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Abstract: Short-term high-resolution quantitative precipitation forecasting (QPF) is very important

for flash-flood warning, navigation safety, and other hydrological applications. This paper proposes

a subpixel-based QPF algorithm using a pyramid Lucas–Kanade optical flow technique (SPLK) for

short-time rainfall forecast. The SPLK tracks the storm on the subpixel level by using the optical

flow technique and then extrapolates the precipitation using a linear method through redistribution

and interpolation. The SPLK compares with object-based and pixel-based nowcasting algorithms

using eight thunderstorm events to assess its performance. The results suggest that the SPLK can

perform better nowcasting of precipitation than the object-based and pixel-based algorithms with

higher adequacy in tracking and predicting severe storms in 0–2 h lead-time forecasting.

Keywords: nowcasting; subpixel; pyramid Lucas–Kanade optical flow algorithm

1. Introduction

Severe precipitation storms usually lead to huge loss of lives and properties every year.

For example, the Hota typhoon on 23 August of 2017 caused 17 deaths and direct economic loss

of around 27.6 billion in China. Reliable precipitation forecast with high spatiotemporal resolution

in these areas is very helpful for the local governments and public to take actions to deal with

hazards related to precipitation storms. The short-term high-resolution quantitative precipitation

forecasting (SQPF) is also referred to as “Nowcasting”, which extracts information from current

observations (e.g., radar and satellite images), and can precisely predict precipitation intensity in

a timely manner in a local region over a relatively short period (e.g., 1–6 h). Due to the detailed

forecast of the precipitation, SQPF is widely used in meteorology, hydrology, transport systems,

tourism, etc., such as for navigation safety and flash flood warning. In general, in terms of the

length of prediction and the forecast skill, two methods are currently under development for the SQPF:

numerical weather prediction (NWP) models and extrapolation-based techniques, both of them playing

an effective and complementary role in SQPF. The NWP method, simulating the generation, growth,

and disappearance of thunderstorms based on physical aspects of related atmospheric processes,
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is widely used in short and long period precipitation forecasts around the world [1]. However, due to

sensitivity to assimilation algorithms, initial condition, and resolution, the NWP method has limitations

with respect to short-term prediction of small-scale storms [2,3]. To offset the limitations of the NWP,

extrapolation-based precipitation forecasting is introduced to forecasting the very short-term and

small-scale precipitation storms. Compared to NWP, extrapolation-based precipitation nowcasting

skills are more pronounced, especially in the first few hours of the storm events occurrence [4].

The extrapolation-based QPF algorithms, often based on the extrapolation of the radar reflectivity

data or remote sensing data, can produce a reliable forecast with high spatial and temporal resolution

in a very short time (0–2 h) [2,5–8]. Extrapolation-based QPF has developed quickly with the advance

of the observed skill and computing techniques. Recently, a number of extrapolation-based QPF

algorithms have been developed for hydrology and meteorology. These algorithms include the

thunderstorm identification tracking analysis nowcasting (TITAN) algorithm [5] and the storm cell

identification and tracking (SCIT) algorithm [9]. Moreover, the tracking of radar echoes by correlation

algorithm (TREC) has been integrated into the National Weather Service (NWS) Warning Decision

Support System (WDSS) to improve weather service. Recently, the optical flow (OF) algorithm

is developed to provide enhanced nowcasting services to the public in Short-range Warning of

Intense Rainstorms in Localized Systems (SWIRLS) in Hong Kong [10]. The Auto-Nowcast System

(ANC) developed by the National Center for Atmospheric Research (NCAR) can produce time- and

space-specific 0–1 h nowcasts of convective storm location and intensity [11]. In addition, the Integrated

Nowcasting through Comprehensive Analysis (INCA) System is also widely used in some Europe

countries and many Chinese provinces [12].

In general, extrapolation-based QPF algorithms are classified into two categories based on the

level of the information extracted from the reflectivity data: pixel-based method and object-based

method [13]. Both of the algorithms have been discussed in the literature [2,5,14–16]. The object-based

method uses the image segmentation and storm identification techniques to treat radar images as

a set of disjointed storm-patch regions to produce reliable nowcasting. However, it has a limitation in

tracking small-scale storms and rapidly developing storm-patches. Furthermore, feature extraction and

identification are the main problems with the object-based method, because of the complex and flexible

characters in the storms. The pixel-based method considers the motion between two consecutive radar

images and extrapolates the observations at the pixel level [13]. Pixel-based nowcasting algorithms are

