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Abstract

We extend the notion of Dubiner distance from algebraic to trigono-

metric polynomials on subintervals of the period, and we obtain its explicit

form by the Szegő variant of Videnskii inequality. This allows to improve

previous estimates for Chebyshev-like trigonometric norming meshes, and

suggests a possible use of such meshes in the framework of multivariate

polynomial optimization on regions defined by circular arcs.
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1 Introduction

The notion of Dubiner distance generated by algebraic polynomials on a compact
set K ⊂ R

d, introduced in the seminal paper [9], namely

dub(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{

|arccos(p(x)) − arccos(p(y))|

deg(p)

}

, x, y ∈ K , (1)

plays a deep role in the framework of polynomial approximation. Here ‖ · ‖K
denotes the sup-norm on K, and deg(p) the total degree.

For example it can be proved that good interpolation points for degree n on
some standard compact sets are spaced proportionally to 1/n in such a distance.
This happens with the Morrow-Patterson and the Padua interpolation points
on the square [5], or the Fekete points on the cube, ball or simplex (in any
dimension), cf. [3]. Indeed, up to now the Dubiner distance is explicitly known
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only on such compact sets, and on the sphere Sd−1; cf. [3]. In particular, on
the cube it turns out that

dub(x, y) = max
1≤i≤d

{|arccos(xi)− arccos(yi)|} , x, y ∈ [−1, 1]d , (2)

due to the fact that, by the Van der Corput-Schaake inequality, on [−1, 1] the
Dubiner distance is simply the arccos distance. On the other hand, on the
sphere it turns out to be just the standard geodesic distance.

The following proposition shows that the Dubiner distance is also intimately
related with the notions of norming set and polynomial mesh. It is proved in
[15] and the proof is essentially outlined also in [1].

Proposition 1 Let K ⊂ R
d be a compact set and X ⊂ K such that

ρ = max
x∈K

min
y∈X

dub(x, y) ≤ θ/n , θ ∈ (0, π/2) , n ∈ N , n ≥ 1 , (3)

where ρ denotes the Dubiner fill distance of X in K. Then for every algebraic
polynomial p with deg(p) ≤ n the following estimate holds

‖p‖K ≤
1

cos(θ)
‖p‖X . (4)

Proof. We sketch the simple proof, with the only purpose to make clear the
role of the Dubiner distance. Assume without loss of generality that ‖p‖K =
p(x0) = 1 for some x0 ∈ K (possibly normalizing and/or multiplying p by −1).
Since the Dubiner fill distance of X satisfies (3), there exists y0 ∈ X such that

| arccos (p(x0))− arccos (p(y0))| = | arccos (p(y0))| ≤
θ deg(p)

n
≤ θ <

π

2
.

Then, the arccos function being monotonically decreasing and nonnegative, we
get p(y0) ≥ cos(θ) > 0, and finally

‖p‖K = 1 ≤
p(y0)

cos θ
≤

1

cos θ
‖p‖X . �

Observe that the subset X in Proposition 1, that does not need in general
to be discrete, is usually called a norming set for the subspace of polynomials
of maximum degree n (for the sup-norm). If (4) holds for a sequence {Xn} of
finite norming set with card(Xn) = O(Vs), where V = dim{p|K : deg(p) ≤ n},
then this is known as a polynomial mesh on K, namely

‖p‖K ≤ C ‖p‖Xn
, ∀p : deg(p) ≤ n (5)

(with constant C = 1/ cos(θ)), which may be termed optimal if s = 1, cf.
[12, 13]; observe indeed that necessarily card(Xn) ≥ V , since Xn is determing
for the restriction to K of polynomials with deg(p) ≤ n. We recall that V =
(

n+d
d

)

= O(nd) if K is polynomial determining (i.e., a polynomial vanishing
on K vanishes everywhere), which happens for example when K has nonempty
interior. But we may have a lower dimension, for example on an algebraic
variety: the dimension of trivariate polynomials restricted to the sphere S2 is
(n+ 1)2.
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The notion of polynomial mesh has been playing an emerging role in the field
of polynomial approximation during the last decade, from both the theoretical
and the computational point of view. Among their properties, we may report
that polynomial meshes are invariant under affine transformations, and that
they can be extended by algebraic transformations and by finite unions and
products.

