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Abstract—A machine-learning framework for anomalous
change detection is extended to the situation in which the
anomalous change is smaller than a pixel. Although the existing
framework can be applied to (and does have power against) the
subpixel case, it is possible to optimize that framework for the
subpixel case when the size of the anomalous change is known.
The limit of infintesimally small anomaly turns out to be well-
defined, and provides a new parameter-free anomalous change
detector which is effective over a range of subpixel anomalies,
and continues to have reasonable power against the full-pixel
case.

I. INTRODUCTION

Change detection in imagery is quite useful generally [1],

but it has particular value in the remote sensing context.

The aim of change detection is to find pixels in pairs of

co-registered images that correspond to real changes on the

ground. Differences that are due to variations in the environ-

ment (illumination, atmospheric distortion, etc.) or the sensor

(focus, calibration, etc.) are generally of less interest. These

less interesting differences are often pervasive, with the effect

visible over the whole image. The more interesting changes,

on the other hand, are often anomalous, and involve only a

few pixels in the image. Refs. [2], [3] have argued that the

interesting changes are the anomalous changes, and Ref. [4]

proposed a framework that built on the machine learning

formalism for anomaly detection, but recast the problem in

terms of binary classification: pervasive differences versus

anomalous changes. This paper will take that same point

of view, but will consider the more extreme case that the

anomalous changes are smaller than a pixel.

In Section II, the anomalous change detection framework

will be described, and in Section III, that framework will

be extended to the subpixel case. Section IV will describe

the results of some experiments that compare full-pixel and

subpixel detectors to each other and to a standard linear

detector.

II. ANOMALOUS CHANGE DETECTION

A. Notation

Given two images of the same scene, let �✂✁☎✄✝✆✟✞✡✠ corre-

spond to the spectra at the ☛ th pixel of the first image (the “x-

image”), and ☞ ✁✌✄✍✆✟✞✏✎ be the spectrum at the corresponding

pixel in the second image (the “y-image”). Here, ✑✓✒ is the

number of spectral channels in the image: for example, ✑✔✒✖✕✘✗
for panchromatic imagery, ✑✙✒✚✕✜✛ for RGB imagery, and ✑✙✒
can be a hundred or more for hyperspectral imagery. Some

change detection algorithms require that ✑✙✒✢✕✣✑✥✤ (i.e., that

both images have the same number of spectral channels), but

none of the methods described here have that requirement.

The anomalous change detection problem asks: for what

pixels ☛ is the change from �✂✁ to ☞ ✁ most atypical, compared

to the bulk of the changes from � to ☞ that occur over an

image or image archive?

Following the usual machine-learning paradigm, we treat

pixels as independent data samples,1 drawn from a parent

distribution whose density is given by ✦✚✧ �✩★ ☞✂✪ . The actual

distribution ✦✚✧ �✩★ ☞✫✪ is not known, but inferences about it

are made from the observed data (the vast bulk of which is

assumed to exhibit only the pervasive differences between the

two images).

B. Anomaly detection as binary classification

The notion of anomaly detection as binary classification

has been described previously [7], [8], [9], [10]. It is a

useful paradigm, and that formalism has been extended to the

problem of anomalous change detection [4], [11].

Write ✦✖✬✭✧ �✩★ ☞✂✪ to indicate the distribution of anomalous

changes. If this distribution were known, and if the pervasive

distribution ✦✚✧ �✩★ ☞✂✪ were known, then the Bayes-optimal dis-

tinction between pervasive differences and anomalous changes

would be given by the likelihood ratio

✮ ✧ �✩★ ☞✂✪✯✕ ✦✚✧ �✩★ ☞✂✪
✦ ✬ ✧ �✩★ ☞✂✪✱✰ (1)

The various anomalous change detection algorithms that will

be described here amount to different models for ✦✲✬✭✧ �✩★ ☞✂✪ .
This approach may initially seem counter-intuitive: it is the

nature of anomalies that we do not know what they are; so how

can we be expected to write an explicit model for them? But

this is a probabilistic model, and it is the nature of probability

that it can express our ignorance.

