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Abstract. The concept of a Lévy subordinator is generalized to a family of non-
decreasing stochastic processes, which are parameterized in terms of two Bernstein
functions. Whereas the independent increments property is only maintained in the
Lévy subordinator special case, the considered family is always strongly infinitely
divisible with respect to time, meaning that a path can be represented in distribu-
tion as a finite sum with arbitrarily many summands of independent and identically
distributed paths of another process. Besides distributional properties of the pro-
cess, we present two applications to the design of accurate and efficient simulation
algorithms. First, each member of the considered family corresponds uniquely to
an exchangeable max-stable sequence of random variables, and we demonstrate
how the associated extreme-value copula can be simulated exactly and efficiently
from its Pickands dependence measure. Second, we show how one obtains differ-
ent series and integral representations for infinitely divisible probability laws by
varying the parameterizing pair of Bernstein functions, without changing the law
of one-dimensional margins of the process. As a particular example, we present an
exact simulation algorithm for compound Poisson distributions from the Bondesson
class, for which the generalized inverse of the distribution function of the associated
Stieltjes measure can be evaluated accurately.

1. Introduction

We recall that a Lévy subordinator L = {Lt}t≥0 is a non-decreasing
stochastic process on a probability space (Ω,F ,P) with independent and stationary
increments, whose paths are almost surely right-continuous and start at L0 = 0,
see Bertoin (1999) for a textbook treatment. Intuitively, Lévy subordinators are
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the continuous-time analog of discrete-time random walks with non-negative incre-
ments. The law of L, that is its finite-dimensional distributions, is fully determined
by the law of any random variable Lt with t > 0, whose Laplace transform is given
by

E

[

e−xLt

]

= e−tΨL(x), ΨL(x) = µL x+

∫

(0,∞]

(
1− e−ux

)
νL(du), x ≥ 0, (1.1)

where the so-called Lévy measure νL satisfies
∫

(0,∞]
min{u, 1} νL(du) < ∞ and

µL ≥ 0 is a drift constant. The function ΨL is a so-called Bernstein function, see
Schilling et al. (2010) for a textbook treatment, and the number ν({∞}) is called
the killing rate of L, because it corresponds to an exponential rate at which L jumps
to the absorbing graveyard state {∞}, i.e. is “killed.” The so-called Lévy–Khinchin
formula (1.1) establishes a one-to-one correspondence between Bernstein functions
and Lévy subordinators, so that ΨL (or equivalently the pair (µL, νL)) provides a
convenient analytical description of the law of L.

The purpose of the present article is to embed the concept of a Lévy subordi-
nator into a larger family of non-decreasing processes that can be parameterized
in terms of a pair (ΨL,ΨF ) of two Bernstein functions. On the one hand, the
enlarged family of processes still satisfies the concept of being strongly infinitely
divisible with respect to time, as explained below, which renders it a natural gen-
eralization from an algebraic viewpoint. On the other hand, our generalization is
inspired by two practical applications: Firstly, the processes can be used to con-
struct and simulate multivariate extreme-value distributions. Second, they provide
a reasonable framework to derive series representations for infinitely divisible laws
on the positive half-axis, which can be used for simulation.

For a pair (F,L) of a distribution function F of some non-negative random
variable with finite, positive mean

∫∞

0
1−F (x) dx ∈ (0,∞) and a Lévy subordinator

L without drift, the present article studies distributional properties of the stochastic
process

Ht := H
(F,L)
t =

∫ ∞

0

− log
{

F
(s

t
−

)}

dLs, t ≥ 0, (1.2)

the integral being defined pathwise in the usual Riemann–Stieltjes sense, and with
F (x−) := limuրx F (u). Since F is right-continuous, so is t 7→ F (s/t−) for each
fixed s. This implies that t 7→ Ht is almost surely right-continuous as integral over
right-continuous functions. By definition, H0 = 0 (using the notations 1/0 := ∞
and F (∞−) := 1), and Ht ∈ [0,∞] for t ≥ 0, i.e. in particular Ht = ∞ is possible.
An alternative representation for H is given by the formula

Ht =

∫ ∞

0

Ls t d
(
log(F (s))

)
, t ≥ 0, (1.3)

which is a consequence of Tonelli’s Theorem:
∫

(0,∞)

Ls t d
(
log(F (s))

)
=

∫

(0,∞)

∫

(0,s t]

dLu d
(
log(F (s))

)

=

∫

(0,∞)

∫

[u/t,∞)

d
(
log(F (s))

)
dLu

=

∫

(0,∞)

− log
{

F
(s

t
−

)}

dLu = Ht.
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According to Mansuy (2005, Paragraph (2.2)) this shows that H = {Ht}t≥0 is
strongly infinitely divisible with respect to time (strong IDT)1, meaning that for
arbitrary n ∈ N we have the distributional equality

{Ht}t≥0
d
=

{ n∑

i=1

H
(i)
t
n

}

t≥0
,

where H(i), i = 1, . . . , n, denote independent copies of H. In particular, Ht is an
infinitely divisible random variable and there exists a Bernstein function ΨH such
that exp(−tΨH) equals the Laplace transform of Ht for arbitrary t ≥ 0.

We call a pair (F,L) admissible, whenever Ht is not almost surely equal to the
trivial process Ht = ∞ · 1{t>0}, which can happen in general. Our interest in this
semi-parametric family of stochastic processes is fueled both by theoretical and
practical aspects. In the following Section 2 we study distributional properties,
whereas Sections 3 and 4 give applications of the presented class of processes to
the design of simulation algorithms. More precisely, the following list outlines the
organization of the remaining article and the contributions made.

Section 2: From the viewpoint of the theory on infinite divisibility, the consid-
ered family of stochastic processes is a natural extension of the concept of a Lévy
subordinator. Lévy subordinators arise in the special case when F corresponds to
a Bernoulli distribution with success probability exp(−1), see Example 2.8. Strong
IDT processes have first been introduced in Mansuy (2005) and further examples
have been studied in Es-sebaiy and Ouknine (2008); Hakassou and Ouknine (2013).
These references give some examples of strong IDT processes with an emphasis on
Gaussian processes. A LePage series representation for strong IDT processes with-
out Gaussian component, in particular for non-negative strong IDT processes, is
derived in Kopp and Molchanov (2018), and has been refined in the non-decreasing
case by Mai (2019). The present investigation demonstrates that the considered pro-
cesses form a large, and particularly tractable, subfamily of non-decreasing strong
IDT processes. In particular, its two parameter-“dimensions” F and L are explained
to be dual in a certain sense, see Lemma 2.3 and Section 4. Regarding applications,
in the particular case when F is continuous and satisfies F (1) = 1 the process H
is applied as a time-change in a model for stock prices in James and Zhang (2011),
building upon earlier work of Bender and Marquardt (2009) who study a more
general family of convoluted subordinators for the same purpose.

We demonstrate how several distributional properties of H can be inferred con-
veniently from the parameterizing pair (F,L), thus pave the way to an analytical
treatment of H via its parameters. In particular, in addition to the defining in-
tegral representation we present a canonical LePage series representation for H in
the spirit of Kopp and Molchanov (2018). We also present necessary and suffi-
cient analytical conditions for the probability law of H1 to be of compound Poisson
type or to have an atom at ∞. Section 2.3 further studies the natural filtration
{FH

t }t≥0 of the process H. While Lévy subordinators have independent incre-
ments, we demonstrate how the support of the probability measure dF controls the
ability of H to “see into the future.” In particular, for bounded support of dF , the
increment Ht+h−Ht can be decomposed into a sum of one part that is measurable
with respect to FH

t , and another part that is independent thereof.

1This property is called time-stable in Kopp and Molchanov (2018).
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Section 3: For each realization of H, the function x 7→ 1 − exp(−Hx), x ≥ 0,
is the distribution function of some non-negative random variable. In other words,
1− exp(−H) is a random variable taking values in the set of distribution functions
of non-negative random variables. Due to Mai and Scherer (2014, Theorem 5.3),
an iid sequence {Yk}k∈N of random samples drawn from this a priori simulated
distribution function is an exchangeable min-stable exponential sequence, meaning
that min{Y1/t1, . . . , Yd/td} has an exponential distribution, whose exponential rate
we denote by

ℓ(t1, . . . , td, 0, 0, . . .) ∈ [0,∞), d ∈ N, t1, . . . , td ≥ 0 (not all zero).

Equivalently, {1/Yk}k≥1 is an exchangeable max-stable sequence. If Y1 has unit
mean, i.e. if − log

(
E[exp{−H1}]

)
= 1, the associated function ℓ : [0,∞)N00 →

[0,∞) is called a stable tail dependence function, defined on the set [0,∞)N00 of non-
negative sequences that are eventually zero. The stable tail dependence function
uniquely characterizes the law of {Yk}k∈N and, equivalently, the law of H. Since
min- (resp. max-) stability is closely related to multivariate extreme-value theory,
an understanding of the law of H is thus tantamount with the understanding of an
associated family of multivariate extreme-value copulas, see Gudendorf and Segers
(2010) for background on the subject. In particular, a simulation algorithm for the
random vector (Y1, . . . , Yd) is equivalent to one for the associated extreme-value
copula.

Section 3 shows how the random vector (Y1, . . . , Yd) can be simulated exactly.
To this end, we make use of a simulation algorithm presented in Dombry et al.
(2016), which requires to simulate from the so-called Pickands dependence measure
associated with (Y1, . . . , Yd), a finite measure on the d-dimensional unit simplex. In
the present situation, we demonstrate how this simulation can be achieved efficiently
and accurately.