widely used in the nowcasting systems [2,7,14,17]. However, the pixel-based algorithms often mislocate

rainy events because of the coarse spatial resolution of the radar images, and may introduce large

uncertainty into the nowcasting system or overestimate the storm location. Overall, both pixel-based

and object-based approaches have limitations for tracking small-scale (usually fast-moving) severe

thunderstorms, in which storm location and intensity change very quickly in the lifetime. Accuracy is

a critical problem in the nowcasting system. Therefore, it is necessary to develop a new nowcasting

algorithm that is able to obtain higher accuracy and can intensively track the advection and precisely

forecast the rainfall location and intensity. This new algorithm attempts to track the storm on the

subpixel level, and to provide a more reliable forecast for real-time hydrometeorological applications.

Subpixel techniques are usually used to increase the spatial resolution in tracking tasks. Subpixel

motion estimates, which provide better accuracy than the integer pixel, have been widely used

in object tracking [18,19]. Subpixel motion estimation uses the interpolation operation to get the

in-between pixel’s value. However, the subpixel technology used in object tracking often yields many

discrete points [20]. To get a continuous image in the forecasting process, it must redistribute and

interpolate motion estimates to neighboring grid points. Both redistribution and interpolation lead

to the degradation or loss of small-scale features, which are known as implicit numerical diffusion

or false dissipation [17]. At the same time, the key to redistribution is how to select the optimum

radius of advecting influence: too large or too small will lead to the occurrence of the error. This study

proposes a new method in storm tracking on subpixel level using pyramid Lucas–Kanade optical flow

technology (PLKOF), which can provide accurate motion estimates.
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The optical flow (OF) method, which evolved from determining the motion of objects identified

by a series of images, was widely used in the subpixel tracking [18,20–22]. The OF algorithm can

handle successive images in short time intervals, and has been applied successfully in computer vision

tasks. Due to its efficiency in tracking moving objects, the OF algorithm has been used in rainfall

forecast, and has been proven to be an effective algorithm in precipitation nowcasting [7,23]. However,

the OF method still suffers from two limitations: firstly, the extracted wind fields are easily chaotic,

due to their dependence on a maximum and statistically noisy operation. The solution of this problem

is that the OF tends to smooth the image and impose a maximum deviation from a global motion

vector [24]. Secondly, the OF has an “aperture” problem [25], which means that it is impossible to use

subgrids to estimate the movement that is smaller than the solid grid, and lead to the forecast image

discontinuity. To overcome these two problems, a new scheme is proposed based on location smooth

process in subpixel scale in this study, i.e., subpixel-based PLKOF (SPLK), which can achieve higher

accuracy and robustness. Experiments with radar data observed in eight rainfall storms indicates that

the SPLK shows higher accuracy than the traditional pixel-based PLKOF algorithms.

This paper is organized as follows. The detailed explanations of the SPLK algorithm are introduced

in Section 2. The data and the methodology used to evaluate the new method performance are described

in Section 3. The validation results are shown and discussed in Section 4. Summary and future works

are given in Section 5.

2. Methodology

Traditional extrapolation-based QPF algorithms should consist of a tracking and forecasting

process [26]. To obtain a high accuracy nowcasting result, this study used the subpixel technique for

the tracking and forecasting process. In the tracking process, the subpixel-based pyramid optical

flow technique is introduced, and the subpixel tracking method brings sub-displacement and

subvalue. In the forecasting process, the subpixel value is extrapolation with the liner schema.

Finally, the subpixel value is redistributed to the pixel level, and interpolated to obtain the continuity

forecasting images. Additionally, radar image contains insufficient information or noise, and the

velocity computed by the subpixel-based optical flow method is not precise. Therefore, this study uses

a smooth constraint to the velocity field to increase the accuracy of short-term nowcasting.

The input and processing steps of SPLK is shown in Figure 1. Detail descriptions of the different

steps are given in Sections 2.1–2.3.

Firstly, the process of SPLK begins with the input of two successive radar rainfall images,

and then data pre-processing is performed, i.e., filtering or smoothing with low-pass filters. Thirdly,

the advection movement vectors (U, V) are tracked between two successive radar images using the

subpixel-based PLKOF technique, which includes two substeps: build the Gaussian pyramid of

the images and use the subpixel PLKOF technique to estimate the subpixel velocity field. Fourthly,

use a linear method to extrapolate the rainfall and obtain subpixel value. Fifthly, two substeps are

included: redistribute the subpixel value to the pixel level and use the interpolation method to

obtain the continuity forecasting images. Finally, evaluate the performance of SPLK using traditional

pixel-based and object-based verification algorithms. Details of these techniques are given in the

following subsections.
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Figure 1. Flow chart of the SPLK algorithm.

