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We present an improved dynamic system that simulates the behavior of TCP flows and

active queue management (AQM) system. This system can be modeled by a set of sto-

chastic differential equations driven by a doubly stochastic point process with intensities

being the controls. The feedback laws proposed monitor the status of buffers and multi-

plexor of the router, detect incipient congestion by sending warning signals to the sources.

The simulation results show that the optimal feedback control law from the class of lin-

ear as well as quadratic polynomials can improve the system performance significantly

in terms of maximizing the link utilization, minimizing congestion, packet losses, as well

as global synchronization. The optimization process used is based on random recursive

search technique known as RRS.
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1. Introduction

Since random early detection (RED) was presented by Sally Floyd and Van Jacobson in

1993 as a congestion avoidance mechanism in packet-switched networks [1], some vari-

ants of RED have been designed to deal with the setting of various parameters characteriz-

ing it [2]. The basic principle of RED-family algorithm consists of the following steps: (1)

active queue management (AQM) mechanism detects incipient congestion by computing

the average queue size, (2) notifies connections of congestion either by dropping packets

or by setting a bit in packet headers. In [3], we proposed a modified version of RED gov-

erned by doubly stochastic Poisson-driven stochastic differential equations. The dynamic

model developed there [3] contains a suboptimal feedback control law which monitors
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the status of queue of the (multiplexer) router and adjusts or controls the dropping in-

tensity by sending (congestion) warning signals to the sources. The major advantage of

the algorithm is that the critical parameters suggested by the original RED-AQM system

are automatically adjusted by the suboptimal feedback law. This provides control actions

based on current network conditions replacing the constant configurations as used in the

original RED. The experimental results presented in [3] demonstrate that the proposed

model (and algorithm) can improve the system performance significantly. However, it

was observed that the feedback control law introduces global synchronization into the

system. This is due to the fact that all the connections have the same control policy and

hence have the same mean rate of warning signals prompting similar actions at the same

time leading to synchronization.

In this paper, we propose an improved model aimed at solving the problem of global

synchronization that results from many of the connections reducing their window sizes

at the same time. This we do without compromising any of the advantages of the system

proposed in [3]. In the modified system we propose the following configuration. Access

of each TCP connection to the router is controlled by a dedicated buffer (for the connec-

tion). The single feedback control law used in previous models is replaced by a system

of individual feedback control laws for each of the connections. This leads to decentral-

ized control as opposed to centralized control. For analysis of the active queue manage-

ment system, we still use doubly stochastic Poisson-driven stochastic differential equa-

tions. This models the dynamic behavior of TCP flows and queues of router in which the

drop rate (intensity) for each of the connections is a function of both the average queue

size of the multiplexer and the average queue size of the individual buffer dedicated to the

connection. The objective function which incorporates packet losses, global synchroniza-

tion, link utilization, and congestion is minimized by an iterative choice of the parameters

of the feedback control laws proposed here. Through simulation (experimental) results,

we show that the modified system is not only capable of effectively controlling congestion

and synchronization but also more robust than the earlier versions.

The rest of the paper is organized as follows: in Section 2, system model is presented.

Feedback control laws are given in Section 3. Objective function and state-space formu-

lation are presented in Section 4. Numerical results are presented in Section 5. The paper

ends with conclusion in Section 6.

2. System model

For the construction of mathematical models for the system we need indicator functions

as defined below. Let S denote any logical or mathematical statement and define the in-

dicator function as follows:

I(S)≡

⎧⎨
⎩

1 if S is true,

0 otherwise.
(2.1)

Consider the system presented in Figure 2.1. There are n− 1 TCP flows, labeled i =
1,2, . . . ,n− 1, which attempt to access the router. Each individual source i is connected

to a dedicated buffer which communicates with the router through a dedicated link of
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Figure 2.1. System model.

bandwidth Ci. The packets reaching the router from all the individual sources are multi-

plexed for onward transmission through an outgoing link of capacity Cn. In the absence

of drop priorities, the relationship between Ci and Cn may be given by

Ci(t)= β ·
Cn(t)

n− 1
, i= 1,2, . . . ,n− 1, (2.2)

where β > 0 is a design parameter discussed at length later.

