the log likelihood becomes a linear function of the mean squared
error (Rissanen, 1989):

− ln p f,σ 2 (yn | xn) = βσ

n∑
i=1

(yi − f (xi ))
2 + n ln Z (βσ ). (43)

where we wrote βσ = 1/2σ 2 and Z (β) = ∫
y∈Y exp(−βy2)dy. Because least squares is an

intuitive, mathematically well-behaved and easy to perform procedure, it is often assumed

in Bayesian regression that the noise is normally distributed—even in cases where in reality,

it is not (Grünwald, 1998; Kleijn & van der Vaart, 2004).

Completely analogously to the Gaussian case, the transformation used in this paper maps

classifiers c and noise rates θ to distributions pc,θ so that the log likelihood becomes a linear
function of the 0/1-error, since it can be written as:

− ln pc,θ (yn | xn) = βθ

n∑
i=1

|yi − c(xi )| + n ln Z (βθ ). (44)

where we wrote βθ = ln(1 − θ ) − ln θ and Z (β) = ∑
y∈Y exp(−βy) (Grünwald, 1998; Meir

& Merhav, 1995). Indeed, the models {pc,θ } are a special case of logistic regression models,

which we now define:

Logistic regression interpretation. let C be a set of functions X → Y , where Y ⊆ R (Y does

not need to be binary-valued). The corresponding logistic regression model is the set of

conditional distributions {pc,β : c ∈ C; β ∈ R} of the form

pc,β (y �= x | x) := e−β|y−c(x)|

1 + e−β
(45)

This is the standard construction used to convert classifiers with real-valued output such as

support vector machines and neural networks into conditional distributions (Jordan, 1995;

Tipping, 2001), so that Bayesian inference can be applied. By setting C to be a set of {0, 1}-
valued classifiers, and substituting β = ln(1 − θ ) − ln θ as in (44), we see that the construc-

tion is a special case of the logistic regression transformation (45). It may seem that (45) does

not treat y = 1 and y = 0 on equal footing, but this is not so: we can alternatively define a

symmetric version of (45) by defining, for each c ∈ C, a corresponding c′ : X → {−1, 1},
c′(x) := 2c(x) − 1. Then we can set

pc,β (1 | x) := eβc(x)

eβc(x) + e−βc(x)
; pc,β (−1 | x) := e−βc(x)

eβc(x) + e−βc(x)
. (46)

By setting β = 2β ′ we see that pc,β as in (45) is identical to pc,β ′ as in (46), so that the two

models really coincide.

6 Interpretation from a Bayesian perspective

We already addressed several questions concerning the relevance of our result directly below

Corollary 1. Here we provide a more in-depth analysis from a Bayesian point of view.
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6.1 Bayesian consistency

It is well-known that Bayesian inference is strongly consistent under very broad conditions

(Doob, 1949; Blackwell & Dubins, 1962); see also (Barron, 1985). Such Bayesian consistency

results take on a particularly strong form if the set of distributions under consideration is

countable. In our setting we can achieve this by adopting a discrete prior satisfying (11).

In that case, the celebrated (Doob, 1949) consistency theorem4 says the following for our

setting. Let C be countable and suppose D is such that, for some c∗ ∈ C and θ∗ ∈ [0, 1] ∩ Q,

pc∗,θ∗ is equal to pD , the true distribution/mass function of y given x . Then with D-probability

1, the Bayesian posterior concentrates on c∗: limm→∞ P(c∗ | Sm) = 1.

Consider now the learning problem underlying Theorem 2 as described in Section 4.1.

Since c0 achieves minc∈C eD(c), it follows by part 1 of Proposition 1 that minc,θ 	(pc,θ ) =
	(pc0,eD (c0)). If 	(pc0,eD (c0)) were 0, then by part 2 of Proposition 1, Doob’s theorem would

apply, and we would have P(c0 | Sm) → 1. Theorem 2 states that this does not happen. It

follows that the premise 	(pc0,eD (c0)) = 0 must be false. But since 	(pc,θ ) is minimized for

(c0, eD(c0)), the Proposition implies that for no c ∈ C and no θ ∈ [0, 1] ∩ Q, pc,θ is equal

to pD(·|·)—in statistical terms, the model P = {pc,θ : c ∈ C, θ ∈ [0, 1] ∩ Q} is misspecified.