2.1. Extrapolation-Based Nowcasting Algorithm

Severe thunderstorms are usually associated with small-scale, fast-moving features, and the shape

changes with the time quickly. These thunderstorms often bring in heavy rain and lead to lots of

flash floods. The advection-based nowcasting algorithm is expected to accurately predict these storms’

movements and future positions.

In general, data-driven extrapolation-based nowcasting algorithm often assumes that (1) the track

is straight in a short time; and (2) previously-obtained information can be used to predict the storm

trend in the next image.

Spatial scale is a critical factor in storm prediction and precipitation nowcasting. This study

compared three spatial-scale nowcasting models: tracking of radar echoes by correlation (TREC),

pixel-based QPF with PLKOF (PPLK), and subpixel-based PLKOF (SPLK). The first model is used

widely in QPF and nowcasting systems [27,28]. The second model was proposed by Liu in 2015 [7].

The last one is a new algorithm that is introduced in this paper.

Tracking of radar echoes by correlation (TREC) is the most common technique for QPF, and

has been used successfully in nowcasting [27,28]. It uses two consecutive radar images to determine

a displacement vector and identify the most matching locations based on dividing the entire domain

of imagery into same-size windows through maximizing the correlation coefficient. The details of the

TREC used in this study are shown in Tuttle [27].

The pixel-based short-term QPF using PLKOF algorithm (PPLK) was first introduced by Liu

in 2015. This algorithm was a pixel-based QPN method. The PPLK algorithm comprises three

processes, including: (1) using the PLKOF model for tracking the motion of storms on the pixel

level; (2) extrapolating the rainfall using a liner-based method which considers both the precipitation

advection and change in rainfall intensity pixel by pixel; (3) interpolation based on the spatial–temporal

characteristic of storm patches. More details of the PPLK can be found in Liu [7].
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2.2. Subpixel Nowcasting Algorithm

2.2.1. Subpixel-Based Tracking with the Pyramidal Lucas–Kanade Optical Flow Model

Traditional optical flow estimates the motion field based on pixel level. However, the displacement

of the precipitation regimes is not usually coincident with integer pixels, but the combination of several

integer pixels and a subpixel (i.e., 2.3 pixels). If we treat the displacement as pixel level, it will

introduce large errors into the motion tracking. To improve the accuracy, the subpixel-based pyramidal

Lucas–Kanade optical flow (PLKOF) technique is introduced for tracking the subpixel motion [29].

Traditional Lucas–Kanade optical flow method introduces local constraints to construct an optical

flow method to remedy the global smoothness [22]. The algorithm determines the optical flow as

a solution of the following partial differential equation:

∂I

∂x
U +

∂I

∂y
V +

∂I

∂t
= 0, (1)

where U and V denote the velocities in the x and y directions respectively, I(x, y, t) is the brightness

of the pixel location on (x, y) at time t. Equation (1) (optical flow constraint equation, OFC) has two

unknown variables that cannot be solved if no additional condition is provided. Lucas–Kanade optical

flow utilizes the local differential method to calculate the movement of the pixel with the assumption

that the optical flow remains constant in small range neighboring. Thus, in each local region Ω it

minimizes the following equation:

∑ W2(x)[∇I(x, t).v + I(x, t)]2 = 0, (2)

where W(x) is a window function, and it has greater influence on neighborhood center than perimeter,

and v = (U, V)T . Equation (2) can be solved with following Equation (3):

ATW2 AV = ATW2b, (3)

where A = [∇I(x1), . . . ,∇I(xn)]
T ; b = −(It(x1), . . . , It(xn))

T , and Equation (3) can be solved in the

following Equation (4):

V = [A TW2 A
]−1

ATW2b (4)

Equation (4) is calculated in closed form with ATW2 A is a nonsingular matrix, as shown in

Equations (5) and (6):

ATW2 A =

[

∑ W2(x)I2
x(x) ∑ W2(x)Ix(x)Iy(x)

∑ W2(x)Ix(x)Iy(x) ∑ W2(x)I2
y(y)

]

(5)

ATW2b = −

[

W2 Ix(x)It(x)

W2 Iy(x)It(x)

]

(6)

Although this local scheme is rapid and performs well when compared with the global scheme [30],

it still has some troubles in handling fast-moving objects and large-scale movement because of the

optical flow constraint equation. To overcome this limitation, Gaussian pyramid technique was

applied [31]. The pyramid optical flow derives the flow field using pyramid image with every level.