For the specific case of differentiated services model (DiffServ) where different con-

nections have different priorities, network designers just provide wider bandwidths be-

tween buffers and the multiplexer for those connections having lower drop priority and

narrower bandwidths for those with higher drop priority.

The dynamic model of the TCP flow control system can be described in terms of win-

dow size of the sources and queue sizes at buffers and the multiplexer. The window size is

governed by the following equation:

dwi(t)≡
1

Ri
(
qi(t),qn(t)

)dt− I
(
wi(t) > 0

)wi(t)

2
dNλi

i (t), i= 1,2, . . . ,n− 1, (2.3)

where wi(t) denotes the window size of TCP connection i at time t ≥ 0 and the process

Nλi
i (t) represents the number of packets dropped from the connection i over the time

interval [0, t]. This is a point process with intensity λi. The process qi(t) is the queue

size at buffer i and qn(t) is the queue size at the multiplexer measured at time t ≥ 0. The

expression

Ri
(
qi(t),qn(t)

)
, (2.4)

which is dependent on both qn(t) and qi(t), is the round trip time of TCP connection i
and the destination. This is generally given by the following expression:

Ri
(
qi(t),qn(t)

)
≡ ai +

qi(t)

Ci
+
qn(t)

Cn
, i= 1,2, . . . ,n− 1, (2.5)
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where ai denotes the propagation delay between the source and destination and it is con-

sidered here as a random variable uniformly distributed over the range D ⊂ (0,∞). The

set D depends on the network size and its topology and this can be estimated easily while

it is impossible to incorporate propagation delay packet by packet and present a rea-

sonably correct analysis of the traffic process. For our numerical experiments, we have

chosen {ai} to be uniformly distributed independent random variables with values in

D = [0.01,0.2]. The lower and the upper limits of the set D are determined from the

topology of the network. The remaining part of the expression models the queuing delay

for the source i. In summary, the first term on the right-hand side of the expression (2.3)

gives the windows opening rate and the second the closing rate.

The dynamics of buffers and multiplexer queue loads can be described as follows:

dqi(t)= ui(t)I
(
qi(t) < Qi

)
dt− vi(t)dt, i= 1,2, . . . ,n, (2.6)

where Qi is the size of buffer i and Qn is the size of the multiplexer (main buffer). The pro-

cesses ui(t) and vi(t) expressed as follows represent the instantaneous rates of incoming

and outgoing packets at time t:

ui(t)≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wi(t)

Ri
(
qi(t),qn(t)

) , for i= 1,2, . . . ,n− 1,

n−1∑

j=1

v j(t), for i= n,

(2.7)

vi(t)≡ Ci(t)I
(
qi(t) > 0

)
i= 1,2, . . . ,n. (2.8)

Time delay. The models presented above are independent of the two-way propagation

delay between the router and the sources. In reality there is always a communication

delay. Assuming an average delay of δ units of time, (2.3) and (2.7) can be modified as

follows:

dwi(t)≡
1

Ri
(
qi(t),qn(t)

)dt− I
(
wi(t) > 0

)wi(t)

2
dNλi

i (t− δ), i= 1,2,3, (2.9)

ui(t)=
wi(t− δ)

Ri
(
qi(t),qn(t)

) , i= 1,2,3. (2.10)

The first equation takes care of delay from router to sources and the second from sources

to router.

3. Feedback control laws

The process {Nλi
i (t), t ≥ 0} in (2.3) is a counting process with intensity process λi(t), t ≥ 0.

In the context of internet traffic, open loop control is impractical and so out of question.

The intensity process is used as a control variable and its choice should depend on the

current status of the traffic which means feedback control. Thus, in general, one may
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choose λi as an appropriate nonnegative function of the current state ξ = {w1,w2, . . . ,
wn−1, q1,q2, . . . ,qn} as shown below:

λi(t)≡ fi
(
w1(t),w2(t), . . . ,wn−1(t), q1(t),q2(t), . . . ,qn(t)

)
, i= 1,2, . . . ,n− 1, t ≥ 0.