Section 4: Fixing t = 1, the random variable H1 has an infinitely divisible
law on [0,∞], which is invariant with respect to many changes in the parameter-
izing pair (F,L). This fact can be used to derive different series representations
for the same infinitely divisible law from Definition (1.2), when either L is of com-
pound Poisson type or the support of dF is bounded. In spirit, this methodology is
quite similar to seminal ideas in Bondesson (1982), who proposes alternative series
representations for infinitely divisible laws on R. Section 4 demonstrates how the
(F,L)-parameterization of H1 provides a very convenient setting to derive a sim-
ulation algorithm for distributions from the so-called Bondesson class, whenever
the associated Stieltjes measure is given in a more convenient form than the Lévy
measure. In fact, if L is chosen as a compound Poisson subordinator with unit
exponential jumps, the definition of H1 defines a bijection between the Bondesson
class and distribution functions F having finite mean and left-end point of support
equal to zero. This is to some extent analogous to traditional results for the case
when L is a standard Gamma process, in which case it is well known that the
definition of H1 defines a bijection between the so-called Thorin class and distribu-
tion functions F satisfying a certain integrability condition, see James et al. (2008,
Propositions 1.1 and 1.6).

As a final remark regarding our exposition in Section 4 we like to point out that
our investigation of the law of H1 is in general different from a series of seemingly
similar articles studying so-called exponential functionals of Lévy processes. Only
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in the special case F (x) = exp(− exp(−x)) the random variable H1 defines an ex-
ponential functional of a Lévy process. In this case, Behme (2015, Proposition 3.5)
states that if the law of L1 lies in the Bondesson family and satisfies E[log(L1)] < ∞,
then the law of H1 lies in the Thorin class. Whereas exponential functionals of Lévy
processes are defined in terms of integrands of the form t 7→ exp(−ξt) for a Lévy
process ξ, which might in general be different from the trivial process ξt = t, one
crucial difference in the present investigation is that our integrand – albeit being
always deterministic – needs not be of exponential form (i.e. we consider arbitrary
F and not only F (x) = exp(− exp(−x))), so H1 in general is not the exponential
functional of a Lévy process.

Finally, Section 5 concludes.

2. Anatomy of the process H

2.1. Technical preliminaries and admissibility. Throughout, we denote by L =
{Lt}t≥0 a (possibly killed) Lévy subordinator without drift and with Lévy mea-
sure νL on (0,∞], i.e. with killing rate ν({∞}). We assume that νL is non-zero, i.e.
L is not identically zero. Its associated Bernstein function is denoted by

ΨL(x) :=

∫

(0,∞]

(
1− e−ux

)
νL(du), x ≥ 0,

implicitly using the short-hand notations exp(−∞) := 0 and 0 ·∞ := 0 in order to
enforce ΨL(0) = 0.

Remark 2.1 (Why only driftless L are considered?). A positive drift µL of the Lévy
subordinator L would imply a drift of the process H, namely

µH = µL

∫ ∞

0

− log{F (s)} ds. (2.1)

On the one hand, this is inconvenient, because it requires an additional integra-
bility condition on F , so that (2.1) exists at all. We will always postulate that F
satisfies

∫∞

0
1 − F (s) ds < ∞, which is a weaker condition. For instance, the dis-

tribution function F (x) = exp(−x−2) may be admissible in the following but (2.1)
is not finite. On the other hand, the assumption of a driftless Lévy subordinator
is without loss of generality. To explain this, recall that H falls into the family
of non-decreasing strong IDT processes. It follows from a structural result in Mai
(2019) that, just like for the subfamily of Lévy subordinators, such processes can

be decomposed uniquely into Ht = µH t + H̃t, with a drift µH ≥ 0 and a non-
decreasing strong IDT process H̃ without drift. This allows us to concentrate our
study on the driftless case, because the more general case is simply obtained by
adding a drift a posteriori.

For later reference, we introduce the following sets of distribution functions (cdfs)

Fc :=
{

F cdf of some X ∈ [0,∞) : c = E[X] =

∫ ∞

0

1− F (s) ds
}

,

F :=
⋃

c∈(0,∞)

Fc.

The following result is derived in Mai (2018) and occupies a commanding role with
regards to an analytic treatment of the stochastic properties of H, thus is repeated
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here for the sake of an educational exposition. In particular, it shows that the
parameterizing pair (F,L) may conveniently be characterized analytically in terms
of two Bernstein functions ΨL (characterizing the law of L) and ΨF (characterizing
F ).

Lemma 2.2 (Bernstein functions associated with F). For F ∈ F the function

ΨF (x) :=

∫ ∞

0

1− F (s)x ds, x ≥ 0, (2.2)

is a Bernstein function and the mapping F 7→ ΨF is a bijection between F and
the set of Bernstein functions without drift. The Lévy measure νF associated with
ΨF is determined in terms of F by the equation νF ((t,∞]) = F−1(exp(−t)), t > 0,
where F−1 denotes the generalized inverse of F . The inverse mapping ν 7→ Fν from
the set of Lévy measures on (0,∞] to F is given by

Fν(t) =







0 , if t < ν({∞})
e−S−1

ν (t) , if ν({∞}) ≤ t < ν((0,∞])

1 , else

,

where S−1
ν denotes the generalized inverse of Sν(t) := ν((t,∞]).

Proof : This is precisely Mai (2018, Lemma 3), where a detailed proof can be found.
The basic idea is that under the mapping u 7→ − log{F (u)} the Lebesgue measure
on (0,∞) is mapped to a measure νF and the integral (2.2) defining ΨF becomes

ΨF (x) =

∫

(0,∞]

1− e−ux νF (du).

The assumption F ∈ F is equivalent to integrability of 1 − F , which is equivalent
to

∫

(0,∞]
min{x, 1} νF (dx) < ∞, showing that νF is a Lévy measure and hence ΨF

a Bernstein function. �

We always assume that F in the definition of H lies in F, and it is convenient to
study the law of H in terms of the function

ℓ(~t) := − log
(

E

[

e−
∑

k≥1 Htk

])

, ~t ∈ [0,∞)N00.

Furthermore, the Laplace exponent of the infinitely divisible random variable H1

is denoted by ΨH in the sequel, i.e.

ΨH(x) := − log
(

E

[

e−xH1

])

, x ≥ 0.

Lemma 2.3 (Stable tail dependence function associated with H). Let F ∈ F and
L be a driftless, non-zero Lévy subordinator. Then

ℓ(~t) =

∫

(0,∞]

∫ ∞

0

(

1−
∏

k≥1

F
( s

tk

)y
)

ds νL(dy), ~t ∈ [0,∞)N00.

Furthermore, we have the following expressions for the Bernstein function ΨH ,
which indicate a duality between the parameters L and F :

ΨH(x) =

∫

(0,∞]

ΨF (x y) νL(dy) =

∫

(0,∞]

ΨL(x y) νF (dy)

=

∫

(0,∞]

ΨL

(

− log{F (u)x}
)

du.
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Proof : Writing out the Riemann–Stieltjes definition of H, introducing for N ∈ N

and R ≫ 1 the notation

s
(R)
n,N :=

1

R
+

n
(
R− 1

R

)

N
, n = 0, . . . , N,

we have

Ht = lim
R→∞

∫ R

1
R

− log
{

F
(s

t
−
)}

dLs

= lim
R→∞

lim
N→∞

N∑

n=1

− log
{

F
(s

(R)
n−1,N

t
−

)} (
L
s
(R)
n,N

− L
s
(R)
n−1,N

)
.

Using the bounded convergence theorem in (∗) and the stationary and independent
increment property of L in (∗∗) implies

E

[

e−
∑d

k=1 Htk

]

= E

[

exp
{

− lim
R→∞

lim
N→∞

N∑

n=1

(
L
s
(R)
n,N

− L
s
(R)
n−1,N

)
d∑

k=1

− log
[

F
(s

(R)
n−1,N

tk
−
)]}]

(∗)
= lim

R→∞
lim

N→∞
E

[

exp
{

−
N∑

n=1

(
L
s
(R)
n,N

− L
s
(R)
n−1,N

)
d∑

k=1

− log
[

F
(s

(R)
n−1,N

tk
−
)]}]

(∗∗)
= lim

R→∞
lim

N→∞

N∏

n=1

E

[

exp
{

− LR− 1
R

N

d∑

k=1

− log
[

F
(s

(R)
n−1,N

tk
−
)]}]

= lim
R→∞

lim
N→∞

N∏

n=1

exp
{

− R− 1
R

N

∫

(0,∞]

(

1−
d∏

k=1

F
(s

(R)
n−1,N

tk
−

)u)

νL(du)
}

= lim
R→∞

exp
{

−
∫ R

1
R

∫

(0,∞]

(

1−
d∏

k=1

F
( s

tk
−
)u)

νL(du) ds
}

= exp
{

−
∫ ∞

0

∫

(0,∞]

(

1−
d∏

k=1

F
( s

tk
−

)u)

νL(du) ds
}

.

The order of the two remaining integrations can be switched by Tonelli’s Theorem.
When integrating with respect to ds, it is further possible to change from F (s−)
to F (s), since the at most countably many jump times of F play no role in the
integration.