The key process is to construct a pyramid with image sequence, in which an image in high-resolution

is sampled into a low-resolution image [32] (Figure 2). The Gaussian pyramid construction includes

two steps: first, Gaussian smoothing is applied on the images; second, the image is down-sampled

to obtain the resampled images. The resampled images compute the higher-level from the low-level

using the function.
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݀௅ = [݀௫௅, ݀௬௅]	ݒ௅ିଵ = (ܷ௅ିଵ, ܸ௅ିଵ)் −

௅ିଵݒ	 = (ܷ௅ିଵ, ܸ௅ିଵ)் = ൫2(ܷ௅ + ݀௫௅), 2(ܸ௅ + ݀௬௅)൯)்
−

− ݒ
ݒ = (ܷ, ܸ) = (ܷ଴ + ݀௫଴, ܸ଴ + ݀௬଴)(ܷ, ܸ) (ܷ, ܸ)

Figure 2. The constructs of Gaussian pyramid in which an image in high-resolution (L = 0) is sampled

into low-resolution images (L = 1, 2, 3). The pyramid images built in a recursive pattern using the

function (7) as computing I1 from I0, then computing I2 from I1, and so on. I0 is the original image

with the highest resolution.

IL(x, y) = 1
4 IL−1(2x, 2y)

+ 1
8

(

IL−1(2x − 1, 2y) + IL−1(2x + 1, 2y) + IL−1(2x, 2y − 1)

+IL−1(2x, 2y + 1)
)

+ 1
16

(

IL−1(2x − 1, 2y − 1)

+IL−1(2x + 1, 2y + 1) + IL−1(2x + 1, 2y − 1)

+IL−1(2x − 1, 2y + 1)

(7)

where L is the level of the pyramid, L = 0, 1, 2 . . . I0 is the original image with highest resolution.

Traditional PLKOF often deals with pixel level motion tracking. To get the subpixel accuracy,

all computation should be kept at the subpixel level. The procedure of subpixel-based PLKOF method

can be described as follows:

(a) Construct, recursively, a Gaussian pyramid composed of the two radar images using Equation (7).

The level value L is set as four.

(b) Compute the subpixel value using bilinear interpolation method between integer pixels at each

level, which is critical to obtaining optical flow in subpixel accuracy.

(c) Initialize the guess of the top-level optical flow: vLm =
(

ULm, VLm
)

= (0, 0)T .

(d) Let L = Lm.

(e) Use the standard Lucas–Kanade algorithm Equations (3)–(6) to compute the residual optical flow

dL =
[

dL
x , dL

y

]

at level L.

(f) The optical flow vL−1 =
(

UL−1, VL−1
)T

at level L−1 can be estimated with the following

Equation (8):

vL−1 =
(

UL−1, VL−1
)T

=
(

2
(

UL + dL
x

)

, 2
(

VL + dL
y

))

)T . (8)

The coefficient of 2 means the image size of the L − 1 layer is twice the size of the L layer, either on

the x-axis or the y-axis.

(g) Let L = L − 1, and go to step (e) and loop execution step (e) to step (f) until L = 0.

(h) In the end, the optical flow v at level L = 0 (original image) is estimated with the following

Equation (9):

v = (U, V) = (U0 + d0
x, V0 + d0

y). (9)

(i) Smoothness constraint: the (U, V) obtained in step (h) is sensitive to noise, and the velocity field

must be smoothed. Here, the velocity field (U, V) obtained above is smoothed with the Bowler

smooth scheme based on the average of the eight nearest neighbors [23].

The advection velocity of rainfall objects can reach a maximum of 130 km/h [33]. Therefore, a rain

pixel can move 13 km in the six-minute interval between successive images, which is equivalent to
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13 pixels on the 1 km grid. Thus, if the precipitation velocity field is larger than 13 pixels, then the max

threshold is selected for nowcasting.

The subpixel-based PLKOF used here can track the advection motion at higher accuracy than the

traditional PLKOF because of the float type velocity rather than integer velocity. When the subpixel

velocity field is diagnosed, it is required to be kept constant for the whole forecast time. That is, it is

assumed that rainfall patterns are adverted as stationary motion.