(3.1)

In practice it is prohibitively costly to monitor the entire state ξ of the network. The

only information that can be easily monitored by the AQM system in the router is the

multiplexer queue qn and possibly the buffer queues {qi}. Also it is not practical for the

router to monitor each individual window size. Thus the feedback control for each indi-

vidual source may be required to depend only on the state of its own buffer and the state

of the multiplexor. This leads to a partially observed feedback control law. This is given

by the following expression:

λi(t)≡ fi
(
qi(t),qn(t)

)
, i= 1,2, . . . ,n− 1, t ≥ 0. (3.2)

In high-speed traffic environment, the state of queue changes too fast and therefore

direct use of this fast changing traffic would result in high-frequency fluctuation of the

control. To avoid this phenomenon, one uses smoothed version of the queue given by the

following exponentially weighted moving average [1]:

qi(t)=
(
1− κq

)
qi(t−∆t) + κqqi(t), t ≥ 0, i= 1,2,3, . . . ,n (3.3)

leading to the following control laws

λi(t)≡ fi
(
qi(t),qn(t)

)
, i= 1,2, . . . ,n− 1, t ≥ 0. (3.4)

Thus, the short-term increases in the queue sizes, resulting from bursty traffic or from

transient congestion, do not result in significant fluctuation of the average queue size.

Since both qi(t) and qn(t) are random processes, Nλi
i (t) is a doubly stochastic counting

process. The feedback law fi can be chosen by the system designer as a suitable nonneg-

ative and nondecreasing function defined on R2
+ ≡ {(x, y)∈ R2 : x, y ≥ 0}. One possible

choice of the feedback law fi is given by

fi(x, y)= gi(x, y)I
(
gi(x, y) > 0

)
, i= 1,2, . . . ,n− 1, (3.5)

where, in general, each gi is given by a bivariate polynomial of degree m with real valued

coefficients such as

gi(x, y)≡
m∑
r=0

r∑

j=0

air, jx
j yr− j . (3.6)

For numerical experiments, we consider a simpler version of this such as

gi(x, y)ai0 + ai1x+ ai2y + ai3x
2 + ai4y

2 + ···+ ai2m−1x
m + ai2my

m, i= 1,2, . . . ,n− 1.
(3.7)
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The variable λi actually denotes the mean rate of congestion warnings sent out to the

source i. The function fi, defining the packet dropping scheme for the stream i, is even-

tually determined by optimization process. This is done by choosing the coefficients of

the above polynomials that minimizes the cost functional introduced in the following

section.

4. Objective functional and state space formulation

In the following, we use the notation E{z} to denote the expected value of any random

variable z. For evaluation of network performance over the running period I ≡ [0,τ], an

objective functional is chosen as follows:

J( f )≡
1

τ
E
{
− JT + JC + JL + JS

}
=−JT + JC + JL + JS, (4.1)

where

f =
(
f1, f2, . . . , fn−1

)′
, (4.2)

JT =

∫

I
α1(t)Cn(t)I

(
qn(t) > 0

)
dt,

JC =

∫

I
α2(t)I

(
qn(t)∈Qα

)
dt,

JL =

∫

I
α3(t)

n∑

j=1

(
u j(t)I

(
q j(t)Q j

)
+ max

{
0,u j(t)− q j(t)

}
I
(
q j(t) < Q j

))
dt.

(4.3)

The last component of the expression (4.1) is given by

JS =

∫

I
α4(t)I

(n−1∑

i=1

I
(

Signϕi(t) < 0
)
> γ(n− 1)

)
dt, (4.4)

where γ ∈ (0,1) is also a design parameter discussed later and

ϕi(t)=
wi(t+∆t)−wi(t)

∆t
, i= 1,2, . . . ,n− 1. (4.5)

Here f denotes a feedback control law which has to be chosen to optimize the per-

formance integral given by the expression (4.1). The overall performance of the sys-

tem is measured in terms of throughput, congestion, packet losses, and synchronization.