1While the use of spatial information, for instance via Markov random fi eld
models [5], [6], can improve change detection performance, the approach here
will be to concentrate on the spectral information in the pixels. For small
(especially subpixel) anomalous changes, the utility of spatial information is
somewhat limited, and in any case, the presumption will be made that schemes
to exploit spatial information could be applied to any of the spectral methods
that are compared in this paper.



1) Straight anomaly detection: What might be considered

“total ignorance” is the notion that anomalies are distributed

uniformly over a region whose support encompasses the

support of the distribution ✦✚✧ �✩★ ☞✫✪ . In fact, this is the usual

assumption for anomaly detection [7], [8], [9], [10], and leads

to the problem of density level detection. Here, ✦✲✬✭✧ �✩★ ☞✂✪✖✕� ✧ �✩★ ☞✂✪ , where
� ✧ �✩★ ☞✂✪✯✕ constant is a uniform distribution.

And then
✮ ✧ �✩★ ☞✂✪ , as given in Eq. (1), will have contours that

correspond to the contours of ✦✚✧ �✩★ ☞✂✪ .
The problem with straight anomaly detection is that it does

not provide a sense of “change.” A pixel that is unusual in

one image, and similarly unusual in the second image, does

not particularly indicate an unusual change, but would be out

on the tail of the ✦✚✧ �✩★ ☞✂✪ distribution, and would be flagged

as an anomaly.
2) Generalized chronochrome: The generalized

chronochrome (introduced in Ref. [11], but based on the

linear chronochrome developed by Schaum and Stocker [2])

considers contours not of the full distribution ✦✚✧ �✩★ ☞✂✪ , but

of the conditional distribution ✦✚✧ ☞✂✁ � ✪ . Since the x-image

and y-image are both of the same scene, ✦✚✧ ☞✂✁ � ✪ describes

the expected variation of ☞ , at a pixel whose value in the

x-image is observed to be � . Low values of the conditional

distribution correspond to unusual changes.

Since ✦✚✧ ☞✂✁ � ✪ ✕✜✦✚✧ �✩★ ☞✂✪☎✄ ✦✚✧ � ✪ , we can write ✦ ✬✭✧ �✩★ ☞✂✪ ✕
✦✚✧ � ✪ � ✧ ☞✂✪ , and obtain contours of

✮ ✧ �✩★ ☞✂✪ as given in Eq. (1).

It bears remarking that there is an asymmetry in the

generalized (as well as the linear) chronochrome: if we

consider expected changes in � given ☞ , then we obtain

✦✖✬ ✧ �✩★ ☞✂✪✯✕ � ✧ � ✪ ✦✚✧ ☞✫✪ as the denominator in Eq. (1); different

anomalous changes will be found depending on which of the

two chronochromes are used.
3) Anomalous change detection: In the anomalous change

framework proposed in Ref. [4], we take ✦✲✬ ✧ �✩★ ☞✂✪ ✕
✦✚✧ � ✪ ✦✚✧ ☞✂✪ . This is a distribution whose marginal distributions

along the
�

and ☞ directions match that of ✦✚✧ �✩★ ☞✂✪ , but for

which
�

and ☞ are treated as independent random variables.

Thus, the straight “anomalousness” of a pixel in either of

the individual images becomes irrelevant: it is anomalous

relationships that are identified.