Thus, the result can be interpreted in two ways:

1. ‘ordinary’ Bayesian inference can be inconsistent under misspecification: We exhibit a

simple logistic regression model P and a true distribution D such that, with probability

1, the Bayesian posterior does not converge to the distribution pc0,eD (c0) ∈ P that mini-

mizes, among all p ∈ P , the KL-divergence to D (equivalently, pc0,eD (c0) minimizes the

D-expected log loss among all distributions in P). Thus, the posterior does not converge

to the optimal pc0,eD (c0) even though pc0,eD (c0) has substantial prior mass and is partially
correct in the sense that c0, the Bayes optimal classifier relative to pc0,eD (c0), has true error

rate eD(c0), which is the same true error rate that it would have if pc0,eD (c0) were ‘true’.

2. ‘pragmatic’ Bayesian inference for classification can be suboptimal: a standard way to

turn classifiers into distributions so as to make application of Bayesian inference possible

may give rise to suboptimal performance.

6.2 Two types of misspecification

pc0,eD (c0) can be misspecified in two different ways. To see this, note that pc0,eD (c0) expresses

that

y = c0(x) xor z, (47)

where z is a noise bit generated independently of x . This statement may be wrong under

distribution D either because (a) c0 is not the Bayes optimal classifier according to D; or (b)

c0 is Bayes optimal, but z is dependent on x under D. Let us consider both of them in more

detail.

(a) no Bayes optimal classifier in C. The way we defined the learning problem D used in the

proof of Theorem 2 (Section 4.1) is an example of this case.

This type of misspecification is subtle, because if we consider the optimal c0 in isola-
tion, ignoring the features Xi which do not influence the prediction made by c0, then the

conditional distribution P(Y = 1 |c0(X ), θ∗) becomes correct after all, in the sense that

4 In particular, see Eq. (3.6) in Doob (1949) combined with the remark at the end of Section 3 of Doob’s paper.
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it is identical to the true conditional probability. That is: for all x0 ∈ {0, 1}, we have

pc0,eD (c0)(Y = 1 | X0 = x0) = Pr
X,Y∼D

(Y = 1 |c0(X ) = x0, X0 = x0),

so pc0,eD (c0)(· | X0 = x0) is ‘true’. This may imply that the set of distributions correspond-

ing to C is well-specified, since c0 only ‘listens’ to feature X0. Yet still, misspecification

occurs because for some x ∈ {0, 1}∞,

pc0,eD (c0)(Y = 1 | X = x)�= Pr
X,Y∼D

(Y = 1 |c0(X ) = x0, X = x).

(b) C contains Bayes act, but D is heteroskedastic. It may seem that our theorem is only

applicable to misspecification of type (a). But it is easy to see that it is just as applicable

to the - arguably less serious—misspecification of type (b). Namely, in the proof of

Theorem 2 (Section 4.1), we could have equally used the following slightly modified

learning problem : step 1 and step 2 remain identical, so c1, c2, . . . are defined as before.

The optimal c0 is now defined by modifying step 3 as follows: for an easy example, we

set x0 = y. For a hard example, we set x0 = |1 − y| with probability μ/2μ′. Then the

proof of Theorem 2 holds unchanged. But now c0 is the Bayes optimal classifier relative

to D, as is easy to see.

6.3 Why is the result interesting for a Bayesian?

Here we answer several objections that a cautious Bayesian might have to this work.

6.3.1 Bayesian inference has never been designed to work under misspecification. So
why is the result relevant?

We would maintain that in practice, Bayesian inference is applied all the time under misspec-

ification in classification problems (Grünwald, 1998). It is very hard to avoid misspecification

with Bayesian classification, since the modeler often has no idea about the noise-generating

process. Even though it may be known that noise is not homoskedastic, it may be practically

impossible to incorporate all ways in which the noise may depend on x into the prior.

6.3.2 It is already well-known that Bayesian inference can be inconsistent even if P is
well-specified, i.e. if it contains D (Diaconis & Freedman, 1986; Barron, 1998).
So why is this result interesting?

The (in)famous inconsistency results by Diaconis and Freedman (1986) are based on nonpara-

metric inference with uncountable sets P . It follows from Barron (1998) that their theorems

require that the true distribution D has ‘extremely small’ prior density in the following sense:

the prior mass of ε-Kullback-Leibler balls around D is exponentially small in 1/ε. Since such

priors do not allow one to compress the data, from an MDL perspective it is not at all surpris-

ing that they lead to inconsistent inference (Barron, 1998). In contrast, in our result, rather

than small prior densities we require misspecification. Since Diaconis and Freedman do not

require misspecification, in a sense, our result is weaker. On the other hand, in our setting,

the prior on the p ∈ P closest in KL divergence to the true conditional distribution pD can

be arbitrarily close to 1, whereas Diaconis and Freedman require the prior of the ‘true’ pD
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to be exponentially small in the sense explained above. In this sense, our result is stronger

than theirs.