The quantities JC, JL, JS are, respectively, the expected costs of congestion, packet losses,

and synchronization per unit time, while JT is a measure of expected throughput. The

quantity JT gives the utilization of the link bandwidth Cn; JC is a measure of congestion

when the average queue size at the multiplexer falls into the congestion zone given by

Qα ≡ [αQ,Q] with α∈ (0,1). The factor JL is a measure of packet losses at the multiplexer

and the buffers due to overflow suffered during the period [0,τ]. The quantity JS is a mea-

sure of global synchronization. The value of γ in (4.4) can be chosen by network designers

in accordance with the number of connections. The real numbers αi, i= 1,2,3,4 are used

as relative weights given to each of the costs. These can be chosen by network designers
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to reflect different concerns and scenarios and assign appropriate weights as necessary.

Once all of them are chosen and fixed, one can then attempt to choose the control (or

dropping) strategies f (4.2) to minimize the cost functional (4.1). The optimal strategy

guarantees maximum expected throughput and minimum expected congestion, packet

losses, and global synchronization.

For further analysis, it is convenient to write the state-space model for the system.

Denoting the state of the system by ξ ≡ (w1,w2, . . . ,wn−1, q1,q2, . . . ,qn)′, one can write the

system in the state-space form as follows:

dξ = F(ξ)dt+G(ξ)dNλ(t), (4.6)

where the vector field F(ξ) of dimension 2n− 1 is given by

Fi(ξ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

Ri
(
ξi+n−1,ξ2n−1

) , 1≤ i≤ n− 1,

△iI
(
ξi < Qi−n+1

)

−
{
Ci−n+1I

(
ξi > 0

)
+ min

{
Ci−n+1,△i

}
I
(
ξi = 0

)}
, n≤ i≤ 2n− 1

(4.7)

in which

△i=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξi−n+1

Ri−n+1

(
ξi,ξ2n−1

) , n≤ i≤2(n− 1),

Σ
n−1
k=1

(
CkI

(
ξk+n−1 > 0

)
+ min

{
Ck,

ξk+n−1

Rk
(
ξk+n−1,ξi

)
}
I
(
ξk+n−1 = 0

))
, i=2n− 1.

(4.8)

The function G(ξ) is a (2n− 1)× (n− 1) matrix with entries given by

Gi, j(ξ)=

⎧⎪⎨
⎪⎩
I
(
ξi > 0

)(ξi
2

)
δi, j , 1≤ i, j ≤ n− 1,

0, n≤ i≤ 2n− 1, 1≤ j ≤ n− 1,

Nλ ≡
(
Nλ1

1 ,Nλ2
2 , . . . ,Nλn−1

n−1

)′
.

(4.9)

Since λi is determined by the choice of fi, we may rewrite the system (4.6) as

dξ = F(ξ)dt+G(ξ)dN f (t), (4.10)

where the vector function f is the packet dropping scheme to be determined for optimum

performance. Clearly, the cost functional (4.1) can be compactly written as

J( f )=
1

τ
E
{∫ τ

0
ℓ
(
t,ξ(t)

)
dt
}

, (4.11)

where ℓ denotes the integrand of the expression (4.1). One of the objectives of the net-

work provider is to improve the system performance by using control strategies (4.2) that

minimize this cost functional.
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Table 5.1. System configuration and parameters.

∆t κq C4 Q1,Q2,Q3 Q4 γ δ β

0.001 s 0.02 2 M packets 40 K packets 200 K packets 1/3 1 2

The principal objective is to determine the optimal feedback law modulated by indi-

cator function as shown in the expression (3.5). The feedback law f of the expression

(4.2) based on (2.10) and (3.2) is dependent on a matrix of coefficients of dimension

(n− 1)× (2m+ 1) or equivalently a set of vectors

ai ∈R
(2m+1), i= 1,2, . . . ,n− 1. (4.12)

Rearranging these coefficients in any suitable order, one may consider the coefficient vec-

tor a ∈ R(n−1)(2m+1) as the choice variable in the optimization process. So the objective

is to choose the coefficient vector a∗ that minimizes the cost functionals (4.1) or equiv-

alently (4.11). This is accomplished by the optimization process through the iterative

choice of a. In our simulation, random recursive search (RRS) algorithm is used as the

optimization tool.

