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In this paper we consider univalent holomorphic maps of
E*, the unit disk in C*. We generalize Wilf’s subordinating
factor sequences to functions on E” and use this charac-
terization to obtain a covering theorem and bounds for convex
mappings in C~.

1. Introduction. Let K" denote the class of functions F' which
are holomorphic and univalent in E*={z=(2,, - -+, 2,): MaX,<;<, |2;| <1},
maps E" onto a convex region in C”, and satisfy F(0) = 0 and the
Jacobian J of the mapping F is nonsingular. Let G and H be
holomorphic in E*. If G(E")cC H(E"), then G is subordinate to
HG<H). If F=(F, -+, F,)e K* then each F; has an expansion
of the form

F(Z) = I‘Z;,l ) +Z Qo (B)RI oo 220

V=

In this paper we characterize the sequences {c,,... (3)} (: =1, ---, n)
such that the mapping

H= (-Hly "'7H'n)

where

o0

H(Z)=3 > ¢y, (@), (0)20 -0 2
k=1 vi+ s tvy=p
is subordinate to F, for all F'e K*. Then we obtain a covering
theorem and bounds for convex mappings.

For n =1, the class K' is the classical family of univalent
functions F(z) = D7, 2" which maps the unit disk onto a convex
domain. Wilf [4] has characterized the sequences {¢,} (subordinating
factor sequences) such that h(z) = 3, c,a,2" is subordinate to f(z) =
S a,z® whenever fe K. For n > 1, Suffridge [3] has given the
following characterization of the class K".

THEOREM A. Suppose F: E*— C" s holomorphic, F(0) = 0, and
that J is nomsingular for all Zec E*. Then F is a univalent map
of E™ onto a convex domain if and only if there exists univalent
mappings f; € k(1 <j < n) such that F(Z) = T(f(z,), -+, fu(2.)) where
T s o nonstngular linear transformation.
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From Theorem A we see that if F' = (F,, ---, F',) € K" then
Fizy, -+, 2,) = Ig‘l (@f2t + « -« + ak2h) .
Thus we could represent F'e K™ by the column vector

F(Z) = IiA,,Z"

where
al - alb, 2k
A, = Zt = .
ak,  ak, zr

2. Subordinating factor sequences. An infinite sequence {C.}
of m X n matrices of complex numbers will be called a subordinating
factor sequence if for each FI(Z) = >, A, Z* € K* we have >,C,® 4,Z* <
F(Z), where C,(® A, is the Hadamard product. If C = (c;;) and
A = (a;;) then C® A = (c,;a0,;). Let . " denote the collection of
subordinating factor sequences.

THEOREM 1. If {C,}e . F ", then for each k the rows of C, = (c;)
are identical, that is, for each k (k= 1, 2, -++) and each j (j=1, -+, n)
we have ¢f; = ¢k, = -+ = ck,.

Proof. Let {C,}e. & ™. First consider k = 1. Pick {=(, ---,
£,) e E™ where {, # 0 and if ¢}; = 0 then {; = 1/2¢7* with a = arg cj;
if ¢j; =0 then {; =0. Let 0 = (¢}; — ci,)¢;,. If 0 =0, then ¢} = ci.
If 60, let M =1/6. Then define the mapping F = (F, :-+, F,)
where F(Z) = Mz,;,, F{(Z) = Mz, + #;, and F,(Z) = z, when neither
k+1 or k3. The mapping F is a convex univalent map by
Theorem A. Thus since {C,}e.&# " the mapping H = (H, ---H,),
where H(Z) = Me,z,, H{(Z) = Mcz;, + c;z; and H(Z) = ciuzx for
k1 or k + j, is subordinate to F. In particular, there is a Ze¢ E™
such that H({) = F(Z), which says

Mz,- = MCZQ
and
Mzi + z2; = MC;;CZ + C}jC:‘ .

Solving for z; we obtain

7 = M(eh — ei)G + o5y = 1+ e = 1.
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This contradicts the fact that |Z| < 1. Thus we have 6 =0 or
i, =¢Ci=-"=¢cp forjg=1, -+ n.
For ¥ > 1 we define the mapping F = (¥, ---, F',) where

k
Mey + 2;, and F(Z) = z,

kz

mmsM@+ﬁﬂmm=M@
for neither k& = ¢ or k ++ j. Then the proof that ¢, = ¢k = .-+ = ¢i;
is similar to the proof for k = 1.
From Theorem 1 we have that if {C,}e .5 ", then for each k
the rows of C, are indentical. For the » X m» matrices C, we will
use the notation

. ck

C,=|: =(cf, «++, cn) .

k
v Cyp

Using Theorem 1 we are now able to characterize class & .

THEOREM 2. The following are equivalent:
(i) {Cxle F™ where Cx = (c, -, ck).
(ii) For each j=1, ---, n we have
Re {1 + 2;‘, c’;z’;} >0 for [z;{<1.
=1

(ili) For each j=1, +--, m there is a mnondecreasing function
T, on [0, 27] such that

¢k = 51; S:ﬂe“i’”’d%(ﬁ) and c¢j=1.

