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SUBORDINATION FOR BMOA
By SHOJ1 KOBAYASHI

1. Introduction.

Let p be arbitrarily fixed with p>0 throughout this paper. Let f(z) be a
function analytic in the unit disk U={]z|<1}. The H, norm ||f|, of f is de-
fined by

.1 I71=tim o) srety17a0} ™.

The family of all f for which | f|, is finite is denoted by H,(U) and called
Hardy class. For every acU, t,(z2)=(z+a)/(14+az) be the conformal map of U
onto itself with #,(0)=a, and we set fq(2)=f(t.(2)— f(a). The BMO norm
By(f) of f is defined by

(L2) Bp(f)=sup{llfalp: a€U}.

The family of all f for which B,(f) is finite is denoted by BMOA(U), where
BMOA stands for “Analytic functions of Bounded Mean Oscillation”. It is known
that the family BMOA(U) does not depend on the value of p ([2]). In the
following, abbreviating the index p, we simply write as

(L3) B(H)=By(f)".

Let ¢ denote an analytic function in U with |¢(z)| <1 for zeU. Applying
the subordination principle, we easily see that

1.4 B(f-¢)=B(f)

holds for every f€BMOA(U). Here f-¢ denotes the composite function of f
by @, i.e. (f-@)2)=f(d(2)). In this paper, we deal with the equality problem
for the inequality (1.4).

A bounded analytic function ¢ in U is called an inner function, if its non-
tangential boundary values are of modulus 1 almost everywhere on the unit
circle T. Ryff [5] characterized inner functions by a property of preserving
H, norms of analytic functions:

Ryff’s Theorem ([6, Theorem 3, p. 351]). Let ¢ be an analytic function in
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U with |¢(2)| <1 for z€U and ¢(0)=0. If ¢ is an inner function, then the
equality

(1.5) Ifo@lo=1/l»

holds for every feH,(U). Conversely, if (1.5) holds for some nonconstant f&
Hy(U), then ¢ is an inner function.

It follows from the Ryjf theorem that if ¢ is an inner function, then equality
holds in (1.4) for every fe BMOA(U) (see Theorem 2.1 in the next section).
As for the converse, however, we did not know whether equality occurs or not
in (1.4) for some noninner function ¢. Recently, the author [3] showed that
there is a noninner function ¢ for which equality holds in (1.4) for every func-
tion f analytic in U and continuous on the closure U of U. In the present
paper, we generalize this to the desired case for every f&eBMOA(U), that is,
we show that there are fairly many noninner functions ¢ such that equality
holds in (1.4) for every fe BMOA(U).

2. Subordination by inner functions.

In this section, to make this paper self-contained, we show that equality
holds in (1.4) for every inner function ¢ and for every fe BMOA(U):

THEOREM 2.1. If ¢ is an inner function, then the equality
@21 B(f-¢)=B(f)
holds for every fe BMOA(U).

Before stating the proof of the theorem, we introduce notation concerning
the least harmonic majorants of subharmonic functions, which we use through-
out this paper. Let S*(U) denote the family of all nonnegative subharmonic
functions in U. For s&S*(U) we denote by § the least harmonic majorant of
s in U. Here, in case that s admits no harmonic majorants in U, we set $(z)
=400,

The author and Suita [5] generalized the Ryff theorem cited above to the
case of nonnegative subharmonic functions on Riemann surfaces. We restate it
in the case for S*(U):

LEMMA 2.2. If @ is an inner function, then the equality
2.2) (s°9) (2)=(5-9)(2) .

holds for every s&S*(U), and conversely if (2.2) holds for some s&S*(U) which
is not harmonic in whole U, then ¢ is inner.
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For the proof, see [5, pp. 316-318].
Returning to the case of an analytic function f, we set s.(z2)=|f(2)— f(a)|?
for every acU. On noting that the equality

”fa ”pp:(Sa°ta)A(O):(sAada)(O):é‘a(a)

holds for any fe BMOA(U), where we used (2.2) with ¢=¢,, we obtain from
(1.2) the following lemma :

LEMMA 2.3. For every f€ BMOA(U)
2.3) By(f)=sup{$q(a): acU}.

Proof of the theorem. By a theorem of Frostman [1], the range ¢(U) of
any inner function ¢ covers U except possibly for a set of (logarithmic) capacity
zero. In particular, we see that ¢(U)is dense in U. Therefore, by using (2.3)
and (2.2), we obtain

By(f)=sup{$e(a): acU}
=sup{$.(a): aeg(U)}
=sup{$.(¢(0)): be U}
=sup{(sq°$)"(b): b U}
=B(f-¢).

Here, we set a=¢().

3. Subordination by noninner functions.

In this section we show that equality holds in (1.4) for every f€ BMOA(U)
even for some noninner functions ¢ :

THEOREM 3.1. There are some noninner functions ¢ for which the equality
(2.1) holds for every f BMOA(U).