5. Numerical Results

We present detailed numerical results in order to demonstrate that the modified version

of RED mechanism as proposed here is more practical and robust than the earlier version

given in [3]. To obtain the optimal feedback control law f (3.7), numerical simulations

are performed using MATLAB. For numerical simulation only, we consider a simple sce-

nario in which the system is comprised of three TCP flows without drop priority.

Basic system parameters used. The basic system parameters used for numerical simula-

tion are buffer sizes {Q1,Q2,Q3,Q4}, weighting factor κq, outgoing link capacity C4, size

of the time slot ∆t, and three other factors {γ,δ,β} representing synchronization as de-

fined in (4.4), average time delay appearing in (2.9), (2.10), and capacity allocation factor

as shown in the expression (2.2), respectively (see Table 5.1).

As a matter of fact, β balances the traffic between the buffers and the multiplexer.

Specifically, if β is set too low, sources are assigned less bandwidth thereby limiting their

flows and causing packet losses at the user buffers. This may result in reduced utilization

of the system significantly. For β ≤ 1, no queue build-up occurs at the multiplexor. In

contrast, if β is too large, more packet losses and congestion may occur at the multiplexor

depending on the volume of incoming traffic. As a compromise, we set β equal to 2 in

our experiments. Later we vary β to determine the robustness of the optimal control law.

5.1. Global optimization.

5.1.1. Linear feedback. For linear state feedback control law, we have chosen the following

general form:

λi = fi
(
qi,qn

)(
ai0 + ai1qi + ai2qn

)
I
(
ai0 + ai1qi + ai2qn > 0

)
, i= 1,2,3. (5.1)
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The optimization process is started by randomly selecting a coefficient vector a ∈ R9

which, for convenience, is written in the matrix form

a=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1
0 a1

1 a1
2

a2
0 a2

1 a2
2

a3
0 a3

1 a3
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 −1 −1

2 2 2

−3 −3 −3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (5.2)

where the ith row represents the coefficients of the feedback law of source i. Using the

RRS algorithm given in [4], we minimize the cost functional (4.1) by iteratively choosing

appropriate a. If a choice decreases the value of the cost functional, it is accepted and the

corresponding cost is retained. The process is terminated once the stopping criterion is

satisfied. Specific steps of sample choice using RRS are illustrated as follows. First, 44 ran-

dom samples (points in Rn) are taken from the parameter space and the corresponding

costs are computed. The point at which the cost functional (4.1) is minimum is taken as

the center of the promising region, for example a hypercube, which is further explored.

In this step, 11 random samples are chosen from the hypercube. If a better point is found

within these 11 samples, the center of the cube is moved to this point keeping the size of

the cube unchanged. If a better point is not found in the 11 samples, the size of the hyper-

cube is reduced by half while keeping the center unchanged. This process of contraction

and translation is repeated until the size of the region is reduced below a threshold. The

search process is restarted until obtaining a point satisfying a certain stopping criterion.

Based on this optimization process, the optimum vector obtained for linear feedback

control law is given by

a∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1∗
0 a1∗

1 a1∗
2

a2∗
0 a2∗

1 a2∗
2

a3∗
0 a3∗

1 a3∗
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1.83 0.027 0.012

−2.72 0.039 0.019

−2.13 0.033 0.015

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

which is able to keep the value of cost functional (4.1) to a minimum. In order to prevent

the RRS from getting trapped in a local optima, we have tried with very large perturbation

of the parameter a from the starting point and also (the local optimum a∗) with two

different starting vectors denoted by a and ã as given below:

a=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1
0 + 1000 a1

1 + 1000 a1
2 + 1000

a2
0− 1000 a2

1− 1000 a2
2− 1000

a3
0 + 1000 a3

1 + 1000 a3
2 + 1000

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

999 999 999

−998 −998 −998

997 997 997

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

ã=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1
0− 1000 a1

1− 1000 a1
2− 1000

a2
0 + 1000 a2

1 + 1000 a2
2 + 1000

a3
0− 1000 a3

1− 1000 a3
2− 1000

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1001 −1001 −1001

1002 1002 1002

−1003 −1003 −1003

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(5.4)
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Clearly these are very far from the initial choice of a. Running the RRS algorithm once

again with these vectors as the starting points, we arrive at the following optimal vectors:

a∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1.80 0.025 0.013

−2.69 0.036 0.022

−2.15 0.031 0.018

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

ã∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1.82 0.023 0.010

−2.72 0.034 0.024

−2.18 0.025 0.017

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.5)

which are very close to a∗. This shows that the RRS algorithm is quite efficient, it is able

to escape traps of local minima.