Barron (1998) exhibits an example of Bayesian inconsistency that is closer in spirit to

ours. In his example, the prior density of KL-neighborhoods of the true D can be substantial.

Nevertheless, his example requires that P contains uncountably many distributions. It is

not possible to extend Barron’s example to a case with only countably many distributions,

since in that case, the posterior must concentrate5 on the true D by Doob’s result. Our result

shows that even in the countable case, as soon as one allows for slight misspecification, the

posterior may not converge to the best distribution in P . Indeed, by an appropriate setting

of the parameters μ and μ′ it is seen from Theorem 2 that for every ε > 0, no matter how

small, we can exhibit a D with

min
c,θ

KL(pD‖pc,θ ) = ε

for which Bayes is inconsistent with D-probability 1. This is interesting because even under

misspecification, Bayes is consistent under fairly broad conditions (Bunke & Milhaud, 1998;

Kleijn & van der Vaart, 2004), in the sense that the posterior concentrates on a neighborhood

of the distribution that minimizes KL-divergence to the true D. We showed that if such

conditions are violated, then consistency may fail dramatically. Thus, we feel our result is

relevant at least from the inconsistency under misspecification interpretation.

6.3.3 So how can the result co-exist with theorems establishing Bayesian consistency
under misspecification?

Such results are typically proved under either one of the following two assumptions:

1. The set of distributions P is ‘simple’, for example, finite-dimensional parametric. In such

cases, ML estimation is usually also consistent—thus, for large m the role of the prior

becomes negligible. In case P corresponds to a classification model C, this would occur

if C were finite or had finite VC-dimension for example.

2. P may be arbitrarily large or complex, but it is convex: any finite mixture of elements of

P is an element of P . An example is the family of Gaussian mixtures with an arbitrary

but finite number of components. Theorem 5.5 of Li (1997) shows that for general convex

i.i.d. families (not just Gaussian mixtures), under conditions on the priors, two-part MDL

(essentially the version of MDL that we consider here) is consistent in the sense of expected

Kullback-Leibler risk. Although we have no formal proof, Li’s result strongly suggests that

with such priors, the Bayesian MAP and full Bayesian approach will also be consistent.

Our setup violates both conditions: C has infinite VC-dimension, and the corresponding P
is not closed under taking mixtures. The latter issue is discussed further in Example 1.

6.3.4 How ‘standard’ is the conversion from classifiers to probability distributions on
which the results are based?

One may argue that the notion of ‘converting’ classifiers into probability distributions is not

always what Bayesians do in practice. For classifiers which produce real-valued output, such

as neural networks and support vector machines, the transformation coincides with the logistic

5 More precisely, the posterior mass on the set of all distributions in P that are mutually singular with D must
go to 0 with D-probability 1.
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regression transformation, which is a standard Bayesian tool; see for example (Jordan, 1995;

Platt, 1999; Tipping, 2001). But the theorems are based on classifiers with 0/1-output. With

the exception of decision trees, such classifiers have not been addressed frequently in the

Bayesian literature. Decision trees have usually been converted to conditional distributions

somewhat differently: one uses the same logistic transformation as we do, but one assumes

a different noise rate in each leaf of the decision tree (Heckerman et al., 2000); thus, the

transformation is done locally for each leaf rather than globally for the whole hypothesis.

Since the noise rate can depend on the leaf, the set of all decision trees of arbitrarily length

on a given input space X coincides with the set of all conditional distributions on X . Thus it

avoids the misspecification, and therefore the inconsistency problem, but at the cost of using

a much larger model space.

Thus, here is a potentially weak point in the analysis: we use a transformation that has

mostly been applied to real-valued classifiers, whereas here the classifiers are 0/1-valued.

Nevertheless, to get an idea of how reasonable our transformation is, we simply tested it with

three professing Bayesians. We did this in the following way: we first described the set of

classifiers C used in the learning problem, and we said that we would like to perform Bayesian

inference based on some prior over C. We then asked the Bayesian how (s)he would handle

this problem. All three Bayesians said that they would construct conditional distributions

according to the logistic transformation, just as we did. We take this as evidence that the

logistic transformation is reasonable, even for classifiers with binary outputs.