2.2.2. Rainfall Extrapolation

Once the velocity field is obtained, an advection scheme to estimate the forecast precipitation

rate will be used to do extrapolation for nowcasting. As mentioned in the literature, the advection

schemes include forward scheme and the backward scheme [17]. In the forward advection scheme,

the advected rainy intense value is needed to redistribute the subpixel value to the neighboring integer

grids. In the backward scheme, the interpolation technique must be used to the integer grids value at

the predicted origin. Only forward schemes maintain mass conservation [17].

To estimate the decay and growth of the storm evolution, it is assumed that the precipitation

intense changes linearly which can be estimated by two consecutive images. In addition, the motion

field is assumed to be kept unchanged for the entire forecast period. The proposed algorithm (SPLK)

uses the linear extrapolation technology and the velocity field (U, V), which is calculated in the

previous section for forecasting the storm motion. Figure 3 presents the schematic of extrapolation for

three-time level advection based on linear method. In the forward scheme, it starts at a round number

pixel P (at time t) and moves them downstream to the point Q (at time t + ∆t), whereas on a backward

scheme, we advect upstream and estimate the point O (at time t − ∆t). Generally, both O and Q do not

coincide with the integer grid point exactly and they become subpixels. And then, the redistribution

and interpolation are require to be processed for these subpixels. The predicted rainfall intensity and

location at time t + ∆t can be estimated according to previous time steps. The extrapolation scheme

can be described as follows [2]:

(ܷ, ܸ)
ݐ ݐ + ݐݐ∆ − ݐ∆

ݐ + ݐ∆

ݐ − ݐݐ∆ + Figureݐ∆ 3. The schematic of extrapolation for three time level advection based on the liner method.

The black solid curve trajectory denotes that from point O at time t − ∆t to point P, and reaches Q at

time t + ∆t. The point P is an integer pixel, but the point O and Q often are not integer pixels.

Predicted rain rate:

Rt+∆t(xt+∆t, yt+∆t) = min{Rt(xt, yt,) + ∆R, threshold} (10)

Predicted rain rate trend:

∆R = Rt(xt, yt)− Rt−∆t(xt−∆t, yt−∆t) (11)

Predicted location:

(xt+∆t, yt+∆t) = (xt, yt) + ∆(xt, yt) (12)
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Predicted displacement:

∆(xt, yt) = VR × ∆t (13)

in which Rt+∆t(xt+∆t, yt+∆t) (mm/h) is the predicted rain rate at the subpixel level whose locations

are on (xt+∆t, yt+∆t) at time t + ∆t, and Rt(xt, yt) is the rain rate at time step t corresponding to the

location (xt, yt). ∆t is the time interval. VR = (U, V) is the velocity of the rain point form t − ∆t

to t, which has been diagnosed in Section 2.2.1 and remains constant for the entire forecast period.

The threshold is the maximum possible rain rate of 50 mm/h.

Consider that the point O is not normally an integer pixel, and the image brightness value

(the rainfall rate) is unknown, which is critical for estimating the rain rate trend ∆R. Therefore, it is

necessary to compute the rainfall rate of point O which is not an integer pixel, but a subpixel. In order

to compute the rainfall rate at a subpixel location, we propose to use the bilinear interpolation method.

The process is as follows.

Let L be a generic pyramid level, and the rainfall rate of point O is Rt+∆t(xt+∆t, yt+∆t) where

xt+∆t, yt+∆t are not integers, and let x0, y0 be the integer parts of xt+∆t, yt+∆t. Let ax, ay be the two

reminder values, then we get:

xt+∆t = x0 + ax, (14)

yt+∆t = y0 + ay. (15)

The Rt+∆t(xt+∆t, yt+∆t) can be diagnosed by a bilinear interpolation scheme from the original

image rain rate.

Rt+∆t(xt+∆t, yt+∆t) = (1 − ax)
(

1 − ay

)

Rt−∆t(x0, y0) + ax

(

1 − ay

)

Rt−∆t(x0 + 1, y0)

+(1 − ax)ayRt−∆t(x0, y0 + 1) + axayRt−∆t(x0 + 1, y0 + 1)
(16)

2.2.3. Redistribution of Subpixel Value to Integer Pixel

Since the forecast point Q is often not always an integer pixel (Figure 3), it is necessary to

redistribute the subpixel value to the integer pixel that is critical for rebuilding the forecast image.