5.1.2. Nonlinear feedback. The general form of the nonlinear state feedback control law

is taken from the following class of polynomials:

λi = fi
(
qi,qn

)(
ai0 + ai1qi + ai2qn + ···+ ai2m−1q

m
i + ai2mq

m
n

)

×I
(
ai0 + ai1qi + ai2qn + ···+ ai2m−1q

m
i + ai2mq

m
n > 0

)
.

(5.6)

Our objective is to find the best one. To reduce computational time we have concentrated

on second-order polynomials, m= 2. Again, we use the RRS algorithm to determine the

best feedback law from the class of polynomials of degree 2. Randomly, we start with two

starting vectors b ∈R3×5 =R15 as given below:

b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1
0 b1

1 b1
2 b1

3 b1
4

b2
0 b2

1 b2
2 b2

3 b2
4

b3
0 b3

1 b3
2 b3

3 b3
4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 −1 −1 −1 −1

2 2 2 2 2

−3 −3 −3 −3 −3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1
0 + 1000 b1

1 + 1000 b1
2 + 1000 b1

3 + 1000 b1
4 + 1000

b2
0− 1000 b2

1− 1000 b2
2− 1000 b2

3− 1000 b2
4− 1000

b3
0 + 1000 b3

1 + 1000 b3
2 + 1000 b3

3 + 1000 b3
4 + 1000

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

999 999 999 999 999

−998 −998 −998 −998 −998

997 997 997 997 997

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(5.7)
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The optimum vectors obtained for the quadratic feedback control law are given by

b∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1∗
0 b1∗

1 b1∗
2 b1∗

3 b1∗
4

b2∗
0 b2∗

1 b2∗
2 b2∗

3 b2∗
4

b3∗
0 b3∗

1 b3∗
2 b3∗

3 b3∗
4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−1.826 0.0285 0.0110 0.00021 0.0000023

−2.762 0.0400 0.0144 0.00039 0.0000019

−2.154 0.0343 0.0123 0.00032 0.0000042

⎫⎪⎪⎬
⎪⎪⎭

,

b
∗
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b
1∗

0 b
1∗

1 b
1∗

2 b
1∗

3 b
1∗

4

b
2∗

0 b
2∗

1 b
2∗

2 b
2∗

3 b
2∗

4

b
3∗

0 b
3∗

1 b
3∗

2 b
3∗

3 b
3∗

4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−1.254 0.0346 0.0546 0.00001 0.0000042

−5.141 0.0058 0.0173 0.00058 0.0000052

−3.541 0.0658 0.0211 0.00023 0.0000055

⎫⎪⎪⎬
⎪⎪⎭
.

(5.8)

It is interesting to note that the last two columns of the above matrices are very small. In

other words, the nonlinearity is negligible. The effectiveness of linear control law is close

to that of the quadratic law. However, we note a small difference in the two quadratic laws

determined by b∗ and b
∗

.

5.2. System performance corresponding to the optimal feedback control. It is impor-

tant for an AQM algorithm to have adaptive and robust control performance for dynamic

TCP flows. We examine the robustness of the optimal feedback control laws obtained

above with respect to variations in the network parameters and discuss how tunable pa-

rameters should be set to optimize the system.