Whether the inconsistency results can be extended in a natural way to classifiers with

real-valued output such as support vector machines remains to be seen. The fact that the

Bayesian model corresponding to such neural networks will still typically be misspecified

strongly suggests (but does not prove) that similar scenarios may be constructed.

6.3.5 Is there an alternative, more sophisticated transformation that avoids
inconsistencies?

Even though the transformation we perform is standard, there may exist some other method

of transforming a set of classifiers+prior into a set of distributions+prior that avoids the

problems. There are only two obvious options which suggest themselves:

1. Avoiding misspecification. First, we can try to avoid misspecification; then by the strong

Bayesian consistency theorems referred to in Question 6.3.2, we should be guaranteed to

converge to the optimal classifier. However, as we explain below, this is often not practical.

2. Ensuring P is convex. Second, rather than using the set of transformed classifiers P ,

we could put a prior on its convex closure P (this is the set of all finite and infinite

mixture distributions that can be formed from elements of P . Note in particular that

P and P are sets of distributions defined on one outcome, not on a sample of m > 1

outcomes). Then, we can once again apply the consistency theorem for convex P referred

to in Question 6.3.3, and we should be guaranteed to converge to the optimal distribution.

Computational difficulties aside, this approach will not work, because now the distribution

we converge to may not be the distribution we are interested in, as we describe further

below.

Thus, the only two straightforward solutions to the transformation problem are either im-

practical or do not work. We discuss both of these in detail below. There may of course exist

some clever alternative method that avoids all problems, but we have no idea how it would

look like.
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1. Can we ensure consistency by avoiding misspecification? From a subjective Bayesian

perspective, one might require the learning agent to think hard enough about his or her prior

probabilities so that the set of conditional distribution P does contain D, the true state of

nature. In practice this means that one should ensure that C contains the Bayes optimal

classifier with respect to D, and that P should contain distributions in which the noise z
(Eq. (47)) can depend on the feature value x . In practical machine learning applications one

will often have no idea how the Bayes optimal classifier behaves or how the noise depends

on x . Thus, the only way to proceed seems to design a prior on all possible classifiers

and all possible noise rate functions. Now the inconsistency problem is solved, because the

(‘nonparametric’) model thus constructed is guaranteed to contain the true (conditionalized)

distribution D, so common Bayesian consistency theorems (see above) apply. However, the

cost may be enormous: the model space is now much larger and it seems that a lot more data

may be needed before a reasonable approximation of D is learned—although interestingly,

recent work by Hutter (2005) suggests that under suitable priors, reasonable approximations

may be learned quite fast. It is not clear whether or not something like this can be done in

our context.

2. Can we ensure consistency by using convex models? Suppose we first use the logistic

transformation to transform the classifiers C into a set of conditional distributions P , and we

then put a prior on its convex closure P and use Bayesian inference based on P . Now , Li’s

result (Section 6.3.3) suggests that the Bayesian posterior predictive distribution is (under

weak conditions on the prior) guaranteed to converge to the closest distribution p∗ to D
within P , as measured in KL-divergence. However, as the following example shows, p∗ may

end up having larger generalization error (expected 0/1-loss) than the optimal classifier c∗

in the set C on which P was based. Thus, existing theorems suggest that with a prior on P ,

the Bayesian posterior will converge, but below we show that if it does converge, then it will

sometimes converge to a distribution that is suboptimal in the performance measure we are

interested in.

Example 1 (Classification error and taking mixtures). We consider the following learning

problem. There are three classifiers C = {c1, c2, c3} and three features X1, X2, X3 taking

values in {0, 1}. Each classifier simply outputs the value of the corresponding feature. The

underlying distribution D is constructed as follows. We distinguish between three ‘situations’

s1, s2, s3 (these are the values of some random variable S′ ∼ D that is not observed). To con-

struct an example (x, y), we first flip a fair coin to determine y, so y = 1 with probability

1/2. We then flip a fair three-sided coin to determine what situation we are in, so S′ = s j

with probability 1/3, for j ∈ {1, 2, 3}. Now if we happen to be in situation s j , we

1. Set x j = y (so c j will predict Y correctly).

2. Flip a fair coin, determine the outcome z ∈ {0, 1}, and set x j ′ = z for the two values of

j ′ ∈ {1, 2, 3} that are not equal to j .