By a completely analogous computation we obtain the equality

ΨH(x) =

∫

(0,∞]

ΨF (x y) νL(dy). (2.3)

Alternatively, (2.3) also follows for x ∈ N from the formula for ℓ in the special
case t1 = . . . = tx = 1 (and all other entries of ~t equal to zero) and for general
x ≥ 0 by the facts that (i) the right-hand side of (2.3) defines a Bernstein function
by Schilling et al. (2010, Corollary 3.7) and (ii) a Bernstein function is uniquely
determined by its values on N, see Gnedin and Pitman (2008, p. 36). That the roles
of L and F can be switched in (2.3) is an obvious consequence of Tonelli’s Theorem.
The last claimed representation is a consequence of the change of measure in the
proof of Lemma 2.2. �
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We view ℓ as a mapping from the set [0,∞)N00 of sequences which are eventually
zero to [0,∞]. The substitution u = s/r shows that ℓ is homogeneous of order one,
that is ℓ(r ·~t) = r ℓ(~t) for r ≥ 0 and ~t ∈ [0,∞)N00. The mapping ℓ specifies the law of
H uniquely, i.e. its finite-dimensional distributions. This is due to the fact that the
law of the random vector (Ht1 , . . . , Htd) is uniquely determined by the values of its
multivariate Laplace transform on N

d, which follows from the Stone–Weierstrass
Theorem (polynomials are dense in the space of continuous functions on [0, 1]d).
Consequently, the mapping ℓ, which in turn by Lemma 2.3 is specified by F and
νL, is a convenient analytical description for the law of H.

The condition E[X] > 0 in the definition of F implies F (0) < 1, which results in
limt→∞ Ht = ∞ a.s.. The condition E[X] < ∞ in the definition of F is necessary
(but needs not be sufficient) to have P(Ht < ∞) > 0 for t > 0, i.e. necessary for
admissibility. In order to explain this, Lemma 2.2 implies in particular that the
integral

∫∞

0
1 − F (s)x ds is finite for all x > 0 if and only if it is finite for a single

fixed x > 0. Now P(Ht < ∞) > 0 is equivalent to ℓ(t, 0, 0, . . .) < ∞ and from
Lemma 2.3 we see that this necessarily requires

∫∞

0
1 − F (s)y ds to be finite for

those y on which νL(dy) puts mass, which must be somewhere by the assumption
νL 6= 0. Hence, in particular E[X] =

∫∞

0
1− F (s) ds < ∞.

While the condition E[X] < ∞ in the definition of F is necessary to prevent
the non-interesting case Ht = ∞ · 1{t>0}, we have claimed that this needs not be
sufficient but depends on the specific choice of L and F . To this end, we introduce
the set

FL :=
{

F ∈ F : ΨH(1) =

∫

(0,∞]

ΨF (y) νL(dy) < ∞
}

of L-admissible distribution functions.

Lemma 2.4 (Admissibility). The following statements are equivalent.

(a) (F,L) is admissible, i.e. P(Ht < ∞) > 0 for some (hence all) t > 0.
(b) F ∈ FL, i.e. ΨH(1) < ∞.
(c) ℓ(~t) < ∞ for arbitrary ~t ∈ [0,∞)N00.

Proof : The equivalence of (a) and (b) is obvious, as well as the fact that (c) implies
(a) and (b). The only non-obvious statement is that admissibility in (a) implies
(c). Denote the biggest argument of ~t by t[d] := max{t1, t2, . . .} and d := max{n ∈
N : tn > 0}. We compute

ℓ(~t) ≤
∫

(0,∞]

∫ ∞

0

(

1− F
( s

t[d]

)d y
)

ds νL(dy)

= t[d]

∫

(0,∞]

ΨF (d y) νL(dy) ≤ t[d] d

∫

(0,∞]

ΨF (y) νL(dy)
(∗)
< ∞,

where (∗) follows from (L-)admissibility and the above inequality from the estimate
g(d y) ≤ d g(y), which holds for any concave function g on [0,∞) with g(0) = 0 and
d ∈ N, such as g = ΨF . To see this, for d ∈ N, concavity and g(0) = 0 imply that

d g(y) = d g
(d− 1

d
· 0 + 1

d
d y

)

≥ d
(d− 1

d
g(0) +

1

d
g(d y)

)

= g(d y).

�

Remark 2.5 (νL non-finite ⇒ νF ({∞}) = 0). If (F,L) is admissible and νL is
non-finite, then necessarily νF ({∞}) = 0, which is briefly explained. Since νL is
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non-finite, we have ΨL(∞) := limx→∞ ΨL(x) = ∞. Admissibility implies with the
help of Lemma 2.3 that

∞ > ΨH(1) =

∫

(0,∞]

ΨL(y) νF (dy) ≥ ΨL(∞) νF ({∞}) = ∞ νF ({∞}),

thus necessarily νF ({∞}) = 0.

Lemma 2.6 (Simple admissibility criteria).

(a) Let F ∈ F and L a non-zero Lévy subordinator without drift. If ΨF is con-

tinuous at zero, bounded, and satisfies limx↓0 Ψ
′

F (x) < ∞, the pair (F,L)
is admissible, no matter how L is chosen.

(b) Let L be a (driftless) compound Poisson subordinator with intensity β > 0
and jump size distribution P(J ∈ dy), where J denotes a generic jump size
random variable on (0,∞]. Then

FL =
{

F ∈ F : E
[
ΨF (J)

]
< ∞

}

.

In particular, if E[J ] < ∞ we have FL = F.

Proof :

(a) By the assumptions on ΨF there exists c > 0 such that ΨF (x) ≤ c min{x, 1}
for all x ≥ 0. We thus observe

ΨH(1) =

∫

(0,∞]

ΨF (x) νL(dx) ≤ c

∫

(0,∞]

min{x, 1} νL(dx) < ∞.

(b) The claim follows from νL(dy) = β P(J ∈ dy) and the fact that ΨF (x) ≤
xΨF (1) for x ≥ 1 by concavity of ΨF .

�

2.2. Distributional properties. Lemma 2.7 derives an alternative stochastic repre-
sentation of the process {Ht}t≥0. This representation constitutes a particular spe-
cial case of Kopp and Molchanov (2018, Theorem 4.2). To this end, recall from
Lemma 2.4 that for an admissible pair (F,L) the measure ΨF (z) νL(dz)/ΨH(1)
defines a probability measure on (0,∞].

Lemma 2.7 (LePage series representation). Let (F,L) be an admissible pair, i.e.
F ∈ FL. Let {Zk}k≥1 be an iid sequence drawn from the probability measure
ΨF (z)
ΨH(1) νL(dz). Independently, let {ǫk}k≥1 be an iid sequence of unit exponential

random variables. We then have the following equality in distribution:

{Ht}t≥0
d
=

{

−
∑

k≥1

log
[

F
( (ǫ1 + . . .+ ǫk)ΨF (Zk)

tΨH(1)
−
)Zk

]}

t≥0
.

Proof : Denoting by δ(x,z) the Dirac measure at a point (x, z) in the plane, we
note that P :=

∑

k≥1 δ(ǫ1+...+ǫk,Zk) is a Poisson random measure on [0,∞)× (0,∞]

with mean measure dx×
(ΨF (z)
ΨH(1) νL(dz)

)
by Resnick (1987, Proposition 3.8). Con-

sequently, denoting the stochastic process on the right-hand side of the claim by
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{H̃t}t≥0, the Laplace functional formula for Poisson random measure Resnick (1987,
Proposition 3.6) yields

E

[

e−
∑

j≥1 H̃tj

]

= exp
(

−
∫

(0,∞]

∫ ∞

0

(

1−
∏

j≥1

F
( x

tj
−
)z)

dx νL(dz)
)

= e−ℓ(~t) = E

[

e−
∑

j≥1 Htj

]

for arbitrary ~t ∈ [0,∞)N00, establishing the claim. �

Example 2.8 (The special case of a Lévy subordinator). Suppose that F (x) =
exp(−1) + (1− exp(−1))1[1,∞)(x) is the cdf of a Bernoulli distribution with asso-
ciated Bernstein function

ΨF (x) =

∫ ∞

0

1− F (s)x ds = 1− e−x, x ≥ 0.

An arbitrary (driftless) Lévy subordinator L leads to an admissible pair (F,L) by
Lemma 2.6 and obviously we have H = L. So Lemma 2.7 provides an infinite series
representation for an arbitrary Lévy subordinator L, namely

{Lt}t≥0 =
{∑

k≥1

Zk 1{
(ǫ1+...+ǫk)

1−e−Zk

ΨL(1)
≤t
}

}

t≥0
. (2.4)

In the special case when L = N is a standard (unit intensity) Poisson process, this
formula boils down to the well-known counting process representation

{Nt}t≥0 =
{∑

k≥1

1{ǫ1+...+ǫk≤t}

}

t≥0
. (2.5)

Representation (2.4) is a quite natural generalization of (2.5), and by Lemma 2.7
it is general enough to comprise all Lévy subordinators. In particular, it is worth
mentioning that the probability law of the Zk is (1−exp(−z)) νL(dz)/ΨL(1), which
can be any probability law on (0,∞]. This means that, conversely, if ρ is an
arbitrary probability law on (0,∞] and {Zk}k≥1 is an iid sequence drawn from ρ,
(2.4) defines a Lévy subordinator L without drift and with associated Lévy measure
νL(dz) = (1− exp(−z))−1 ρ(dz).

Remark 2.9 (Series representation for ID[0,∞]). Example 2.8 shows that Lemma
2.7 provides a series representation for infinitely divisible laws on [0,∞] (abbreviated
ID[0,∞] in the sequel), namely

L1
d
=

∑

k≥1

Zk 1{
(ǫ1+...+ǫk)

(
1−e−Zk

)
≤ΨL(1)

},

where {Zk}k≥1 is an iid sequence distributed according to the probability measure
(1− e−z) νL(dz)/ΨL(1), independent of {ǫk}k≥1. This representation is always an
infinite series, even when L1 has a compound Poisson distribution.

Recall that an element of ID[0,∞] is of compound Poisson type if its associated
Bernstein function Ψ is bounded, i.e. limx→∞ Ψ(x) < ∞.

Lemma 2.10 (When does Ht have a compound Poisson distribution?). Let (F,L)
be admissible. The Bernstein function ΨH is bounded if and only if the following
two conditions are satisfied:

(a) ΨL is bounded, i.e. L is a compound Poisson subordinator.
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(b) ΨF is bounded, i.e. the random variable X ∼ F has bounded support.