In this set of experiments, the parameter setup is the same as in the above experiments,

except the value of β. For β = 3, the optimization process is started from

a=

⎧⎪⎪⎨
⎪⎪⎩

a1
0 a1

1 a1
2

a2
0 a2

1 a2
2

a3
0 a3

1 a3
2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩

−1 −1 −1

2 2 2

−3 −3 −3

⎫⎪⎪⎬
⎪⎪⎭
. (5.9)

The optimum parameter vector â∗ was found as

â∗ =

⎧⎪⎪⎨
⎪⎪⎩

â1∗
0 â1∗

1 â1∗
2

â2∗
0 â2∗

1 â2∗
2

â3∗
0 â3∗

1 â3∗
2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩

−1.78 0.023 0.011

−2.70 0.041 0.020

−2.18 0.035 0.014

⎫⎪⎪⎬
⎪⎪⎭
. (5.10)

In Figure 5.1, we have plotted, for two different values of β, the convergence of the

optimization algorithm against the number of iterations.
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Figure 5.1. Iteration.

Table 5.2. Costs for different values of β.

β 1.2 1.5 2 3 4 6 8 10

(Linear) −176.96 −185.21 −195.95 −195.44 −195.22 −195.12 −195.11 −195.15

J(Quadratic) −175.82 −185.20 −195.94 −195.42 −195.19 −195.18 −195.12 −195.15

(Linear) 181.21 189.09 199.50 199.60 200 200 200 200

JT(Quadratic) 180.02 188.99 199.42 199.50 199.92 200 200 200

(Linear) 0.11 0.27 0.38 0.45 0.53 0.57 0.58 0.58

JC(Quadratic) 0.10 0.27 0.37 0.43 0.53 0.56 0.57 0.58

(Linear) 4.14 3.61 3.16 3.69 4.21 4.27 4.28 4.24

JL(Quadratic) 4.09 3.52 3.10 3.63 4.16 4.23 4.27 4.24

(Linear) 0 0.0035 0.010 0.019 0.026 0.029 0.030 0.030

JS(Quadratic) 0 0.0038 0.011 0.020 0.027 0.029 0.030 0.030

Given γ = 1/3, δ = 1, we study the variation of performance for different values of β.

For the experiments, we have

Ci(t)= β ·
C4(t)

3
, i= 1,2,3. (5.11)

The expected costs for different values of β, such as {1.2,1.5,2,3,4,5,6,7,8,9,10}, are

computed by the use of Monte Carlo technique and shown in Table 5.2.



N. U. Ahmed and X. H. Ouyang 13

Figure 5.2 shows the comparison of expected costs per unit time of individual factors

such as throughput, congestion, packet losses, and synchronization for different values of

β. As shown in Figure 5.2(b), RED (almost) fully utilizes the bandwidth of the outgoing

link as β approaches 4. This is because the queue at the multiplexor is seldom empty. The

incoming TCP (traffic) flows always keep the queue full. This in turn leads to more con-

gestion and more packet losses at the multiplexor as shown in Figures 5.2(c) and 5.2(d).

Consequently, AQM system would generate warning signals more frequently to force the

sources to cut their window sizes more often, which may result in more global synchro-

nization as shown in Figure 5.2(e). Despite the variation of the individual costs, Figures

5.2(b)–5.2(e), the total system cost, as shown in Figure 5.2(a), and hence the overall per-

formance, is robust with respect to variation of the parameter β beyond 2.

Figure 5.4 shows variations of queues at the buffers and the multiplexor for values

of β = 1,1.2,2,10 corresponding to the linear feedback control law. It was observed that

if β > 2, queue build at the buffers is substantially reduced over the simulation period.

Note that Figure 5.3(a) also shows that for identical network conditions, the cost corre-

sponding to the linear feedback policy is almost the same as that of the quadratic policy,

both of them reaching the minimum at the point β = 2. The proposed feedback control

algorithm shows the robustness in control performance subject to changes of network en-

vironments. This ensures robustness in stability and good performance for a wider range

of network parameter uncertainties.