Thus, the value of x j ′ is determined completely at random, but must be the same for both

features not equal to j . We thus have for j = 1, 2, 3:

eD(c j ) = 1

3
· 0 + 2

3
· 1

2
= 1

3
, (48)

KL(pD‖pc j ,eD (c)) = E(x,y)∼D[− log pc j ,eD (c j )(y|x) + log pD(y|x)]

= H (eD(c j )) − K D = H

(
1

3

)
− K D > .9 − K D. (49)
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Equation (49) follows by (42), and as in that equation, H is the binary entropy as defined

above Theorem 2, and K D is the conditional entropy of y given x according to D, which

does not depend on j .

Thus, the distribution(s) inP := {pc j ,θ | j ∈ {1, 2, 3}, θ ∈ [0, 1]} closest to the underlying

D in KL-divergence have KL divergence H ( 1
3
) − K D to D.

Now consider the set of conditional distributions P defined as the convex closure of P . It

is easy to see that each element of P can be written as a three-component mixture

p�α,�θ := α1 pc1,θ1
+ α2 pc2,θ2

+ α3 p(c3, θ3),

for some vector �α = (α1, α2, α3) with nonnegative entries summing to 1, and (θ1, θ2, θ3) with

nonnegative entries ≤ 1. Thus, the distribution in P that is closest to D in KL divergence is

the distribution that achieves the minimum over �α and �θ of the expression

KL(pD‖p�α,�θ ) = E(x,y)∼D

[
log

1

p�α,�θ (y|x)

]
− K D. (50)

This expression is uniquely minimized for some p∗ with parameters

α∗
1 = α∗

2 = α∗
3 = 1

3
and some θ∗ ∈ [0, 1] with θ∗ = θ1 = θ2 = θ3. (51)

To see this, note that by symmetry of the problem, KL(pD‖p�α,�θ ) = KL(pD‖p�α′,�θ ′ ) where

�α′ := (α2, α1, α3) and �θ ′ := (θ2, θ1, θ3). Since P is closed under mixing, for any γ ∈ [0, 1],

pγ := γ p�α,�θ + (1 − γ )p�α′,�θ ′ must be in P . By strict convexity of KL divergence (Cover

& Thomas, 1991) and symmetry of the problem, KL(pD‖pγ ) is uniquely minimized for

γ = 1/2, and then pγ satisfies α1 = α2 and θ1 = θ2. In the same way one shows that the

minimizing �α and �θ have to satisfy α2 = α3, θ2 = θ3 and α1 = α3, θ1 = θ3, and (51) follows.

Now plugging the minimizing parameters (51) into (50) gives

KL(pD‖p∗) = min
θ∈[0,1]

KL(pD‖p�α∗,�θ∗ )

= min
θ

−1

2
[log(1 − θ ) + log(1 + θ ) − log 3] − K D

= 1

2
log 3 − K D < .8 − K D, (52)

which is strictly smaller than (49). Therefore, while (a) Li’s consistency result (Section 6.3.3)

for convex P suggests that both the Bayesian posterior and Bayesian MAP conditional distri-

bution will converge (in expected KL-divergence), to p∗, it turns out that, (b) the classification

error rate of the Bayes classifier cp∗ corresponding to the resulting conditional distribution

p∗ is equal to

Ex,y∼D[|y − cp∗ (x)|] =
[

1

2
· 1 + 1

2
· 0

]
= 1

2
,

which is worse than the optimal classification error rate that can be obtained within P: since

P ⊂ P , by (48) this error rate must be ≤ 1/3.
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Concluding, with D-probability 1, for large m, the error rate of the Bayes classifier based

on the Bayesian posterior relative to P will have classification error that is larger than that

of the Bayesian posterior relative to P: it is clear that by enlarging the model P to its

convex closure, rather than sometimes not converging at all, we may now converge to a

suboptimal distribution: instead of solving the problem, we merely replaced it by another

one.

6.3.6 Isn’t the example just “unnatural”?

Upon hearing our results, several people objected that our learning problem is “unnatural”.

We agree that it is unlikely that one will ever deal with such a scenario in practice. However,

this does not rule out the possibility that related phenomena do occur in more practical

settings; see (Clarke, 2004) for an example in a regression context. Part of the problem here

is of course that it is not really clear what “unnatural” means. Indeed, it is certainly not our

aim to show that “Bayesian inference is bad”. Instead, one of our main messages is that more

research is needed to determine under what types of misspecification Bayes performs well,

and under what types it does not.