Proof : Recall from Lemma 2.3 that ΨH may be represented as

ΨH(x) =

∫ ∞

0

ΨL

(

− log
(
F (s)x

))

ds. (2.6)

The sufficiency of the conditions (a) and (b) is clear from this representation, since
ΨL is bounded and the improper integral

∫∞

0
[. . .] ds is actually a finite integral

∫ uF

0
[. . .] ds, where uF is the right-end point of the support of dF . Necessity is more

difficult to observe. To this end, assume that ΨL is unbounded. There is an ǫ > 0
and a δ > 0 such that f(z) := − log(F (z)) > δ for z ∈ (0, ǫ) by the condition
E[X] > 0 in the definition of F. Consequently,

ΨH(x) ≥
∫ ǫ

0

ΨL(x δ) ds = ΨL(x δ) ǫ

is obviously unbounded. Hence, we already see that ΨL needs to be bounded. In
this case, L is of compound Poisson type, i.e. there is a Laplace transform ϕ of a
positive random variable on (0,∞] and a number β > 0 such that ΨL = β (1− ϕ).
Consequently, we observe from (2.6) that

ΨH(x) = β

∫ ∞

0

(

1− ϕ
(
x f(s)

))

ds.

By assumption, we know that ΨH is bounded, so we see with the help of Fatou’s
Lemma that

∞ > lim
x→∞

ΨH(x) = lim
x→∞

β

∫ ∞

0

(

1− ϕ
(
x f(s)

))

ds

≥ β

∫ ∞

0

(

1− lim inf
x→∞

ϕ
(
x f(s)

))

ds.

But ϕ tends to zero as u → ∞, since it is the Laplace transform of a positive
random variable. Consequently, the assumption f(z) > 0 for arbitrarily large z > 0
leads to the contradiction ∞ > ∞. Rather, we must have that f(z) = 0 for z ≥ T
with some finite T , which turns the last inequality into

∞ > β

∫ T

0

1 ds = β T,

and is not a contradiction. �

Recall that an element of ID[0,∞] is said to have killing, if it assigns positive
mass to {∞}, which is the case if and only if its associated Lévy measure ν satisfies
ν({∞}) > 0. In terms of the associated Bernstein function Ψ, this means Ψ(x) >
ǫ > 0 for all positive x > 0. In this case, we also say that the Bernstein function Ψ
has killing.

Lemma 2.11 (When does Ht have a positive killing rate?). Let (F,L) be admis-
sible. The Bernstein function ΨH has killing if and only if at least one of the
following two conditions is satisfied:

(a) ΨF has killing, i.e. the left end point of the support of X ∼ F is strictly
positive.

(b) ΨL has killing, i.e. νL({∞}) > 0.

In this case, if ΨF (resp. ΨL) has killing, then necessarily νL (resp. νF ) is finite.
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Proof : Sufficiency of the conditions (a) and (b): By Lemma 2.2, ΨF has killing if
and only if the left-end point of the support of X ∼ F is strictly positive. In this
case, ΨF (x) > ǫ > 0 for all x > 0 and one immediately observes from (2.3) that
H has killing in this case (since L, hence νL, is non-zero by assumption) and νL is
finite. Also, if ΨL has killing, ΨH(x) > ǫ > 0 from Lemma 2.3 for all x > 0, hence
H has killing and νF is finite.

Necessity of the conditions (a) and (b): Assume that neither (a) nor (b) holds.
Equation (2.3) can be re-written as

ΨH(x) =

∫

(0,∞]

∫

(0,∞]

(
1− e−xu s

)
νF (ds) νL(du)

=

∫

(0,∞)

∫

(0,∞)

(
1− e−xu s

)
νF (ds) νL(du),

where the last equality follows from the assumptions that νL({∞}) = νF ({∞}) = 0.
Taking the limit as x ց 0 on both sides of this equation, and using the bounded
convergence theorem, it follows that limxց0 ΨH(x) = 0, so H has no killing. �

Since we are only interested in a description of the probability law of H = H(F,L),
it is helpful to briefly ponder on potential redundancies, i.e. to investigate the ques-
tion: When do two different pairs (F,L) 6= (F̃ , L̃) lead to exactly the same proba-
bility law of the associated processes H? To address this issue in a mathematically
rigorous manner, we introduce the equivalence relation

(F,L) ∼ (F̃ , L̃) :⇔ the law of H(F,L) equals that of H(F̃ ,L̃).

The equivalence class of an admissible pair (F,L) is denoted by [F,L], or also by
[F,ΨL], in the following. Unfortunately, we did not accomplish to find a convenient
analytical description of the equivalence class [F,L] in general, so this remains an
interesting open problem. It is not difficult, however, to see that for an admissible
pair (F,L) the equivalence class [F (c1 .)

c2 , c1 ΨL(./c2)] is invariant with respect to
c1, c2 > 0. Depending on the admissible pair, however, there can be even more
redundancies, and the following example demonstrates this quite extremely.

Example 2.12 (The curious case F = Fréchet distribution). With a parameter
θ ∈ (0, 1) and cθ := Γ(1−θ)−1/θ consider the Fréchet distribution function F (x) :=
exp(−cθ x

−1/θ)1{x>0} and observe that ΨF (x) = xθ. For arbitrary y > 0 it is not
difficult to compute

∫ ∞

0

(

1−
∏

k≥1

F
( s

tk

)y)

ds = yθ
(∑

k≥1

t
1
θ

k

)θ

, ~t ∈ [0,∞)N00.

Let L be a Lévy subordinator (without drift) and such that F ∈ FL, i.e. such that
ΨH(1) =

∫

(0,∞]
yθ νL(dy) < ∞. It follows that

ℓ(~t) =

∫

(0,∞]

yθ νL(dy)
(∑

k≥1

t
1
θ

k

)θ

= ΨH(1)
(∑

k≥1

t
1
θ

k

)θ

.

Consequently, the function ℓ, hence the law of H, depends on the choice of L only
via the scalar ΨH(1). In particular, we have

[F,ΨL] =
{

(F, L̃) : c =

∫

(0,∞]

yθ νL̃(dy) < ∞
}
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for arbitrary L satisfying c =
∫

(0,∞]
yθ νL(dy) < ∞, so in order to study the proba-

bility law of H (up to a scaling constant c) it is sufficient to choose one particular
such L. Choosing L = N , i.e. a standard Poisson process, we know from Mai (2018)

that {Ht}t≥0
d
= {Mθ t

1/θ}t≥0 with a θ-stable random variable Mθ. In contrast to
Lévy subordinators, which have independent increments, this stochastic process
looks peculiar at first glimpse. The whole path of the process is already known if
one just observes Ht for one t > 0. This phenomenon is studied in more detail in
Section 2.3.

2.3. The natural filtration of H. We investigate the amount of information one
can obtain by observing the process H up to some time t > 0. We define by
FH

t = σ(Hs : 0 ≤ s ≤ t) the information from observing H up to time t > 0,
similarly we define and interpret FL

t . We have already seen in Example 2.12 that
{FH

t }t≥0 can be a quite trivial filtration. Here is a second motivating example with
the same phenomenon, although significantly more difficult to see.

Example 2.13 (The case L = N and F (x) = 1− exp(−x)). Let L = N be a Poisson
process with unit intensity, whose sequence of consecutive jump times we denote by
{τk}k≥1, and F the distribution function of the unit exponential law. In particular,
dF has unbounded support. One can show that FH

t = FH
∞ for all t > 0. In words,

this means that the whole path of H is determined completely by the path on [0, t]
for arbitrarily small t > 0. To see this, we show that the function

z 7→ Hz =
∑

k≥1

− log
(

1− e−
τk
z

)

is almost surely holomorphic on C+ := {z ∈ C : R(z) > 0}. Since holomorphic
functions on C+ are determined everywhere, once they are determined on a small
real interval, such as (0, t) ⊂ C+ for t > 0, the claim follows. Why is z 7→ Hz

holomorphic? Using Gilman et al. (2007, Theorem 7.2, p. 124), it is sufficient to
prove that the defining series of Hz converges uniformly on all compact subsets of
C+. Each compact subset of C+ is contained within a set of the form {z ∈ C+ :
ǫ ≤ |z| ≤ c, R(z) ≥ ǫ} for some constants ∞ > c > ǫ > 0. On this set, we have for
arbitrary real x > 0 that

∣
∣
∣e−

x
z

∣
∣
∣ = e

−
xR(z)

|z|2 ≤ e−
x ǫ

c2 . (2.7)

Furthermore, the law of the iterated logarithm implies that (a.s.)

lim inf
k→∞

τk − k
√

2 k log(log(k))
= −1.

Consequently, we obtain for almost all k ∈ N the estimate

τk = k +
√

2 k log(log(k))
τk − k

√

2 k log(log(k))
≥ k −

√

2 k log(log(k)) (1 + ǫ) ≥ k/2.

(2.8)
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These estimates, together with the identity − log(1 − x) =
∑

m≥1 x
m/m for real

x ∈ [0, 1), imply for n large enough that

∣
∣
∣

∑

k≥n

− log
(

1− e−
τk
z

)∣
∣
∣ ≤

∑

k≥n

∑

m≥1

1

m

∣
∣
∣e−

τk m

z

∣
∣
∣

(2.7)

≤
∑

k≥n

∑

m≥1

1

m
e−

τk m ǫ

c2

(2.8)

≤
∑

k≥n

∑

m≥1

1

m
e−

k m ǫ

2 c2 =
∑

m≥1

1

m

e−
nmǫ

2 c2

1− e−
mǫ

2 c2

≤ 1

1− e−
ǫ

2 c2

e−
n ǫ

2 c2

1− e−
n ǫ

2 c2
.