Proof. We construct functions ¢ which satisfy the condition of the theorem.
Let ¢ be any inner function which has a singularity (a point at which ¢ can
not be analytically continued) at a point { on the unit circle 7. We easily see
that there are a lot of such inner functions. In fact, we can take as ¢ any
inner function which has as a factor a Blaschke product whose zeros converge
to { or a singular inner function whose associated singular measure has a posi-
tive mass at {. Let D be a subdomain of U which contains {z€U: |z—{| <4}
for a sufficiently small §>0. Let A be a universal covering map of D. It is
easily seen that A is inner if and only if U—D is of capacity zero. Now we
further assume that U—D is of capacity positive, so that 1 is noninner. Finally
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we set ¢=¢A. Applying the Ryff theorem, we easily see that ¢ is also non-
inner.

For s=S*(U) we denote by $p(z) the least harmonic majorant of s in D.
The following lemma is merely a restatement of a wellknown fact that a uni-
versal covering map preserves the least harmonic majorant of any subharmonic
function. As for the proof, see for example [5, Lemma 1, p. 316]:

LEMMA 3.2. The equality
(3.1) (se ) (2)=(8-)(2)
holds for every s&S*(U).

We set s(z)=|g(z)|? for g H,(U). Let D, be a simply-connected subdomain
of D whose boundary contains an open interval on T containing {. In fact, for
example, we can take as D,={zeU : |z—{| <3} for a sufficiently small 6>0. It
is known that §(z) and $,(z) are expressed as integrals by the harmonic measure
for the point z in D, of their boundary values on the boundary of D, respec-
tively. Here note that these integrals are expressed via the Poisson integral
formula by conformally mapping the domain D, onto the unit disk U. Since
their boundary values coincide almost everywhere on the open interval on T
containing {, we see that §(z)—$p(z) approaches to 0 as z approaches to {.
Therefore, by noting Lemma 3.2, we obtain the following lemma :

LEMMA 3.3 Set s(z)=|g(z)|? for any g H,U). If b,U is a sequence
such that A(b,)—C as n—oo and that the limit

lim ($pA)(bn)
exists, then the limit
lim (s°2)"(b,)
n—c0
exists and the two limits coincide :
(3.2) lim (§02)(b,) = lim (s°2)"(by) .
Now we continue the proof of the theorem. Since we assumed ¢ to be an
inner function with a singularity at {, we see by noting a local version of the
Frostman theorem [1] cited in the previous section that the range set R(¢, {)

at £ of ¢ convers U except possibly for a set of capacity zero. Here, the range
set R(¢, {) is defined by

3.3) R(¢, C):Qosb({zEU: lz—L|<d}).

In particular, R(¢, {) is dense in U. Let ¢ be an arbitrarily fixed positive num-
ber. On noting Lemma 2.2, we can take a point a=R(¢, {) such that
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(3.4) B(f)—e<$.(a).

The definition (3.3) means that we can take a sequence a,&D such that ¢(a,)
=a for every n and that a,—{ as n—oo. Finally we take a sequence b,sU

such that A(b,)=a, for every n. By using (2.2) we see
$a(@)=$a(¢(ax))
=(sa°¢)"(an)
=(sa°¢)"(A(bn)) -

Therefore by letting n—oo in this equality and applying Lemma 3.3 as g(z)=
[((2)— f(a), we see

(3.5) 5a(@)= lim (s,+4)"(Abw)
= Llin (sa°¢°z)A(bn) .

Since we have set g=¢-4, writing h(z)=f-@, we easily see |h(z)—h(b,)|?=
(sa°¢peA)(2) for every n. Therefore, on noting Lemma 2.3, we see that for
every n

3.6) ($a°¢po )" (bn)=B(f9) .

Combining (1.4), (3.4), (3.5) and (3.6), we obtain (2.1), as asserted, since ¢ in
(3.4) can be chosen arbitrarily small.

4. Concluding remarks.

We do not know as yet whether there are noninner functions ¢ of different
type from ones constructed in the proof of Theorem 3.1 for which the equality
(2.1) holds for every feBMOA(U). The functions ¢ constructed in the proof
of Theorem 3.1 are easily seen to satisfy the condition that for some point
{=T the range set R(¢, {) covers U except possibly for a set of capacity zero.
This condition, however, is not sufficient in order that the equality (2.1) holds
for every feBMOAU). In fact, for example, let p(z) be the conformal map
of U onto UN{z:Rez>—Fk} with p(0)=0, where 0<k<1, and ¢ to be an
inner function with a singularity at a point {&T. If we set ¢(z)={u(d(2)}?
we can prove that the strict inequality B(f-¢)<B(f) holds for every function
f analytic in U and continuous on U (cf. [4, Example 6.3, p. 169]).
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