7 Interpretation from an MDL perspective

We now discuss the interpretation of our result from an MDL Perspective. Similar to the

Bayesian analysis, we do this by answering objections that a cautious description length

minimizer might have to this work.

7.1.1 Why is the two-part code (7) the appropriate formula to work with? Shouldn’t we
use more advanced versions of MDL based on one-part codes?

Equation (7) has been used for classification by various authors; see, e.g., (Rissanen, 1989;

Quinlan & Rivest, 1989; Kearns et al., 1997). Grünwald (1998, Chapter 5) first noted that

in this form, by using Stirling’s approximation, (7) is essentially equivalent to MAP clas-

sification based on the models pc,θ as defined in Section 2. Of course, there exist more

refined versions of MDL based on one-part rather than two-part codes (Barron, Rissa-

nen, & Yu, 1998). To apply these to classification, one somehow has to map classifiers

to probability distributions explicitly. This was already anticipated by Meir and Merhav

(1995) who used the transformation described in this paper to define one-part MDL codes.

The resulting approach is closely related to the Bayesian posterior approach cBAYES(P,S),

suggesting that a version of the inconsistency Theorem 2 still applies. Rissanen (1989)

considered mapping classifiers C to distributions {pc,θ∗ } to a single value of θ∗, e.g.,

θ∗ = 1/3. As discussed in Section 5.1, a version of Theorem 2 still applies to the resulting

distributions.

We should note that both Wallace and Patrick (1993) and Quinlan and Rivest(1989) really

use an extension of the coding scheme expressed by (7), rather than the exact formula (7)

itself: both publications deal with decision trees, and apply (7) on the level of the leaf nodes

of the decision trees. The actual codelength for the data given a decision tree becomes a

sum of expressions of the form (7), one for each leaf. This means that they are effectively

estimating error rates separately for each leaf. Since their model consists of the set of all

decision trees of arbitrary depth, they can thus essentially model almost any conditional

distribution of Y given X . This makes their approach nonparametric, and therefore, broadly
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speaking, immune to misspecification as long as data are i.i.d., and therefore immune to our

results: inconsistency can only arise if the coding scheme (7) is applied to a model that can

only present homoskedasticity, whereas the data generating distribution is heteroskedastic.

It is not clear though whether the use of nonparametric models such as decision trees always

solves the problem in practice, as we already discussed in Section 6.3.5., Question 1. As a

further (but inessential) difference, Quinlan and Rivest (1989) use one extra bit on top of

(7) for each leaf node of the decision tree. Wallace and Patrick (1993) point out that this is

unnecessary, and use more general codes based on Beta-priors, of which our code (7) is a

special case, obtained with the uniform prior (see Proposition 2 in the Appendix). As can be

seen from the proof of Theorem 2, the use of general Beta-priors in the definition of MDL

will not affect the inconsistency result.

7.1.2 Does the coding scheme for hypotheses make sense from an MDL perspective?

MDL theory prescribes the design of codes for hypothesis spaces (roughly corresponding

to priors) that minimize worst-case regret or redundancy (Barron, Rissanen, & Yu, 1998;

Grünwald, 2007) of the resulting codelength of hypothesis + data. It may seem that our

coding scheme for hypotheses does not satisfy this prescription. But in fact, it does: if no

natural grouping of the hypotheses in subclasses exists (such as with Markov chains, the class

of k-th order Markov chains being a natural subclass of the class of k + 1-st order chains),

then the ‘best’, from an MDL perspective, code one can assign is a code such that the code

length of ci goes to infinity as slowly as possible with increasing index i (Grünwald, 2007),

such as Rissanen’s universal code for the integers (Eq. (8)). But this is exactly the type of

codes to which our Theorem 2 applies!

Lest the reader disagree with this: according to ‘standard’ MDL theory, if P is well-

specified and countable then the coding scheme should even be asymptotically irrelevant:

any coding scheme for the hypothesis where the codelength of any P ∈ P does not de-

pend on n, will lead to asymptotically consistent MDL inference under very weak con-

ditions (Barron & Cover, 1991); see also Chapter 5, Theorem 5.1 of Grünwald (2007).