Since the last expression tends to zero as n → ∞, uniform convergence of the
defining series on all compact subsets of C+ is shown.

The observation in Examples 2.12 and 2.13 is a general rule, as the following
lemma shows.

Lemma 2.14 (Filtering out L from H). Let (F,L) be admissible. We denote by
uF = F−1(1) the right-end point of the support of dF . Then FH

t = FL
uF t for

arbitrary t ≥ 0. In particular, if uF = ∞ this implies for arbitrary t > 0 that

FH
t = FL

∞ = FH
∞.

Proof : We first assume that uF < ∞, which implies that the defining integral
representation (1.2) of H becomes the series representation

Ht =
∑

k:τk≤uF t

− log
(
F
(τk
t
−
))
Jk, (2.9)

where τ1 < τ2 < . . . denote the at most countably many jump times of L in (0, uF t)
with respective jump sizes J1, J2, . . ..

The inclusion FH
t ⊂ FL

uF t is immediate from (2.9).

The inclusion FH
t ⊃ FL

uF t requires us to recover the jump times {τk} and jump
sizes {Jk} of L up to time uF t from observing the process H up to time t > 0.
This can be done inductively.

If Ht = 0, then τ1 > uF t and we are done. Else, we recover the first jump time
by τ1 := inf{s ∈ [0, t] : Hs > 0} as well as J1 = limǫց0 Hτ1+ǫ/− log

(
F
(

τ1
τ1+ǫ

))
.

If Ht = − log
(
F
(
τ1
t −

))
J1, then τ2 > uF t and we are done. Else, we recover

the second jump time by τ2 := inf{s ∈ (τ1, t] : Hs + log
(
F
(
τ1
s −

))
J1 > 0} as well

as

J2 = lim
ǫց0

Hτ2+ǫ + log
(
F
(

τ1
τ2+ǫ

))
J1

− log
(
F
(

τ2
τ2+ǫ

)) .

This procedure is repeated until either τn > uF t for some n ∈ N if L is of compound
Poisson type, or ad infinitum otherwise.

Before we prove the statement in the case uF = ∞, we collect some further useful
facts in the case uF < ∞. We decompose the increments of H into two parts. To
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this end, we observe for h > 0 using (1.3) that

Ht+h −Ht =

∫ uF

0

(
Ls (t+h) − LuF t + LuF t − Ls t

)
d
(
logF (s)

)

=

∫ uF

uF t

t+h

(
Ls (t+h) − LuF t

)
d
(
logF (s)

)
+

∫ uF t

t+h

0

(
Ls (t+h) − LuF t

)
d
(
logF (s)

)

+

∫ uF

0

(
LuF t − Ls t

)
d
(
logF (s)

)

=

∫ uF (t+h)

uF t

(
Lv − LuF t

)
d
(
logF (

v

t+ h
)
)

︸ ︷︷ ︸

positive random variable, independent of FL
uF t

+

∫ uF t

0

(
LuF t − Lv

)
d
(
log

F (v/t)

F (v/(t+ h))

)

︸ ︷︷ ︸

positive random variable, FL
uF t-measurable

=: X1 +X2.

We can continue to investigate X1 and X2 and find:

X1
d
=

∫ uF

0

Lx y d
(
logF (

h y + uF t

t+ h
)
)
= −

∫ uF

0

logF (
h y + uF t

h+ t
−) dLh y ≥ 0,

X2 =

∫ uF t

0

− logF (
v

t+ h
−) dLv −Ht ≥ 0. (2.10)

Now we prove the claim assuming uF = ∞. We fix t, h > 0 and approximate F ∈ F

by the sequence of distribution functions Fn(x) := 1{x≥n}+1{x<n} F (x), for n ∈ N,
and observe that

H
(n)
t := H

(Fn,L)
t =

∫ n

0

− logF (s/t−) dLs −→ Ht = H
(F,L)
t for n → ∞.

This, in turn, implies that H
(n)
t+h −H

(n)
t −→ Ht+h −Ht for n → ∞ (almost surely).

As shown above, the random variable H
(n)
t+h − H

(n)
t equals the sum of X

(n)
2 that

is measurable with respect to FH(n)

t , and another part X
(n)
1 which is independent

thereof. We observe further from (2.10) that

X
(n)
2 =

∫ ∞

0

− logFn

( v

t+ h
−
)

1{v<uFn t} dLv −Ht.

Since Fn converges in a monotonically decreasing manner to F , the integrand in the
last expression converges in a monotonically increasing fashion to − logF (v/(t +
h)−). Thus, the monotone convergence theorem, applied pathwise, shows that

X
(n)
2 converges almost surely to Ht+h − Ht. Consequently, X

(n)
1 tends to zero

almost surely as n → ∞. Since X
(n)
2 is measurable with respect to FH(n)

t for all
n, we conclude that Ht+h − Ht is measurable with respect to FH

t , finishing the
argument. �

Example 2.15 (The case − logF (x) = (1− x)+). The resulting process H is called
Holmgren–Liouville convoluted subordinator in Bender and Marquardt (2009) and
has also been studied in Bernhart et al. (2015). Investing it in the present context
(note that uF = 1), we find for X1, X2 defined as in the proof of Lemma 2.14 above
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that

Ψ1(α) := − log
(

E

[

e−αX1

])

= h

∫ 1

0

ΨL

(
α(1− h y + t

h+ t
)
)
dy

= h

∫ 1

0

ΨL

(
α(1− y)

h

h+ t

)
dy = hΨH

(

α
h

h+ t

)

,

X2 =
h

h+ t

(
Lt −Ht

)
.

The function Ψ1 tends to zero as t increases to infinity, provided ΨL has no killing.
This is intuitive in the sense that the larger t, the more we know about the increment
Ht+h −Ht for fixed h > 0.

Example 2.16 (The case F (x) = exp(−cθ x
−1/θ)). Let Mθ be a positive random

variable with Laplace transform x 7→ exp(−xθ), θ ∈ (0, 1), then the associated
strong IDT process is given as Ht = Mθ t

1/θ, see Example 2.12. This is a peculiar
stochastic process, as observing it at only one fixed t > 0 corresponds to knowing
it everywhere. We have furthermore seen in Example 2.12 that the choice of the
Lévy subordinator L is arbitrary, provided admissibility. In particular, we are free
to choose a compound Poisson process with unit intensity and unit exponentially
distributed jumps, i.e. ΨL(x) = x/(x + 1), which is a convenient choice for the
following considerations. We truncate F via Fn(x) := 1{x≥n} +1{x<n} F (x) like in
the proof of Lemma 2.14. Clearly, we then have uFn

= n < ∞ and Fn converges to

F pointwise. We find for X
(n)
1 , X

(n)
2 as defined in the proof of Lemma 2.14 that

− log
(

E

[

e−αX
(n)
1

])

= h

∫ n

0

cθ (h+ t)1/θ

cθ (h+ t)1/θ + (h y + n t)1/θ
dy −→ 0, (n → ∞),

X
(n)
2 = cθ

(
(t+ h)1/θ − t1/θ

)
∫ n t

0

v−1/θ dLv −→ Ht+h −Ht, (n → ∞),

both observations confirming our knowledge about Ht from Lemma 2.14.

3. Application 1: Simulation of extreme-value copulas

Throughout this section, we fix one admissible pair (F,L). The fact that ℓ in
Lemma 2.3 is homogeneous of order 1 implies by virtue of Mai and Scherer (2014,
Theorem 5.3) that the infinite exchangeable sequence of random variables

Yk := inf{t > 0 : Ht > ǫk}, k ∈ N, (3.1)

with {ǫk}k∈N independent unit exponentials, independent of H, is min-stable mul-
tivariate exponential with survival function given by

P(Y1 > t1, Y2 > t2, . . .) = e−ℓ(~t), ~t ∈ [0,∞)N00.

This means that min{Y1/t1, Y2/t2, . . .} has a univariate exponential distribution
with rate ℓ(~t), not all tk equal to zero. The exponential rate of each component Yk

equals ΨH(1) and it is convenient to normalize it to ΨH(1) = 1, which then implies
that the d-variate function ℓd(t1, . . . , td) := ℓ(t1, . . . , td, 0, 0, . . .) defines a so-called
stable tail dependence function in dimension d. If for (F,L) the law of H = H(F,L)

does not satisfy ΨH(1) = 1, we can always change from F to F (c .) for some c > 0
such that H(F (c .),L) has this property. This c is even unique, i.e. for any given
(F,L) there is a unique c > 0 such that H(F (c .),L) satisfies ΨH(1) = 1. Given this
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normalization, the function Cd(u1, . . . , ud) := exp
{
−ℓd

(
−log(u1), . . . ,− log(ud)

)}
,

u1, . . . , ud ∈ (0, 1), defines a so-called extreme-value copula. For background on the
latter, the reader is referred to Joe (1997); Nelsen (2006); Gudendorf and Segers
(2010). Loosely speaking, extreme-value copulas are the dependence structures be-
hind the limit of appropriately normalized componentwise maxima of independent
and identically distributed random vectors, which is of paramount interest in mul-
tivariate extreme-value theory. The relationship between strong IDT processes and
multivariate extreme-value theory has already been investigated in the present au-
thors’ references Mai and Scherer (2014); Bernhart et al. (2015); Mai (2018, 2019).
On one hand, the stochastic model (3.1) can directly be used to simulate the ran-
dom vector U := exp(−Y) ∼ Cd, where Y = (Y1, . . . , Yd). However, due to the
in general inconvenient integral definition of H in (1.2), the infinite series repre-
sentation of H in Lemma 2.7, and the fact that the increments of H are typically
not independent, this is a non-trivial task in general, although feasible in particular
cases, an example with L being a Poisson process and support of dF bounded is
provided in Mai (2018, Section 3.1). However, there is an alternative approach to
accomplish the simulation in the general case, as described in the remainder of this
section.