Proof. The Herglotz’s integral representation for positive har-
monic functions proves that (ii) and (iii) are equivalent. Let {C,}¢e
Z ", where C, = (¢}, ---, ¢f). Let fi(z;) = 2/ — 2,). Then by
Theorem A the mapping F' is in K*. We may write

F(Z) =3 AZ"
k=1
where 4, = (a};) and % = 0 if ¢ % 5 and af = 1 then the mapping
mm:§@@&m
=1
is subordinate to F. The mapping H has components H,;(Z) =

S cizf. Since H < F we have that H,(F,) C f.(E,) or Re {H,(E,)} =
—1/2 where E, = {2,: |z, <1}. Thus Re {3\, ctzl} > —1/2 for i=
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1, ..., n, Now suppose (iii) holds. Let F'e K*. Then by Theorem A
there exists a nonsingular matrix 7 and functions f, ---, f,€ K*,
where fi(z;) = Y, a,(t)2, such that

Sfi(z)
F2) = :
Su(22)

where F' is a column vector. Then
& cray(1)z)
3 chau(n)z

i o | AT L)t

1 (= PR k
PR OO

23

S 7S au ()it G ()
0 k=1

Mg..

Lk

y 9

—

0 (Ut (5)

Ms

|

[\

&
]

1

NI;—A...

|

" fir v (o)

T

. N

o= | e oo o)

where z; = r;¢"%, Since each integral in the left hand side is the
centroid of a nonnegative mass distribution of total mass one on a
convex curve, the value of each integral must lie inside its convex
curve. Further since T is a nonsingular linear transformation
H(Z) lies inside the image of the polydisk of radius (r,, +--, 7). (A
polydisk or radius (7, ---, r,) is the set {(z, ---, 2,): ]2 = r; for
9=1 +-+,m}) Thus H< F.

3. Convex mappings in C". We now apply Theorem 2 to
obtain some results for mapping in K".

COROLLARY 1. For n>1 let Ge K", where G(Z) = 3, B, Z".
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Then the mapping
G¥Z) =3B, ® A Z*,
where F(Z) = 3, A,Z* ¢ K*, is not subordinate to F for all Fe K"

Proof. If G < F for all F'e K", then the sequence {B,} belongs
to #*. This says that the rows of each B, are indentical by
Theorem 1. Hence the Jacobian of G will be identically zero. Thus

¥ is not subordinate to F' for all Fe K*.

Let T = (¢;;) be a n X » nonsingular matrix. Let K be the
functions f € K' where f'(0) =1. Let KT denote the subclass of
K™ which is defined by Fe KT if and only if there exist functions
f.eK(i=1,2, ---, n) such that

fi(z)
F(Z) = T( : )

fn(.zn).

where F' is represented as a column vector.

COROLLARY 2. The image of E™ wunder a mapping FeKT
contains the polydisk |w| < 1/2(331-: |E:5], + ) D=1 1tasil).  The radius
18 sharp.

Proof. Since the sequence {C,} where C, = (1/2, 1/2, ---, 1/2) and
C.=1(0,--+,0) for 'k =2, belongs to # ", we see that the image
of E* under a mapping Fe KT contains |W| < 1/2(%, [til, +++»
> t.]). The sharpness follows by using the function

%
1—z

FZ)y=T
L2
1—2z,

Ruscheweyh and Sheil-Small [2] have proven Pdélya and Schoen-
berg’s [1] conjecture that if f(z) = S, a.2* and g(z) = > b2 are
elements of K' then so is the function A(z) = 3, a;b2*. In general

for K" this is not true as shown by the example F(Z) = <§‘ :_ 2) =
G(Z). However, we do have the following Pdélya and Schoenberg

tpye of theorem.

THEOREM 3. Let T, = (p;;) and T, = (q,;) be n X n nonsingular
matrices such that T = T, ® T, = (:;q.;) 18 nonsingular. If F(Z)=
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S A Z¥e KT, and G(Z) = X7, B,Z*e€ KT,, then H(Z) = > A, ®
B.Z* belongs to KT.

Proof. Let FFe KT, and Ge KT,. Then there exists functions
f»0,€K@ =1, -+, n) such that

[fi(2,) ]
F(Z) = :
_f%(zn)_
and
[ 9.(2,) 7
G(Z) = :
._g'n(z)nJ

The mapping H(Z) = >\ A, (® B,z* may be written as
5+ 3 aLbu(L)st
H(Z) =
2+ 3, au(n)by(n)ei
Thus H e KT since z; + >, a,(2)b,(7)z¥ belongs to K for each 7 [2].
4. Boundson Mapping in K,. Let F'e K*. Then by Suffridge’s
representation of mappings in K" (Theorem A), there exist ann X n

nonsingular matrix T=(¢;;) and functions f;(z,) =X a(2)zi(i=1,-- -, n)
in K* with f/(0) = 1 such that

fi(z)
F(Z) = T( : )
Sa(22):

(1)
A, = (ay) = T( )
ai(n)

where F(z) = 37, A, Z*. Since

Then

. |2,] |2:]
la(?)| <1 and 1+|z]<[f(z)[<1—[ ik

we have the following theorem.



SUBORDINATING FACTOR SEQUENCES 165

THEOREM 4. Let F(z) = X, A Z* belongs to K*. Let T be an
n X n nonsinguwlar matriz and let f, +-+, f, € K* such that

fi(z)
F(Z)=T
Su(z4)
Then
AR

for each k, i, and j, where A, = (a¥;). Let F = (F,, ---, F,). Then
Sty L2 < FZ) < Sty L
2 [1+|sz = [F( )I<j§1| ll—lzj-

Both inequality are sharp.
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