Special types of codes minimizing worst-case regret are only needed to speed up up learn-

ing with small samples; for large samples, any code will do. Thus, our result shows that

if a set of classifiers C is used (corresponding to a misspecified probability model P),

then the choice of prior becomes of crucial importance, even with an infinite amount of

data.

7.1.3 It seems that MDL can already be inconsistent even if P is well-specified. So why
is the result interesting?

This question mirrors Question 6.3.2. In Section 1.2 of Wallace and Dowe (1999b), a very

simple problem is discussed for which a straightforward implementation of a two-part code

estimator behaves quite badly, even though the true distribution is contained in the model

P , and P only contains 1 continuous-valued parameter. This suggests that MDL may be

inconsistent in a setting that is much simpler than the one we discuss here. But this is not

quite the case: if the true distribution is contained in P , then any two-part code will be

asymptotically consistent, as long as the code is ‘universal’; see Theorem 15.3 in Chapter

15 of Grünwald (2007). Under the definition of MDL that has generally been adopted since

Barron, Rissanen, and Yu (1998), an estimator based on a two-part code can only be called

‘MDL estimator’ if the code is universal. Thus, it may either be the case that the two-

part code defined by Wallace and Dowe (1999b) is not universal, and hence not an MDL
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code, or their two-part code must be asymptotically consistent after all. We suspect that

the latter is the case. From an MDL perspective, the interest in our example is that, under

misspecification, we can get inconsistency, even though we do use a universal two-part

code.

7.1.4 Haven’t Kearns et al. (1997) already shown that MDL is no good for
classification?

It may seem that the results are in line with the investigation of Kearns et al. (1997). This,

however, is not clear—Kearns et al. consider a scenario in which two-part code MDL for

classification shows quite bad experimental performance for large (but not infinite!) sample

sizes. However, according to Viswanathan et al. (1999), this is caused by the coding method

used to encode hypotheses. This method does not take into account the precision of parameters

involved (whereas taking the precision into account is a crucial aspect of MDL!). In the paper

(Viswanathan et al., 1999), a different coding scheme is proposed. With this coding scheme,

MML (an inference method that is related to MDL, see below) apparently behaves quite well

on the classification problem studied by Kearns et al. In contrast to Kearns’ example, in our

case (a) there is no straightforward way to improve the coding scheme; (b) MDL fails even

on an infinite sample.

7.1.5 What about MML?

The Minimum Message Length (MML) Principle (Wallace & Boulton, 1968; Comley &

Dowe, 2005; Wallace, 2005) is a method for inductive inference that is both Bayesian and

compression-based. The similarities and differences with MDL are subtle; see, for example,

Section 10.2 of Wallace (2005) or Section 17.4 of Grünwald (2007), or (Wallace & Dowe,

1999a,b). An anonymous referee raised the possibility that MML may be consistent for the

combination of the learning problem and the misspecified probability model discussed in

this paper. We suspect that this is not the case, but we are not sure of this, and for the time

being, the question of whether or not MML can be inconsistent under misspecification in

classification contexts remains open. For the well-specified case, it is conjectured on page

282 of Wallace and Dowe (1999a) that only MML or closely related techniques can infer

fully-specified models with both statistical consistency and invariance under one-to-one

parameterization.

Related Work. Yamanishi (1998) and Barron (1990) proposed modifications of the two-part

MDL coding scheme so that it would be applicable for inference with respect to general

classes of predictors and loss functions, including classification with 0/1-loss as a spe-

cial case. Both Yamanishi and Barron prove the consistency (and give rates of conver-

gence) for their procedures. Similarly, McAllester’s (1999) PAC-Bayesian method can be

viewed as a modification of Bayesian inference that is provably consistent for classifica-

tion, based on sophisticated extensions of the Occam’s Razor bound, Theorem 4. These

modifications anticipate our result, since it must have been clear to the authors that with-

out the modification, MDL (and discrete Bayesian MAP) are not consistent for classi-

fication. Nevertheless, we seem to be the first to have explicitly formalized and proved

this.
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8 Conclusion and future work

We showed that some standard versions of MDL and Bayesian inference can be inconsistent

for a simple classification problem, and we extensively discussed the interpretation of this

result. As possible future work, it would be interesting to investigate

1. Whether there is a more natural learning problem, especially a more natural feature space,

with respect to which an analogue to our result still holds.

2. Whether a similar result holds for regression rather than classification problems. We

conjecture that the answer is yes, but the suboptimality will be less dramatic.