It is well-known from de Haan and Resnick (1977); Ressel (2013) that the stable
tail-dependence function ℓd is uniquely associated with a probability measure on
the unit simplex Sd := {(q1, . . . , qd) ∈ [0, 1]d : q1 + . . . + qd = 1} subject to the
constraint that each component has expected value 1/d. To wit, there exists a
random vector Q = (Q1, . . . , Qd), uniquely determined in law, taking values in Sd

and satisfying E[Qk] = 1/d for each k = 1, . . . , d, such that

ℓd(t1, . . . , td) = dE[max{t1 Q1, . . . , td Qd}], t1, . . . , td ≥ 0, (3.2)

which is called the Pickands representation of ℓd, named after Pickands III (1981).
It is important to notice that Q = Q[d] depends on the dimension d. In particular,
in our situation where d is arbitrary the first d components of Q[d+1] are not equal
in distribution to Q[d], not even when re-scaled. In order to simplify notation,
however, we omit to highlight this dependence on d for the rest of this section.

The simulation algorithm in Dombry et al. (2016, Algorithm 1), based on a
seminal idea by Schlather (2002), shows how to simulate a random vector U =
exp(−Y) ∼ Cd exactly and efficiently, if one has at hand a simulation algorithm
for the vector Q. More precisely, it is shown that

Y
d
=

( 1

Z
(K)
1

, . . . ,
1

Z
(K)
d

)

, (3.3)

(
Z

(n)
1 , . . . , Z

(n)
d

) d
=

(

max
k=1,...,n

{ dQ
(k)
1

ǫ1 + . . .+ ǫk

}

, . . . , max
k=1,...,n

{ dQ
(k)
d

ǫ1 + . . .+ ǫk

})

, n ≥ 1,

where {Q(k)}k≥1 denote independent copies of Q, independently of {ǫk}k≥1 iid
unit exponentials, and K equals the smallest n ∈ N for which d/(ǫ1 + . . .+ ǫn+1) is

smaller than the minimal component of
(
Z

(n)
1 , . . . , Z

(n)
d

)
. Thus, deriving an efficient

and exact simulation algorithm for Q is essentially the key to deriving an efficient
and exact simulation algorithm for the extreme-value copula Cd along the model
(3.3). The purpose of the present section is to demonstrate how this is possible.
Concluding, one concrete application of the stochastic processes considered in the
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present article is to enlarge the repertoire of extreme-value copulas for which exact
and efficient simulation strategies are available.

3.1. The Pickands representation of ℓd. We assume that ΨH(1) = 1 so that ℓd is a
proper stable tail dependence function. This condition implies that

∫

(0,∞]

ΨF (z) νL(dz) = 1,

so that ΨF (z) νL(dz) is a probability measure on (0,∞]. Notice that this probability
measure has already been important in Lemma 2.7. In the sequel, we show that
it also occupies a commanding role when determining the Pickands representation
of ℓd. Denoting by Z a generic random variable drawn from this probability law,
observe that

ℓd(t1, . . . , td) =

∫

(0,∞]

∫∫

[0,∞)d
max{t1 x1, . . . , td xd}

d∏

i=1

dF y(xi) νL(dy)

= E

[

1

ΨF (Z)

∫∫

[0,∞)d
max{t1 x1, . . . , td xd}

d∏

i=1

dFZ(xi)

]

= dE

[
∫∫

[0,∞)d
max

i=1,...,d

{

ti
xi

∑d
k=1 xk

} 1

d

d∑

k=1

xk dF
Z(xk)

ΨF (Z)

d∏

i 6=k

dFZ(xk)

]

.

The important observation from this computation is that the vector

(q1, . . . , qd) :=
( x1
∑d

k=1 xk

, . . . ,
xd

∑d
k=1 xk

)

takes values in Sd and, conditioned on Z, the measure

1

d

d∑

k=1

xk dF
Z(xk)

ΨF (Z)

d∏

i 6=k

dFZ(xk)

is a probability measure on [0,∞)d. To see this, notice that conditioned on Z, the

measure x dFZ(x)
ΨF (Z) is a probability measure on [0,∞), since

∫

[0,∞)

x dFZ(x)

ΨF (Z)
=

∫∞

0
1− F (s)Z ds

ΨF (Z)
= 1.

Consequently, we have found the unique Pickands dependence measure, as summa-
rized in the following lemma.

Lemma 3.1 (Pickands representation of ℓd). A random sample of Q, which is
uniquely determined in law by (3.2), can be drawn according to the following algo-
rithm:

• Draw D uniformly distributed on {1, . . . , d}.
• Draw a sample of the random variable Z ∼ ΨF (z) νL(dz).
• Draw d independent and identically distributed random variables X1, . . . , Xd

from the distribution function FZ .
• Draw a random variable M from the probability law x dFZ(x)/ΨF (Z).
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• Compute the random vector (W1, . . . ,Wd), defined by

Wk :=

{

Xk , if k = D

M , else
.

• Return

Q :=
( W1
∑d

k=1 Wk

, . . . ,
Wd

∑d
k=1 Wk

)

.

Remark 3.2 (Expected runtime of the algorithm in Lemma 3.1). When using the
stochastic representation (3.3) together with Lemma 3.1 to simulate the extreme-
value copula Cd, the runtime of the simulation algorithm is random itself. However,
Dombry et al. (2016, Proposition 4) shows that the expected value of K in (3.3)
equals dE[max{Y1, . . . , Yd}], which in the present situation can be computed in
closed form by

E[K] = dE[max{Y1, . . . , Yd}] = dE
[ ∫ ∞

0

(

1−
(
1− e−Ht

)d
)

dt
]

= −d

d∑

k=1

(
d

k

)

(−1)k
∫ ∞

0

E

[

e−kHt

]

dt = −d

d∑

k=1

(
d

k

)

(−1)k
∫ ∞

0

e−tΨH(k) dt

= −d
d∑

k=1

(
d

k

)
(−1)k

ΨH(k)
≤ d2.

The last estimate follows from the estimate

E

[ ∫ ∞

0

(

1−
(
1− e−Ht

)d
)

dt
]

= E
[
Ψ1−e−H (d)

]
≤ E[Ψ1−e−H (1)]

︸ ︷︷ ︸

=1 by normalization

d,

where the inequality follows from the argument in the proof of Lemma 2.4. Since the
simulation of Q in Lemma 3.1 itself is apparently of linear order in the dimension
d, the total expected runtime for the exact simulation of the extreme-value copula
Cd according to the representation (3.3) with the help of Lemma 3.1 has expected
order between d2 and d3 and can be computed explicitly in terms of the Bernstein
function ΨH .

In the sequel, we work out some concrete examples, demonstrating the versatility
of Lemma 3.1.

3.2. Examples.

Example 3.3 (The Lévy subordinator case). Consider the distribution function
F (x) = exp(−1) + (1− exp(−1))1[1,∞)(x) with associated Bernstein function

ΨF (x) = 1− e−x, x ≥ 0.

An arbitrary Lévy subordinator L leads to an admissible pair (F,L) and obviously
H = L. Furthermore, ΨH(1) = 1 is satisfied whenever ΨL(1) = 1. It is well-
known that Cd equals the survival copula of a so-called Marshall–Olkin distribution,
named after Marshall and Olkin (1967), for details see Mai and Scherer (2009,
2011). Furthermore, it is observed for z > 0 that a random variable X ∼ F z is
Bernoulli-distributed with success probability 1 − exp(−z). In order to simulate
from the Pickands measure, additionally required is also a simulation algorithm for
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M ∼ x dF z(x)/ΨF (z) with given z. With Xz a Bernoulli random variable with
success probability 1− exp(−z), it is observed that

P(M ≤ x) =

∫ x

0

s

ΨF (z)
dF z(s) =

1

1− e−z
E[1{Xz≤x} Xz] = 1{x≥1},

hence M ≡ 1. Summarizing, the random vector Q = (Q1, . . . , Qd) can be simulated
as follows:

• Draw a random variable D which is uniformly distributed on {1, . . . , d}.
• Draw the random variable Z ∼ (1− exp(−z)) νL(dz).
• Simulate X1, . . . , Xd iid Bernoulli variables with success probability 1 −

exp(−Z).
• Compute the random vector (W1, . . . ,Wd) as

Wk :=

{

Xk , if k 6= D

1 , if k = D
.

• Return Q, where Qk := Wk/
(∑d

i=1 Wi

)
, for k = 1, . . . , d.

To illustrate, we consider one particular Lévy subordinator, which is of interest in
the context of regenerative composition structures, see Gnedin and Pitman (2005,
Section 8). Define the Lévy measure by

νL(dx) =
e−θ x

(
1− e−x

)α+1

{

α e−x + θ
(

1− e−x
)} Γ(2 + θ − α)

Γ(θ + 1)Γ(1− α)
,

with θ ≥ 0 and 0 ≤ α < 1. Then

ΨL(x) = x
Γ(x+ θ) Γ(2 + θ − α)

Γ(1 + θ) Γ(x+ θ + 1− α)

and ΨL(1) = 1. The required probability distribution of Z has density

z 7→ e−z θ
(
1− e−z

)−α
{

α e−z + θ
(

1− e−z
)} Γ(2− α+ θ)

Γ(θ + 1)Γ(1− α)

= (1− α) gθ,2−α(z) + α gθ+1,1−α(z),

where gp,q denotes the density of − log(B) for B having a Beta distribution with pa-
rameters (p, q). Apparently, this mixture of transformed Beta distributions can be
simulated exactly and efficiently, making the simulation algorithm for (Y1, . . . , Yd)
feasible. Notice that this simulation of (Y1, . . . , Yd) implies an efficient alternative
simulation algorithm for the random variable Cd in Gnedin and Pitman (2005, Sec-
tion 8), as Cd is defined as the composition of the integer d obtained as the vector
of cardinalities of the subsets of {Y1, . . . , Yd} with identical elements.