C. When the distribution is Gaussian

A Gaussian ✦✚✧ �✩★ ☞✂✪ can be fully described in terms of

its mean and covariance. Without loss of generality (and in

keeping with usual practice), the mean is assumed to have been

subtracted from each of the images. The covariance matrices

can be written ✆
✕ ✝ � �✟✞✡✠☞☛ (2)✌ ✕ ✝ ☞ ☞ ✞ ✠ ☛

(3)✍ ✕ ✝ ☞ �✟✞✡✠
✰ (4)

Introducing ✎✟✕✑✏ �☞✓✒ as a vector in
✆ ✞✡✠✕✔ ✞ ✎ enables these

equations to be summarized into a single covariance matrix:✖✘✗ ✕ ✝ ✎✙✎ ✞✚✠ ✕ ✏ ✆ ✍ ✞✍ ✌ ✒ ✰ (5)

Fig. 1. Channel 75 (at an infrared wavelength of about 1.06 ✛ m) of a 224-
channel AVIRIS image taken near Denver, Colorado. This image is of size✜✣✢✥✤✧✦✩★✣✢✫✪

pixels, with each pixel corresponding to approximately 15m on
the ground.

And in the Gaussian case, the contours of the likelihood

function
✮ ✧ �✩★ ☞✂✪ are quadratic functions of

�
and ☞ , which in

general can be written by ✎ ✞✭✬ ✎ for some matrix ✬ .

For straight anomaly detection, ✬ ✕ ✖✯✮✱✰✗
, and the likeli-

hood contours follow the elliptical contours of ✎ ✞ ✖✲✮✱✰✗ ✎ .

When ✦✚✧ �✩★ ☞✫✪ is Gaussian, the generalized chronochrome

becomes the standard chronochrome, and it can be shown that

either ✬ ✕ ✖✲✮✱✰✗✴✳ ✏ ✆ ✮✱✰✶✵✵ ✵ ✒ or ✬ ✕ ✖✷✮✟✰✗✸✳ ✏ ✵ ✵✵✹✌✡✮✟✰ ✒ ,

depending on which of the two chronochromes are used.

Finally, the anomalous change detection scheme developed

in Ref. [4] leads to ✬ ✕ ✖✲✮✱✰✗ ✳ ✏ ✆ ✵✵ ✌ ✒ ✮✱✰
; because

the matrix ✬ has both positive and negative eigenvalues, the

anomalous change boundaries are hyperbolic in ✎ space, and

the algorithm is called “Hyper.”

III. SUBPIXEL ANOMALOUS CHANGE

A. Full-pixel anomalous change

Let ✧ � ✰ ★ ☞ ✰ ✪ denote the ✧ �✩★ ☞✂✪ values at a given location

in the image. Let �✻✺ be the � value at a different location,

and ☞✟✼ the ☞ value at a third location. In general, a full-pixel

anomalous change can be realized by sampling � and ☞ values

independently. Thus, while the point ✧ � ✰ ★ ☞ ✰ ✪ corresponds to

a “normal” change in the image, the point ✧ � ✺ ★ ☞ ✼ ✪ is an

anomalous change. That is:

Normal: ✎✙✽ ✕ ✏ � ✽☞✟✽ ✒ ✕ ✏ � ✰☞ ✰ ✒ ☛ (6)

Anomalous: ✎✙✾✝✕ ✏ � ✾☞✟✾ ✒ ✕ ✏ �✟✺
☞✟✼ ✒ ✰ (7)

Here, ✎✙✽ is a typical point in the distribution ✦✚✧ �✩★ ☞✂✪ , while✎✿✾ is a typical point in the distribution ✦✲✬ ✧ �✩★ ☞✂✪✯✕ ✦✚✧ � ✪ ✦✚✧ ☞✂✪ .
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Fig. 2. ROC curves, on semilog axes, for fi ve different anomalous change detectors: three variants of the Hyper algorithm, and two of the chronochrome (CC)
algorithm. The top panels show the average of nine ROC curves, each corresponding to a different tile of the image. To illustrate the range of variation, the
bottom panels show all nine of the ROC curves, as well as the average. The performance of the different algorithms is shown for: (a,d) full-pixel anomalous
changes, (b,e) half-pixel anomalous changes, and (c,f) one-tenth-pixel anomalous changes.