Appendix: Proposition 2 and its Proof

Proposition 2. Consider any given sample S of arbitrary size m.

1. Let c ∈ C be an arbitrary classifier and let P(θ |c) be given by the uniform prior with
P(θ |c) ≡ 1. Then

− logP(ym | xm, c) = − log

∫ 1

0

P(ym | xm, c, θ )dθ

= log(m + 1) + log

(
m

mêS(m)

)
. (53)

so that, if the uniform prior is used, then cMDL(P,S) = cSMP.
2. Suppose that P(θ |c) satisfies (9) or (11), and that for some α > 0, êS(c) < 0.5 − α. Then

m H (êS(c)) = log
1

P(ym | xm, c, êS(c))
≤ log

1

P(ym | xm, c)

≤ log
1

P(ym | xm, c, êS(c))
+ fα(m) = m H (êS(c)) + fα(m), (54)

where fα(m) = O(log m), and the constant in the O-term may depend on α.

Proof: We recognize the integral in (53) as being a beta-integral. Straightforward evaluation

of the integral (e.g. by partial integration) gives the result of part (1). For part (2), the

leftmost and rightmost equalities follow by straightforward rewriting. The first inequality

follows because

log
1

P(ym | xm, c)
= log

1∫
P(ym | xm, c, θ )P(θ )dθ

≥ log
1

P(ym | xm, c, êS(c))
,
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since the likelihood P(ym | xm, c, θ ) is maximized at θ = êS(c). For the second inequality,

we first consider the case that P(θ |c) satisfies (9). Then using (53),

log
1

P(ym | xm, c)
≤ − log

∫ 0.5

0

P(ym | xm, c, θ )dθ − log γ

≤− log

∫ 1

0

P(ym | xm, c, θ )dθ+log

∫ 1

0
P(ym | xm, c, θ )dθ∫ 0.5

0
P(ym | xm, c, θ )dθ

−log γ

= log(m + 1) + log

(
m

mêS(m)

)
− log γ + o(1), (55)

where the constant in the o(1) depends on α. The result for P(θ ) satisfying (9) now follows

upon noting that for all s ∈ {0, 1, . . . , m}, m H (s/m) ≥ log
(m

s

)
. This is the case because

m H (s/m) is the number of bits needed to encode m outcomes with s ones, using a Bernoulli

distribution with parameter s/m; whereas log
(m

s

)
is the number of bits needed to encode m

outcomes with s ones, using a Bernoulli distribution with parameter s/m, conditioned on

the relative frequency of 1s being s/m—thus, the same sequence is encoded using the same

code, but conditioned on extra information, so that equally many or less bits are needed.

Now consider the case that P(θ |c) satisfies (11). Then

P(ym | xm, c)=
∑

θ∈[0,1]∩Q
P(ym | xm, c, θ )P(θ |c) ≥ P(ym | xm, c, êS(c))P(êS(c) = θ |c)

≥ P(ym | xm, c, êS(c))K1m−K2 , (56)

for some constants K1 and K2. The result now follows by taking negative logarithms. �
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(Eds.), Advances in large margin classifiers (pp. 61–74). MIT Press.
Quinlan, J., & Rivest, R. (1989). Inferring decision trees using the minimum description length principle.

Information and Computation, 80, 227–248.
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals

of Statistics, 11, 416–431.
Rissanen, J. (1989). Stochastic complexity in statistical inquiry. World Scientific.
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine

Learning Research, 1, 211–244.
Viswanathan, M., Wallace, C. S., Dowe, D. L., & Korb, K. B. (1999). Finding cutpoints in noisy binary

sequences - a revised empirical evaluation. In Proc. 12th Australian joint conf. on artif. intelligence, vol.
1747 of Lecture notes in artificial intelligence (LNAI) (pp. 405–416), Sidney, Australia.

Wallace, C. S. (2005). Statistical and Inductive Inference by Minimum Message Length. New York: Springer.
Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computing Journal, 11,

185–195.
Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer

Journal, 42(4), 270–283. Special issue on Kolmogorov complexity.
Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4),

330–337. Special issue on Kolmogorov complexity.
Wallace, C. S., & Patrick, J. D. (1993). Coding decision trees. Machine Learning, 11, 7–22.
Yamanishi, K. (1998). A decision-theoretic extension of stochastic complexity and its applications to learning.

IEEE Trans. Inform. Theory, 44(4), 1424–1439.

Springer