Example 3.4 (The case L = N). In the special case when L = N is a standard
Poisson process, one observes that Z ≡ 1 and Lemma 3.1 boils down to a result in
Mai (2018, Lemma 4). It can thus be viewed as a generalization thereof.

Example 3.5 (The case F (x) = min{x, 1}). The stable tail dependence function ℓd
is studied in Bernhart et al. (2015, Theorem 2). However, no simulation algorithm
for Q has been found in that reference, a gap which we now fill. It is observed that

ΨF (y) =

∫ 1

0

(
1− sy

)
ds =

y

y + 1
, y ≥ 0,
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is the Bernstein function associated with a compound Poisson subordinator with
unit exponential jumps and unit intensity. Hence, any L leads to an admissible
pair (F,L) by Lemma 2.6. In order to ensure ΨH(1) = 1, νL must be normalized
such that

∫

(0,∞]
z/(z+1) νL(dz) = 1. For any fixed z > 0 the distribution function

F (x)z = min{xz, 1} is trivial to simulate from via the inversion method, see Mai
and Scherer (2017, p. 234). Furthermore, the distribution function of the random
variable M ∼ x dF z(x)/ΨF (z) is given by x 7→ min{xz+1, 1}, which is also easy to
simulate from by the inversion method. Consequently, the simulation algorithm in
Lemma 3.1 is straightforward to implement, whenever the Lévy subordinator L is
chosen such that the probability law of Z, that is

P(Z ∈ dz) =
z

z + 1
νL(dz),

can be simulated from.

Example 3.6 (The case F (x) = min{exp(x − 1), 1}). Recall from Example 2.15
that the resulting process H is the Holmgren–Liouville convoluted subordinator
considered in Bender and Marquardt (2009). The stable tail dependence function
ℓd is computed in closed form in Bernhart et al. (2015, Theorem 1). It is given by

ℓd(x1, . . . , xd)

=
dΨH(d)
∑d

j=1 x
−1
[j]

−
d−1∑

i=1

( d− i+ 1
∑d

j=i x
−1
[j]

− d− i
∑d

j=i+1 x
−1
[j]

)

ΨH

(
d− i−

d∑

j=i+1

x[i]

x[j]

)
,

where x[1] ≤ . . . ≤ x[d] is the ordered list of x1, . . . , xd. However, no simulation
algorithm for Q has been found in that reference, a gap which we now fill. It is
observed that

ΨF (y) =

∫ 1

0

(
1− ey s−y

)
ds = 1− 1− e−y

y
, y ≥ 0,

is the Bernstein function associated with a compound Poisson subordinator with
unit intensity and jumps that are uniformly distributed on [0, 1]. Hence, any L leads
to an admissible pair (F,L) by Lemma 2.6 and Bernhart et al. (2015, Lemma 3)
shows that the Bernstein function ΨH runs through all Bernstein functions with
non-increasing Lévy density when L is varied. In order to ensure ΨH(1) = 1, νL
must be normalized such that

∫

(0,∞]

(
1 − (1 − e−z)/z

)
νL(dz) = 1. For any fixed

z > 0 the distribution function F (x)z = min{exp(z x − z), 1} is easy to simulate
from via the inversion method. Furthermore, the density fM of the random variable
M ∼ x dF z(x)/ΨF (z) is computed to be

fM (x) =
z2 e−z

z + e−z − 1
x ex z 1(0,1)(x).

This density is bounded and rejection-acceptance sampling with comparison density
g(x) = 2x1(0,1)(x), which itself is easy to simulate via the inversion method, can
be implemented to achieve an exact simulation scheme of M , see Mai and Scherer
(2017, p. 235). Consequently, the simulation algorithm in Lemma 3.1 is straight-
forward to implement, whenever the Lévy subordinator L is chosen such that the
probability law of Z, that is

P(Z ∈ dz) =
(

1− 1− e−z

z

)

νL(dz),
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can be simulated from.

Figure 3.1 schematically visualizes those admissible pairs (F,L) for which either
former literature or the present article provides knowledge about the associated
extreme-value copula Cd, or about the probability distribution of H1.

L

F

Lévy: F (x) = e−1 +
(
1− e−1

)
1[1,∞)(x)

L = standard Gamma

F (x) = min{x, 1}

F (x) = exp(− exp(−x))

F (x) = min{exp(x− 1), 1}

Bondesson: L = compound Poisson, exp. jumps

L = standard Poisson process N

Gumbel: F (x) = exp
(
− cθ x

−1/θ
)

Galambos

Cuadras–Augé

F (x) = exp(−⌊1/x⌋)

F (x) = min{1, exp(1− 1/x)}

Figure 3.1. Illustration of pairs (F,L) occurring in previous lit-
erature or the present article. Vertical and horizontal lines of
the same greyscale and line-type combination are complementary
in the sense of the distributional equality (4.2). The Lévy case
is covered in Example 3.3 and the link to Marshall–Olkin cop-
ulas originates from Mai and Scherer (2009, 2011). The case
F (x) = min{x, 1} relates to Example 3.5, see Bernhart et al. (2015)
for details. The law of H1 in case F (x) = exp(− exp(−x)) is stud-
ied in Behme (2015, Proposition 3.5). The Holmgren–Liouville
convoluted subordinator in the case F (x) = min{exp(x − 1), 1}
relates to Example 3.6 and has been studied in Bender and Mar-
quardt (2009); James and Zhang (2011); Bernhart et al. (2015).
The Gumbel case is covered in Examples 2.12 and 2.16, see also Mai
(2018), the name stems from Gumbel (1960, 1961). The Galambos
and the Cuadras–Augé copulas are named after Galambos (1975)
and Cuadras and Augé (1981), respectively. The case of a stan-
dard Poisson process is discussed in Example 3.4 and Mai (2018).
The cases F (x) = exp(−⌊1/x⌋) or F (x) = min{1, exp(1 − 1/x)}
for L a standard Poisson process appear in Kopp and Molchanov
(2018, Example 5.1) or Kopp and Molchanov (2018, Example 4.6),
respectively. The Bondesson family relates to Lemma 4.2. The
probability law of H1 when L is a standard Gamma process is re-
lated to generalized Gamma convolutions and Dirichlet means, see
James et al. (2008).
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4. Application 2: Series representations for infinitely divisible laws

In this section we fix t = 1 and investigate the probability law of the random
variable H1, which is an element in ID[0,∞]. In particular, we are interested in se-
ries representations for H1 that are suitable for efficient random number generation.
We recall from Lemma 2.3 that the Laplace exponent of H1 equals

ΨH(x) =

∫

(0,∞]

∫

(0,∞]

(
1− e−x s u

)
νF (ds) νL(du), x ≥ 0. (4.1)

This double integral representation shows that the roles of F and L can be switched
without changing the one-dimensional marginal distribution of H1. More precisely,

∫ ∞

0

− log
(
F (s−)

)
dLs

d
=

∫ ∞

0

− log
(
F (L)(s−)

)
dL(F )

s , (4.2)

where for a given Lévy subordinator L the function F (L) ∈ F is uniquely determined
by the equality ΨF (L) = ΨL, and for a given F ∈ F the Lévy subordinator L(F ) is
uniquely determined in law by the equality ΨL(F ) = ΨF . Recall that the bijection
between the set of Lévy measures on (0,∞] and F is explicitly stated in Lemma 2.2.

The integral definition of H1 becomes an infinite series whenever the integrator L
is a (driftless) compound Poisson process, i.e. if ΨL is bounded. Switching the roles
of L and F according to the duality (4.2), we also obtain a series representation for
H1 if L(F ) is a (driftless) compound Poisson subordinator, i.e. if ΨF is bounded.

In the present section we are particularly interested in the case when L is a
compound Poisson subordinator with exponentially distributed jumps. However,
before we consider this case, we find it educational to briefly point out two choices
for L that imply a connection of the current article to previous literature. On the
one hand, if L is a standard Gamma process, i.e. ΨL(x) = log(1+x), the law of H1

runs through the Thorin class when F is varied, see James et al. (2008, Propositions
1.1 and 1.6). On the other hand, the upcoming example is due to Bondesson (1982)
and relates to the choice of a standard Poisson process for L.

Example 4.1 (Series representations for ID[0,∞] from duality). On the left-hand
side of (4.2) let F (x) = exp(−1) + (1 − exp(−1))1[1,∞)(x), such that ΨF (x) =

1 − exp(−x) and L(F ) = N is a Poisson process with unit intensity, whose unit
exponential inter-arrival times we denote by {ǫk}k≥1 and the associated jump times
are {τk}k≥1. Then (4.2) becomes

L1 =

∫ ∞

0

− log
(
F (s−)

)
dLs

d
=

∑

k≥1

S−1
νL

(ǫ1 + . . .+ ǫk
︸ ︷︷ ︸

τk

)1{ǫ1 + . . .+ ǫk
︸ ︷︷ ︸

τk

≤νL((0,∞])},

where SνL
(t) := νL

(
(t,∞]

)
is the survival function of the Lévy measure νL of L,

and S−1
νL

its generalized inverse. In particular, this series is almost surely finite
in case of a compound Poisson distribution, i.e. if ΨL is bounded (resp. νL is fi-
nite). This is more or less the representation of an infinitely divisible law in terms
of a series representation involving only independent exponentials that Bondesson
(1982) proposes as a basis for his simulation ansatz (restricted to laws on [0,∞]
in the present context). It is of particular use in those cases where the survival
function of the Lévy measure has an inverse S−1

νL
in closed form. If, in addition, the

Lévy measure is finite, i.e. one has a compound Poisson distribution, one obtains
an exact simulation algorithm. When simulating this compound Poisson law, the
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representation is useful if we have no simulation algorithm for the jump size distri-
bution at hand, but we are able to compute the inverse of the Laplace transform
of the jump size distribution in closed form.