The challenge associated with redistribution is choosing the optimum radius of influence. An extensive

series of experiments have shown that a 3 × 3 pixels window gives the best performance and robustness

for the model. The redistribution schema is shown in Figure 4. In order to explain the process, we take

the red dot as an integer pixel center in the 3 × 3 pixel window, and the green diamond is the

extrapolation point estimated by the Equations (10)–(13). The redistribution process is as follows.

(a) If there is only a green point in the windows (Figure 4a), determine whether the point located in

the grid of red point; if yes, assign the green point value to the red point, else, desert this green

point and keep the value of red point unchanged.

(b) If there are two green points in the windows, determine whether the two points are located on the

same side of the red dot grid (Figure 4b), for example, the region of the purple dot line. If these

green points are not located on the same side, estimate the value of the red point using the two

points and the inverse distance method, else, desert these green points.

(c) If there are more than three green points in the windows (Figure 4c), estimate the value of the red

point by using the surrounding points and the inverse distance method.

(d) Repeat the process until all the pixel values surrounded by the red point are identified and

estimated. The redistribution process refines the motion field up to pixel level.
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Figure 4. The redistribution process of the SPLK algorithm. The blue dot and red dot denotes an

integer pixel in forecast image, and the green diamond is the extrapolation points. (a) There is only an

extrapolation point around the red point; (b) There are two extrapolation points around the red point;

(c) There are three extrapolation points around the red point.

2.2.4. Spatial Interpolation

The forecasting image is discontinuous after the procedure of redistribution, since redistribution

deals only with an individual pixel, and there are many “holes” in the forecast image. To address the

problem, this study uses the spatial interpolation proposed by Liu [7], and makes some modifications

to get a better result, and faster. The implementation process is as follows.

(a) Identify the pixels in the extrapolation image which is neighboring in the original image.

(b) If the non-data pixels in the extrapolation image are in the neighbor of the rainy pixels (use the

3 × 3 windows), then use the rainy pixels, and the inverse distance method to calculate the

non-data pixels’ value. Then, assign the value to these non-data pixels.

(c) Repeat steps (a)–(b) until all non-data pixels, which are surrounded by the neighboring rainy

pixels, are identified and estimated. These pixels are located in the storm spot.

(d) Estimate the pixels which are located on the edge of a storm patch using only three neighboring

rainy pixels by the same method as used in the four rainy points as mentioned in steps (b)–(c).

2.3. Verification

2.3.1. Pixel-Based Verification

To assess the overall performance of the proposed algorithm, traditional pixel-based verification

scheme has been done to evaluate the performance of the forecast values. Six indexes are used to

verify the proposed algorithm, including (1) correlation coefficient (CORR); (2) root mean square error

(RMSE); (3) bias (BIAS); (4) probability of detection (POD); (5) false-alarm ratio (FAR), and (6) critical

success index (CSI). These indexes measure the agreement between observations (obs) and estimates

(est). These indices are defined as Equations (17)–(23), [34].

(1) Correlation coefficient (CORR):

CORR =
∑

N
i=1((PRobs)i(PRest)i)−

[

N
(

PRobs

)

PRest

)

]
√

[

∑
N
i=1(PRobs)

2
i − N

(

PRobs

)2
][

∑
N
i=1(PRest)

2
i − N

(

PRest

)2
]

(17)

The CORR ranges from [−1, 1], where values close to 1 indicate good performance.

(2) Root mean square error (RMSE):

RMSE =

(

1

N

N

∑
i=1

(PRest(i)− PRobs(i))
2

)0.5

(18)

RMSE varies between 0 and ∞, and the smaller values correspond to better performance.

This index provides information about the whole performance of the forecasting skill.
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(3) Bias (BIAS):

Bias =
∑

N
i=1[PRest(i)− PRobs(i)]

∑
N
i=1 PRobs(i)

× 100% (19)

The bias measures the algorithm’s tendency of beyond (or underforecast) the rainy intense or rain

area. A value close to 1 means an unbiased forecast, where forecast value coincides with that observed.

In Equations (17)–(19), PRest and PRobs represent estimated and observed rain rates, N denotes

the total number of rain pixels.

(4) POD, FAR, CSI:

The POD, FAR, CSI are defined as

POD =
nh

n f + nh
, (20)

FAR =
n f a

n f a + nh
, (21)

CSI =
nh

n f + nh + n f a
, (22)

where n f is the number of failures, nh is the number of hits, and n f a is the number of false alarms.

By using a series of thresholds, the statistical indexes assess the ability to capture the rainy event

occurrences at various rates. In this study, we set the intensity thresholds as 1 mm/h, 5 mm/h,

10 mm/h and 20 mm/h, representing drizzle, light, medium, and heavy rainfall, respectively [35].