On the other hand, they turn out to be nearly optimal for least squares
approximation in the sup-norm, and to contain Fekete-like discrete extremal
subsets which are conveniently computable and well-suited for polynomial in-
terpolation (having a Lebesgue constant with slow growth in the degree). More-
over, polynomial meshes have also begun to be used in the framework of fully
discrete approaches for polynomial optimization. We refer the reader, e.g., to
[2, 6, 12, 15] and the references therein.

2 Subperiodic trigonometric Dubiner distance

In this paper we extend the notion of Dubiner distance to univariate trigono-
metric polynomials on subintervals of the period. The distance can be explicitly
computed, as we prove with the following

Proposition 2 Consider definition (1) with p a real trigonometric polynomial
and K = [−ω, ω], 0 < ω ≤ π. Then

dub(x, y) = |Fω(x)− Fω(y)| , x, y ∈ [−ω, ω] , (6)

where

Fω(x) = 2 arcsin

(

sin(x/2)

sin(ω/2)

)

. (7)

Proof. Let p be a real trigonometric polynomial. From the classical Videnskii
inequality (a subperiodic trigonometric analogue of the Bernstein polynomial
inequality, cf. [19])

|p′(x)| ≤ deg(p) fω(x) ‖p‖[−ω,ω] , x ∈ (−ω, ω) , (8)

where

fω(x) =
cos(x/2)

√

sin2(ω/2)− sin2(x/2)
, (9)

one can obtain its Szegő variant
(

p′(x)

fω(x)

)2

+ (deg(p))2 (p(x))2 ≤ (deg(p))2 ‖p‖2[−ω,ω] , x ∈ (−ω, ω) , (10)

as proved e.g. in [17] with a general approach valid for Bernstein-like inequalities
in algebraic and trigonometric polynomial spaces. For ‖p‖[−ω,ω] ≤ 1, (10) reads

|p′(x)| ≤ deg(p) fω(x)
√

1− p2(x) ‖p‖[−ω,ω] , (11)

and assuming without loss of generality that x ≤ y, we can write (observe that
the set of zeros of 1− p2 has zero Lebesgue measure)

| arccos(p(x)) − arccos(p(y))| =

∣

∣

∣

∣

∣

∫ y

x

p′(t)
√

1− p2(t)
dt

∣

∣

∣

∣

∣

≤

∫ y

x

|p′(t)|
√

1− p2(t)
dt
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≤ deg(p)

∫ y

x

fω(t) dt = deg(p) |Fω(x)− Fω(y)| , (12)

since

F ′
ω(x) =

cos(x/2)/ sin(ω/2)
√

1− sin2(x/2)/ sin2(ω/2)
= fω(x) ,

i.e., Fω is a primitive of fω. From (12) we get immediately

dub(x, y) ≤ |Fω(x) − Fω(y)| .

To prove the equality, consider the trigonometric polynomial T2(ξ(x)) =
cos(2 arccos(ξ(x)), ξ(x) = sin(x/2)/ sin(ω/2), which has degree 1. Indeed,

cos(2 arccos(ξ(x)) = 2 cos2(arccos(ξ(x)) − 1 = 2ξ2(x)− 1

= −1 + 2
sin2(x/2)

sin2(ω/2)
= −1 + 2

1− cos(x)

2

1

sin2(ω/2)
.

Then we get arccos(T2(ξ(x))) = 2 arccos(ξ(x)) = π−2 arcsin(ξ(x)) = π−Fω(x),
from which it follows that | arccos(T2(ξ(x))) − arccos(T2(ξ(y)))| = |Fω(x) −
Fω(y)| and thus dub(x, y) = |Fω(x)− Fω(y)|. �

3 Subperiodic trigonometric norming meshes

Now, Proposition 1 is still valid for the trigonometric Dubiner distance, because
the proof does not resort to the fact that the polynomials are algebraic, and
“mutatis mutandis” can be applied to trigonometric polynomials.

Notice that for ω = π we get dub(x, y) = |x− y|. This implies a well-known
inequality proved by Ehlich and Zeller in [10] for trigonometric polynomials,
namely that 2mn equally spaced angles in (a, b) with spacing π/(2mn), where
b − a = 2π, m > 1, n ≥ 1, form a trigonometric polynomial mesh in n with
constant C = 1/ cos(θ), θ = π/(2m) (we stress that trigonometric norming
inequalities are translation invariant).

On the other hand, we can now apply Proposition 1 also for ω < π, since we
have at hand the explicit expression of the subperiodic Dubiner distance. This
allows us to refine recent estimates obtained for Chebyshev-like trigonometric
norming meshes on [−ω, ω], cf. [18].