The series representation in Example 4.1 was based on the choice L = N of a
Poisson process as integrator. In the sequel, we choose as integrator a compound
Poisson process with unit exponential jumps. In this case, Lemma 4.2 shows that
the law of H1 lies in the so-called Bondesson family BO(0,∞), see Bondesson
(1981). This means that the survival function of the Lévy measure equals the
Laplace transform of a measure ρ on (0,∞), called the Stieltjes measure. From an
analytical viewpoint, the Bernstein function ΨH , which is said to be complete in
this case, can be represented as

ΨH(x) =

∫ ∞

0

x

x+ u
ρ(du), x ≥ 0,

with the Stieltjes measure ρ on (0,∞) satisfying
∫∞

0
(1 + u)−1 ρ(du) < ∞. There

are examples for laws in BO(0,∞) for which the Stieltjes measure ρ is way more
convenient to handle than the associated Lévy measure2, we provide some examples
below. For these cases, Lemma 4.2 provides a series representation in a similar spirit
as that for ID[0,∞] in Example 4.1.

We fix L as a compound Poisson subordinator with unit exponential jumps and
unit intensity, i.e. ΨL(x) = x/(x+1). Furthermore, we let F ∈ F be arbitrary, and
only assume that the left-end point of the support of X ∼ F equals zero, which
by Lemma 2.2 is equivalent to postulating νF ({∞}) = 0, i.e. ΨF has no killing. In
this situation, the measure

ρF (A) := νF

({ 1

u
: u ∈ A

})

(4.3)

is well-defined for all Borel sets A ⊂ (0,∞), and we observe that
∫ ∞

0

1

1 + t
ρF (dt) =

∫ ∞

0

u

1 + u
νF (du) ≤

∫ ∞

0

min{u, 1} νF (du) < ∞,

so ρF is a proper Stieltjes measure. To simplify notation, we denote

F̂ :=
{
F ∈ F : νF ({∞}) = 0

}

and obtain the following result. The series representation in part (c) is a special
case of the series representation discussed in Bondesson (1982, p. 862).

Lemma 4.2 (Series representation in terms of the Stieltjes measure). Let F ∈ F̂

and L a compound Poisson subordinator with unit intensity and unit exponentially
distributed jumps, i.e. ΨL(x) = x/(x+ 1).

(a) The law of H1 is in BO(0,∞) ⊂ ID[0,∞] with associated Stieltjes measure
ρF .

(b) The mapping F 7→ ρF , defined by (4.3) and Lemma 2.2, defines a bijection

between F̂ and BO(0,∞). The inverse mapping ρ 7→ Fρ is

Fρ(x) =

{

e−g−1
ρ (x) , if x < ρ

(
(0,∞)

)

1 , else
, gρ(x) := ρ

(
(0, 1/x)

)
,

2See, e.g., Families 3, 5, 27, 28, 29, 33, 35, 45, 46, 63, 64, 88, and 89 in the list of complete
Bernstein functions of Schilling et al. (2010, Chapter 15).
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where g−1
ρ denotes the generalized inverse of the non-increasing function

gρ.
(c) We have the following equality in law, with {ǫk, Jk}k≥1 iid unit exponen-

tials:

H1
d
=

∑

k≥1

Jk g
−1
ρ (ǫ1 + . . .+ ǫk)1{ǫ1+...+ǫk≤ρ((0,∞))}.

Proof : (a) We compute, using (4.1), ΨL(x) = x/(x+ 1), and (4.3) that

ΨH(x) =

∫ ∞

0

ΨL(xu) νF (du) =

∫ ∞

0

xu

xu+ 1
νF (du)

=

∫ ∞

0

x

x+ 1
u

νF (du) =

∫ ∞

0

x

x+ u
ρF (du).

(b) We recall from Lemma 2.2 that F 7→ νF is a bijection between F̂ and Lévy
measures on (0,∞). Furthermore, it is clear that the mapping νF 7→ ρF
is injective. Left to show is only that every Stieltjes measure is attainable,
i.e. that νF 7→ ρF is surjective. To this end, it is sufficient to show for an
arbitrary Stieltjes measure ρ that the measure

ν(A) := ρ
({ 1

u
: u ∈ A

})

, A ⊂ (0,∞) a Borel set,

is a Lévy measure on (0,∞). To this end, we observe that

ν
(
(1,∞)

)
= ρ

(
(0, 1)

)
≤

∫ 1

0

2

1 + t
ρ(dt) ≤ 2

∫ ∞

0

1

1 + t
ρ(dt) < ∞,

∫ 1

0

u ν(du) =

∫ ∞

1

1

t
ρ(dt) ≤

∫ ∞

1

2

t+ 1
ρ(dt) ≤ 2

∫ ∞

0

1

t+ 1
ρ(dt) < ∞.

The claimed expression for Fρ can be retrieved directly from Lemma 2.2,
while noticing that ρF

(
(0, 1/x)

)
= νF

(
(x,∞)

)
.

(c) This is a direct consequence of part (b) and the definition of the process
H.

�

Like the series representation in Example 4.1 for ID[0,∞] is useful if the Lévy
measure is nice, the representation in Lemma 4.2(c) can be used to construct sim-
ulation algorithms for infinitely divisible distributions from the Bondesson family,
when the Stieltjes measure ρ is nice. In case of a compound Poisson distribution
the series is even finite, hence the simulation algorithm is exact. We provide some
examples to demonstrate this procedure.

Example 4.3 (Exact simulation of compound Poisson laws). Let ρ be some finite
measure on (0,∞), hence it automatically is a Stieltjes measure. We denote by
X a generic random variable in BO(0,∞) associated with this Stieltjes measure.
There exists a distribution function G of some non-negative random variable with
G(0) = 0 and a constant β := ρ

(
(0,∞)

)
> 0 such that ρ

(
(0, x]

)
= β G(x). The Lévy

measure ν associated with this Stieltjes measure ρ is determined by its survival func-
tion, which satisfies ν

(
(x,∞)

)
= β ϕG(x), where ϕG(x) := β

∫∞

0
exp(−xu) dG(u)

denotes the Laplace transform of dG. We observe

g−1
ρ (y) =

1

G−1(y/β)
, 0 < y < β,
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where G−1 is the generalized inverse of the distribution function G. Consequently,
according to Lemma 4.2(c) the compound Poisson distribution X with intensity β

and jump size density −ϕ
′

G has the finite series representation

X
d
=

∑

k≥1

Jk

G−1
(
(ǫ1 + . . .+ ǫk)/β

) 1{ǫ1+...+ǫk≤β}, (4.4)

with {ǫk, Jk}k≥1 iid unit exponentials. It is not difficult to come up with examples
for G such that G−1 is in closed form, but neither is a simulation algorithm for the
density −ϕ

′

G at hand, nor is the inverse of ϕG in closed form. In such a situation,
(4.4) provides a convenient basis for an exact simulation algorithm. One particular
example is given by Family 45 in Schilling et al. (2010, Chapter 15): we have
β = 0.5 and G(x) = min{x, 1} (2−min{x, 1}) and obtain G−1(x) = 1−

√
1− x for

x ∈ (0, 1), leading to

X
d
=

∑

k≥1

Jk 1{ǫ1+...+ǫk≤0.5}

1−
√

1− 2 (ǫ1 + . . .+ ǫk)
.

The associated Bernstein function is given by Ψ(x) = x (1 + x) log(1 + 1/x)− x.

Example 4.4 (A few non-compound Poisson examples). With a parameter θ > 0,
we consider the complete, unbounded Bernstein functions

Ψ1(x) =
x√
x+ θ

, Ψ2(x) =
x

θ − x
log

( θ

x

)

, Ψ3(x) =
√
x arctan

(
√

x

θ

)

,

which correspond to Families 5, 33, and 64 in Schilling et al. (2010, Chapter 15).
For each of them, the associated Stieltjes measure has a convenient form, namely

ρ1(dx) =
1{x>θ} dx

π
√
x− θ

, ρ2(dx) =
dx

θ + x
, ρ3(dx) =

1{x>θ} dx

2
√
x

,

and the associated function g−1
ρ from Lemma 4.2 can be computed in closed form,

to wit

g−1
ρ1

(x) =
1

θ + (π x/2)2
, g−1

ρ2
(x) =

1

θ (ex − 1)
, g−1

ρ3
(x) =

1

(x+
√
θ)2

.

5. Conclusion

We have studied a semi-parametric family of non-decreasing stochastic processes
H = {Ht}t≥0, which comprises (possibly killed) Lévy subordinators without drift
as a special case. Whereas a Lévy subordinator L is conveniently specified by
a Bernstein function ΨL, the process H is specified by a pair (ΨF ,ΨL) of two
Bernstein functions. From a theoretical point of view, we have demonstrated that
the parameterization in terms of a distribution function F and a Lévy subordinator
L provides a convenient apparatus to study distributional properties of H. In
particular, we have established a canonical series representation and have studied
the natural filtration of H, highlighting that the independent increment property
is exclusive to the Lévy subordinator subfamily. From a practical point of view, we
have explained how to simulate exactly and accurately the d-variate extreme-value
copula associated with each process H. Furthermore, we have used the derived
setting to establish a series representation for infinitely divisible laws from the
Bondesson family that is given in terms of its Stieltjes measure only.
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