2.3.2. Object-Based Verification

SAL (structure, amplitude, and location) is an object-based spatial verification method, which includes

three distinct components that consider aspects of the structure (S), amplitude (A), and location (L) of

the precipitation field [36]. The definition of the parameter is as follows:

A =
D(Rmod)− D(Robs)

0.5[D(Rmod) + D(Robs)]
∈ [−2, 2]. (23)

Here, D(R) represents the domain average of R.

Vn = ∑(i,j∈Rn)

Rij

Rmax
n

, (24)

S =
V(Rmod)− V(Robs)

0.5[V(Rmod) + V(Robs)]
∈ [−2, 2], (25)

where Rmax
n denotes the maximum precipitation value R.

L1 =
|x(Rmod)− x(Robs)|

d
, (26)

L = L1 + L2 ∈ [−2, 2] (27)

where d represents the largest distance between two points, x(R) denotes the center of the R in

the domain, and L2 denotes the average distance between the center of R in the domain and the

individual objects.

The precipitation objects are defined based on a given threshold. The choice of the threshold is

critical to the performance of SAL. According Wernli (2008), the definition of threshold is taken as

TH = R95 × 1
15 , where R95 denotes the 95th percentile of all grid point values in the domain. In this

study, the 2 mm/h has been chosen to identify the precipitation in the SAL verification. Also, in the
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following figures, single forecasts are represented as a point in coordinates S (horizontal axis) and A

(vertical axis), and colors indicate the values of L. A perfect forecast has all of the component values

close to zero [36].

3. Data

The SPLK method was used to forecast the precipitation in next 2 h with the multi-radar

multi-sensor (MRMS) QPE products. The MRMS system is developed by the National Severe Storms

Laboratory (NSSL) and recently implemented at the National Centers for Environmental Prediction

(NCEP) [37]. MRMS is developed using severe weather product components from the Warning

Decision Support System–Integrated Information (WDSS-II) and using QPE product components

from the National Mosaic and Multi-Sensor QPE (NMQ) system. The MRMS integrates about

180 radars, about 7000 gauges, and atmospheric environmental data across the Conterminous

United States (CONUS), and provides a suite of QPE products with high spatial resolution

of 0.01◦ × 0.01◦ and temporal resolution of 2 min. The MRMS provides four types of QPE

products which include radar-based QPE, gauge-based QPE, local gauge bias-corrected radar QPE,

and gauge-and-precipitation climatology-merged QPE. A detailed description of these four types

of QPE products can be found in the study by Jian Zhang [37]. In this study, considering the

high-resolution and rapid update estimation of spatial precipitation distributions, we use the radar

based QPE (Q3rad) produce, which uses multiple R–Z relationships and provides surface precipitation

rate (mm/h) every 2 min in the CONUS. Considering the consumption of computation, this study

applied 600 × 600 grid images with a resolution of 0.01◦ × 0.01◦ for each 6 min interval, to evaluate

the use of SPLK in the storm areas.

To assess the efficiency and robustness of the proposed method, we chose two study areas in

COUNS, as follows (Figure 5).

600 × 600

 

80°	W − 86°	W		38°	N − 43°	N
		94°	W − 100°	W32°	N − 37°	N

−

Figure 5. Study areas in the CONUS, (a) the boundary of the United States and the location of the

study areas, (b) the DEM (Digital Elevation Model) of Ohio, (c) the DEM of Oklahoma.

The first study region is Oklahoma State. This region extends between 80◦ W–86◦ W and between

38◦ N–43◦ N, and usually suffers from severe weather (e.g., severe thunderstorms, large hail and

tornadoes). Since Oklahoma lies between zones of differing prevailing temperature and winds, weather

patterns within the state can vary widely over relatively short distances, and can change drastically in

a short time.

The second study region is Ohio State. It extends between 94◦ W–100◦ W in longitude and

between 32◦ N–37◦ N in latitude. The highest temperature in the state is 38 ◦C in summer and the
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lowest temperature in winter is −29 ◦C. The frequent contact between the dry and cold air in Canada,

and the warm and humid air in the Gulf of Mexico leads to the frontal precipitation in this region.

The annual precipitation is 965 mm.

In this study, eight significant precipitation events within the CONUS area between 2015 and 2016

were selected to test the proposed algorithm. The main features of these events can be seen in Table 1.