We shall use the following nonlinear transformation

σω : [−1, 1] → [−ω, ω] , σω(x) = 2 arcsin(x sin(ω/2)) , (13)

that turned out to be a key tool in recent studies on “subperiodic” trigonometric
approximation, see, e.g., [7, 18].

Proposition 3 Let p be a trigonometric polynomial such that deg(p) ≤ n, 0 <
ω ≤ π and N = ⌈2mn⌉. Let TN = {cos(φi)} be either the set of N Chebyshev
zeros, φi = (2i− 1)π/(2N), 1 ≤ i ≤ N , or the set of N + 1 Chebyshev extrema,
φi = iπ/N , 0 ≤ i ≤ N . Then the following estimate holds

‖p‖[−ω,ω] ≤
1

cos(π/(2m))
‖p‖σω(TN ) (14)

for every m > 1.
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Proof. Define the Chebyshev-like angles in [−ω, ω] as

ξi = σω(cos(φi)) , (15)

that is {ξi} = σω(TN ), and observe that

Fω(σω(cos(φ))) = 2 arcsin(cos(φ)) = π − 2φ ,

and thus

dub(ξ, η) = 2|φ− ψ| , ξ = σω(cos(φ)) , η = σω(cos(ψ)) .

Then, the Dubiner fill distance of the discrete set {ξi} is

ρ = max

{

dub(ξ1,−ω), dub(ξN , ω),
1

2
max

i
dub(ξi+1, ξi)

}

= max
{

2φ1, 2(π − φN ),max
i

|∆φi|
}

. (16)

In the case of the Chebyshev zeros we have |∆φi| = π/N and φ1 = (π−φN ) =
π/(2N), whereas for the Chebyshev extrema |∆φi| = π/N and φ1, (π−φN ) = 0,
from which we get the following estimate of the Dubiner fill distance

ρ ≤
π

N
≤

π

2mn
, (17)

that by the trigonometric version of Proposition 1 gives (14) for m > 1. �

Remark 1 By angle translation, Proposition 3 can be extended to any interval
J = [α, β] with ω = (β − α)/2 ≤ π, where the relevant mesh is

σJ(TN ) = σω(TN ) + (α+ β)/2 . (18)

Remark 2 We observe that Proposition 3 improves the results in [18], where
the constant of the norming mesh in (14) is

C1 =
1

1− π/(2m)
> C∗ =

1

cos(π/(2m))
. (19)

In particular, C1 = 1 +O(m−1) whereas C∗ = 1+O(m−2). Using the trigono-
metric Dubiner distance, a similar improvement can be obtained also for the
constants of the general Jacobi-like norming meshes in ([15]).

4 Trigonometric polynomial optimization

The improvement (19) appears to be of little impact at a first glance, and indeed
it is for applications where the closeness of C to 1 has a little importance (such
as least squares approximation on polynomial meshes, cf. [2, 6]). Nonetheless,
it becomes relevant, for example, whenever the notion of polynomial mesh is
used for approximate continuous optimization. The reason is summarized by
the following elementary proposition, where the polynomial can be algebraic as
well as trigonometric. With no loss of generality, we may refer to a minimization
problem.
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Proposition 4 Assume that (5) holds. Then, for every polynomial p with
deg(p) ≤ n, we can write the range-relative minimization error estimate

min
Xn

p−min
K

p ≤ (C − 1)
(

max
K

p−min
K

p
)

. (20)

Proof. Consider the nonnegative polynomial q(x) = maxK p − p(x). We have
that ‖q‖K = maxK p −minK p and ‖q‖Xn

= maxK p −minXn
p. Then by (5)

applied to q

‖q‖K − ‖q‖Xn
= min

Xn

p−min
K

p ≤ (C − 1) ‖q‖Xn
≤ (C − 1) ‖q‖K , (21)

that is (20). �

Remark 3 The error estimate (20) is relative to the function range, as usual
in polynomial optimization, and minXn

p is termed a (1 − ε)-approximation to
minK p, with ε = C − 1 (cf., e.g., [8]). Since (21) holds for an arbitrary poly-
nomial, then we are also approximating its maximum modulus with a relative
error (standard notion) bounded by C − 1.