B. Subpixel anomalous change detection

For subpixel anomalies, with
✵✁�✄✂☎� ✗ the fraction of the

pixel that is covered by the anomaly, take linear combinations:✎✿✽ ✕ ✧ ✗ ✳ ✂ ✪✥✎ ✰✝✆ ✂ ✎ ✺
✕ ✧ ✗ ✳ ✂ ✪ ✏ � ✰☞ ✰ ✒ ✆ ✂ ✏ �✟✺

☞ ✺ ✒ ☛
(8)✎ ✾ ✕ ✧ ✗ ✳ ✂ ✪✥✎ ✰ ✆ ✂ ✎ ✬

✕ ✧ ✗ ✳ ✂ ✪ ✏ � ✰☞ ✰ ✒ ✆ ✂ ✏ � ✼☞✟✞ ✒ ✰ (9)

Note that the normal pixels values are also considered in

terms of subpixel mixing. This is a necessary step because the

naive approach – comparing the full-pixel ✎ ✽ from Eq. (6)

with the subpixel ✎✙✾ in Eq. (9) – confounds the issues

of normal-vs-anomaly with full-vs-subpixel. It in particular

fails to account for the reduced variance that is produced by

positive linear combinations; that effect leads to smaller overall

variance in the distribution of ✎ ✾ values, which in turn leads to

a paradoxical result (at least for small enough
✂

) that identifies

pixels near ✎ ✕ ✵
as the anomalous changes.

The general distributions associated with these resamplings

can be complicated, but for Gaussian distributions, the solution

is straightforward. Here, the covariances are given by✖ ✽ ✕ ✝ ✎ ✽ ✎ ✞✽ ✠ ✕✜✧ ✗ ✆ ✂ ✪ ✺ ✝ ✎ ✰ ✎ ✞ ✰ ✠ ✆ ✂ ✺ ✝ ✎ ✺ ✎ ✞✺ ✠
✕ ✠ ✧ ✗ ✆ ✂ ✪ ✺ ✆ ✂ ✺☛✡ ✝ ✎✙✎ ✞✡✠

✕ ✠ ✧ ✗ ✆ ✂ ✪ ✺ ✆ ✂ ✺☞✡ ✏ ✆ ✍ ✞✍ ✌ ✒ ☛
(10)✖ ✾ ✕ ✝ ✎✙✾✭✎ ✞✾ ✠ ✕ ✧ ✗ ✆ ✂ ✪ ✺ ✝ ✎✿✎ ✞ ✠ ✆ ✂ ✺ ✝ ✎ ✬ ✎ ✬ ✞ ✠

✕ ✧ ✗ ✆ ✂ ✪ ✺ ✏ ✆ ✍ ✞✍ ✌ ✒ ✆ ✂ ✺ ✏ ✆ ✵✵ ✌ ✒ (11)

✕ ✌ ✧ ✗ ✳ ✂ ✪ ✺ ✆ ✂ ✺☛✍ ✏ ✆ ✎ ✍ ✞✎ ✍ ✌ ✒ ★ (12)

where ✎
✕ ✧ ✗ ✳ ✂ ✪ ✺
✧ ✗ ✳ ✂ ✪ ✺ ✆ ✂ ✺ ✰ (13)

It follows that the contours that separate normal from anoma-

lous changes will be given by constant values of ✎ ✞ ✬ ✎ , where✬ ✕ ✏ ✆ ✍ ✞✍ ✌ ✒ ✮✱✰ ✳ ✏ ✆ ✎ ✍ ✞✎ ✍ ✌ ✒ ✮✱✰
✰ (14)

When
✂ ✕ ✗ , then

✎
✕ ✵

, and this ✬ is the full-pixel

anomalous change detection result from Ref. [4]. But by taking

smaller values of
✂

, the anomalous change detector can be

optimized for subpixel anomalies.