5.3. Impact of time delay on performance. In general, the control performance of an

AQM system is affected by several network parameters such as the buffer size (Qi, i =
1,2,3,n− 1), the link capacity (Cn), the traffic balancer (i.e., β), and the propagation de-

lay of warning signals. The network parameters such as buffer size, the link capacity and

the traffic balancer are design parameters and hence fixed once the AQM is installed in

a router. In contrast, the propagation delay is a dynamic factor because it changes dy-

namically over time. In fact, the propagation delay is a function of several factors such

as the physical distance between sources, destinations, and the router including traffic

conditions. If one wants to be exact, the problem becomes mathematically very difficult

and intractable. Therefore, for simplicity one may view δ as the mean of a random vari-

able having uniform distribution (considering the worst case/maximum entropy) over a

compact interval ∆⊂ [0,∞). For our experiments we have only considered a fixed set of

time delays measured in units of basic time slots (used for computing the solutions of the

system equations). Given γ = 1/3, β = 2, we use δ = {1τ,3τ,5τ}. The results shown (see

Table 5.3) correspond to the optimum linear and quadratic control laws with a∗ and b∗

as given in Sections 5.1.1-5.1.2. It is clear from these results that time delay in controls

has significant negative impact on system performance. An increase of time delay not

only degrades the control performance of an AQM system but may also lead to instabil-

ity. Thus, the effect of propagation delay of warning signals should be taken into account

in designing a robust AQM system.

5.4. Discussion of results. Figure 5.5 plots the variations of window sizes of the sources

1, 2, and 3 over the given period. Examining carefully, one can detect from these plots
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Figure 5.3. Variations of queues for different values of β (linear case).

Table 5.3. Variation of costs with time delay.

J JT JC JL JS

Linear with 1 interval delay −195.95 199.50 0.38 3.16 0.010

Quadratic with 1 interval delay −195.94 199.42 0.37 3.10 0.011

Linear with 3 interval delay −190.58 197.91 0.29 7.03 0.011

Quadratic with 3 interval delay −190.10 197.38 0.29 6.98 0.012

Linear with 5 interval delay −186.81 195.16 0.40 7.93 0.012

Quadratic with 5 interval delay −186.74 194.98 0.40 7.83 0.013

significant reduction of synchronization. This corresponds to optimal feedback control

laws f1, f2, f3 with coefficients a= a∗ (linear) and b= b∗ (quadratic). This is expected as

the intensities λ1, λ2, λ3 (which are functions of average queue size at the multiplexer and
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Figure 5.5. Variations of windows sizes.

buffers 1, 2, and 3, resp.) differ with one another due to the difference of the coefficients of

the optimum vectors (a∗ or b∗). This ensures that each of the connections has different

dropping strategies over the same period thereby avoiding global synchronization (i.e.,

reducing window sizes at the same time).

It is interesting to note that the vector b∗, with elements bi∗0 , bi∗1 , bi∗2 , i = 1,2,3, is

very close to the vector a∗ with elements ai∗0 , ai∗1 , ai∗2 . In other words, the coefficients

of the second-order terms (in the quadratic control law) such as bi∗3 , bi∗4 , i = 1,2,3, are

very close to zero. In fact, the simulation results obtained by use of optimum nonlinear

feedback control laws are almost the same as those obtained by use of optimum linear
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feedback control as seen in Figure 5.3. It is important to mention that computation of

optimum nonlinear feedback control laws take much longer time than linear ones and

does not provide any noticeable improvement. Therefore, we conclude that in our par-

ticular setting it is not necessary to consider nonlinear feedback control laws. The linear

optimal feedback control laws are fairly satisfactory. Consequently, (3.7) can be replaced

by the simpler linear law

gi(x, y)= ai0 + ai1x+ ai2y, i= 1,2, . . . ,n− 1. (5.12)

6. Conclusion

A variant of RED model presented in this paper formally defines the interactions between

TCP connections and the AQM system in the computer network. The dynamic model

which contains a feedback control law is governed by a system of stochastic differential

equations driven by doubly stochastic point processes with intensities being the controls

for each of the TCP connections. The frequency of warning signals represented by the in-

tensities is taken as function of available information such as the router and buffer loads.

The optimal (linear) feedback control law based on such information is obtained by ran-

dom recursive search (RRS) technique. According to the feedback control law proposed,

the controller observes the behavior of all the queues (at buffers and the multiplexer)

and controls every individual intensity by sending congestion signals (warnings) to the

sources for adjustment of their transmission rates. The simulation results demonstrate

that the model and the methodology proposed can improve the system performance sig-

nificantly via maximizing the link utilization and minimizing congestion, packet losses,

and global synchronization.
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