Now, we can apply Proposition 4 directly to trigonometric polynomials with
K = [α, β], β−α ≤ 2π (see Remark 1). In view of (19), using the new constant
C∗ instead of C1 entails an error estimate

C∗ − 1 ∼ (π2/8)m−2 , (22)

by discrete optimization of a trigonometric polynomial of degree n on approxi-
mately 2mn subperiodic Chebyshev-like angles. This is exactly the error bound
obtainable for algebraic polynomial optimization on a real interval by approxi-
mately mn Chebyshev nodes, in view of the classical Ehlich-Zeller estimates in
[10] (see also [4] and [15, 20] with the references therein).

Starting from univariate algebraic and subperiodic trigonometric polynomial
optimization, we have at hand the tools for grid-based multivariate algebraic
polynomial optimization on several regions defined by circular arcs, such as
sections of disk, sphere, ball, torus. We give a brief description of the technique,
whose base is essentially the following fact: a multivariate algebraic polynomial
restricted to an arc of a circle is a univariate trigonometric polynomial of the
same degree.

Consider for example a torus in three-dimensional space with external radius
R and internal radius r, whose parametric equations are

(x, y, z) = τ(θ1, θ2) = ((R+ r cos(θ1)) cos(θ2), (R+ r cos(θ1)) sin(θ2), r sin(θ1)) ,
(23)

(θ1, θ2) ∈ [−π, π] × [−π, π], where θ1 and θ2 are usually termed the poloidal
and toroidal (angular) coordinates, respectively. Consider a “poloidal-toroidal
rectangle” of the torus

K = τ(J1 × J2) , J1, J2 ⊆ [−π, π] , (24)

where J1 and J2 are two closed subintervals. Denote by Tn(J) the univariate
trigonometric polynomials of degree ≤ n, restricted to an interval J . Then,
for every trivariate algebraic polynomial p such that deg(p) ≤ n we have that
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p(τ(θ1, θ2)) belongs to the tensor-product space Tn(J1)
⊗

Tn(J2), thus we can
write the polynomial mesh estimate

‖p‖K = ‖p‖τ(J1×J2) = ‖p ◦ τ‖J1×J2
≤ C2

∗ ‖p ◦ τ‖GN
= C2

∗ ‖p‖τ(GN) , (25)

where GN = σJ1
(TN ) × σJ2

(TN ) (see Remark 1 for the definition of σJ ). By
Proposition 4, discrete optimization on this subperiodic Chebyshev-like grid
approximates the continuous extremal values with a range-relative error bound

C2
∗ − 1 =

1

cos2(π/(2m))
− 1 = tan2(π/(2m)) ∼ (π2/4)m−2 . (26)

The same approach can be used for polynomial optimization on a generalized
“latitude-longitude rectangle” of a sphere of radius r, that corresponds to R = 0
in (23)-(24) (the usual spherical coordinates). See Figure 1 for two examples on
the sphere and on the torus.

More generally, working by the appropriate geometric transformation and
coordinates we can apply the discrete optimization method on standard sections
of disk, sphere and ball, such as caps, lenses, lunes, sectors, slices; see [11, 16] for
several instances of this kind with the relevant geometric transformations. The
corresponding polynomial meshes have constant C = C2

∗ (planar and surface
instances) or C = C3

∗ (solid instances), and cardinality O((mn)2) or O((mn)3),
respectively. By Proposition 4, the polynomial optimization error bound is (26)
for planar and surface regions, or

C3
∗ − 1 = (C∗ − 1)(C2

∗ +C∗ + 1) ∼ (π2/8)m−2(3 + 3(π2/8)m−2) ∼ (3π2/8)m−2

(27)
for solid regions. This means that to compute a (1 − ε)-approximation to its
extremal values on the region, it is then sufficient to sample a polynomial of
degree n on O(ε−1n2) points, or O(ε−3/2n3) points, respectively.

Clearly, the procedure is not restricted to dimension 2 and 3. For example, it
can be applied to regions of the hypersphere Sd−1 defined by angular subinter-
vals of the period in generalized spherical coordinates, producing Chebyshev-like
grids that are norming meshes with constant Cd−1

∗ and cardinality O((mn)d−1).
Discrete polynomial optimization on such meshes gives a range-relative error
bounded by

Cd−1
∗ − 1 = (C∗ − 1)(Cd−2

∗ + Cd−3
∗ + · · ·+ C∗ + 1) ∼ ((d− 1)π2/8)m−2 . (28)

As already observed in [15, 20] for mesh-based polynomial optimization on
cubes, this is a sort of brute-force approach, that could be useful (in low dimen-
sion and with relatively small degrees) when a rough estimate of the extremal
values is sought without resorting to more sophisticated optimization methods,
or conversely as a starting guess for such methods.
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