In the limit of vanishingly small subpixel anomaly (i.e., as✂✑✏ ✵
, so

✎ ✏ ✗ ), we have that contours will be given by

constant values of ✎ ✞ ✬ ✎ , where✬ ✕ ✳ ✏ ✆ ✍ ✞✍ ✌ ✒ ✮✱✰ ✏ ✵ ✍ ✞✍ ✵ ✒ ✏ ✆ ✍ ✞✍ ✌ ✒ ✮✱✰
✰ (15)
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Fig. 3. ROC curves for the same fi ve different anomalous change detectors
shown in Fig. 2, but applied to Gaussian data with the same covariance as the
real data. (a) Full-pixel anomalous changes; (b) full-pixel changes, showing
all the ROC curves; (c) half-pixel; and (d) one-tenth pixel. Panel (b) shows
that, unlike the real data, tile-to-tile variability of the Gaussian data is small.

Now, an actual change that occurs in a vanishingly small

subpixel will be virtually undetectable. But the fact that this

limit is well-defined provides a parameter-free detector for

detecting small anomalous changes in imagery.

IV. RESULTS

To illustrate and test the optimized subpixel anomaly de-

tector, an experiment was performed in which five anomalous

change detectors were compared: two of these are the standard

chronochrome detectors, and three are variants of the subpixel

“Hyper” detector, given in Eq. (14). The three Hyper variants

were: full-pixel (
✂ ✕✘✗ ), half-pixel (

✂ ✕ ✵ ✰✁� ), and the limiting

case with
✂ ✏✴✵

which is given in Eq. (15).

An AVIRIS hyperspectral image (see Fig. 1) was cut into

nine tiles, and for each tile, a noisy copy was made; this

noise corresponds to the pervasive differences that would be

observed in two images of the same scene. The noise was

multiplicative and given by: ✂ ✁ ✕☎✄ ✁ ✧ ✗ ✆✝✆✟✞ ✁ ✪ , where ✞ ✁ is

a realization of unit variance Gaussian noise, and ✆ is the

noise level. Computing an anomalous measure ✎ ✞✭✬ ✎ (where

Q depends on the anomalous change detection scheme) over

the image pair provides an estimate of false-alarm rate versus

anomalousness threshold.

Subpixel anomalous changes were then introduced into the

image, and what is plotted in Fig. 2 and Fig. 3 is the fraction of

those changes that are detected at the threshold that provides

the given false alarm rate.

Since smaller noise levels ✆ in the pervasive differences

allow more sensitive detection of small anomalous changes,

the three cases considered were: (a) ✆ ✕ ✗ ✰
✵
,

✂ ✕ ✗ ✰ ✵ ; (b)✆ ✕ ✵ ✰ � , ✂ ✕ ✵ ✰ � ; and (c) ✆ ✕ ✵ ✰ ✗ , ✂ ✕ ✵ ✰ ✗ .

These results are shown in the ROC curves of Fig. 2(a,b,c).

For the full-pixel anomalous changes in Fig. 2(a), it is the full-

pixel algorithm that exhibits the best performance; when the

subpixel anomalous changes are very small (one-tenth pixel)

, then the limiting
✂ ✏ ✵

algorithm proved to work very

well. There is considerably variability in this data, however,

as illustrated in Fig. 2(d,e,f).

For the results shown in Fig. 3, the same computations

were performed, but instead of using the real data, a simulated

dataset was generated. The simulated data had the same mean

and variance as the original data, but each pixel was an

independent Gaussian variate. The results are essentially the

same as for the real data, but with less ambiguity (as illustrated

by in Fig. 3(b)).

Because the experiments are based on artifically introduced

anomalies, they cannot be taken as definitive, but one of the

clearest results from these tests – for real and for Gaussian

data – is that both the full-pixel and subpixel anomalous

change detection algorithm substantially outperformed the

linear chronochrome algorithm.

In the situation of very small subpixel anomalies (
✂ ✕ ✵ ✰ ✗ ),

the limiting
✂ ✏ ✵

detector shows substantially better ability

to detect these small changes than the other detectors that

were considered – see Fig. 2(c,f) and Fig. 3(d). Interestingly,

when the anomalous changes were larger, up to a full pixel,

the
✂ ✏✴✵

detector was still competitive.
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