These storm events all cause damage to life or property with the severe winds, flash flooding, and so

on. Moreover, these storms are diverse geographically and in terms of the storm types, including large

scale and small scale, slow movement and fast movement. Considering the efficiency and typicality,

four storm events are highlighted according to their specific features (Figure 6). The first event

(18 October 2015) is a fast-moving, large-scale frontal precipitation storm. An intense low-pressure

system was located over Oklahoma. Warm and cold fronts moved and led to widespread precipitation

in Oklahoma. The shape of the precipitation system changes rapidly. Due to the complicated structure,

it is difficult to track and forecast (Figure 6a). The second storm (3 June 2016) was large-scale but

moved slowly (Figure 6b). This storm, with a pronounced warm sector, has led to intense precipitation

in the area with as much as 100 mm of the rain falling in 14 h. The maximum temperature was about

33 ◦C. The third event (15 August 2015) is a small-scale and fast-moving convection event with heavy

rainfall in a few hours. This storm led to serious flash-flood in the local area (Figure 6c). The fourth

storm (1 August 2015), started with a localized convective precipitation system, and broke into several

smaller parts that moved, rotated, and disappeared rapidly in a few hours (Figure 6d).

	33	Ԩ

 

Figure 6. Four selected severe storms: (a) Storm 1: 0300 UTC 18 October 2015, (b) Storm 2: 1150 UTC

3 July 2016, (c) Storm 3: 1450 UTC 15 August 2015, (d) Storm 4: 0000 UTC 1 August 2015.
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Table 1. Summary of precipitation event data collected in the experiment used for nowcasting evaluation.

Storm Event
Start-Time

(yyyymmdd-hhmm)
Spatial Coverage Mean Velocity Description

T1 20151018-0300 94◦ W–100◦ W, 32◦ N–37◦ N 30 km/h Frontal rain
T2 20160603-1150 80◦ W–86◦ W, 38◦ N–43◦ N 40 km/h Convective rain
T3 20150815-1450 94◦ W–100◦ W, 32◦ N–37◦ N 60 km/h Organized thunderstorm
T4 20150801-0000 94◦ W–100◦ W, 32◦ N–37◦ N 10 km/h cyclonic
T5 20150920-2030 94◦ W–100◦ W, 32◦ N–37◦ N 50 km/h Frontal rain
T6 20150801-1200 94◦ W–100◦ W, 32◦ N–37◦ N 20 km/h Convective rain
T7 20160816-1240 94◦ W–100◦ W, 32◦ N–37◦ N 36 km/h Convective rain
T8 20160619-0840 94◦ W–100◦ W, 32◦ N–37◦ N 40 km/h Localized thunderstorms

4. Results and Discussion

The performance of the proposed SPLK algorithm is evaluated with two approaches. The first

approach evaluates the performance of the proposed algorithm to forecast four highlight events.

The other approach represents the SPLK comparison with two nowcasting methods (TREC and PPLK).

The results of the experiment will be discussed below.

4.1. The Performance of SPLK in the Selected Events

The performance of proposed SPLK in the selected events is presented in the Figures 7 and 8.

A major concern regarding any nowcasting algorithm would be its ability to accurately predict storm

advection and the so-called position. To quantify the skill of the SPLK algorithm regarding its accuracy

to predict storm position, CORR and RMSE indexes are used.

Figure 7 presents the CORR and RMSE of SPLK in four selected storms events. SPLK algorithm

shows decreasing CORR and increasing RMSE as the leading time pass. It is noted that the CORR

reaches 0.7 and the RMSE is less than 3 mm in the first 30 min for storm1, storm3, and storm4. With the

lead-time increasing, the forecasts became less skillful. Particularly, it is clear that the SPLK performs

best in the first 30 min in storm4, and SPLK shows highest CORR after 40 min in storm1. This indicates

that the SPLK method is more skillful in nowcasting the small-scale and fast-moving storms in very

short time (e.g., 30 min), and the SPLK is suitable for the large-scale, fast-moving characteristic of

storm in the whole forecast time, especially after 30 min. The storm2 and storm3 have shown a similar

trend of scores in the forecast time. The storm2 data demonstrates a slightly better CORR than storm3.

The RMSE of storm2 is the highest during the whole forecast period, almost reaching 7 mm/h in

120 min. Generally, these results suggest that SPLK algorithm is skillful in the fast-moving and

small-scale storms with complicated processes, but a little poor for the large-scale storms. This result

also confirms the strong points of the pyramid Lucas–Kanade optical flow algorithm in tracking the

fast-moving objects.

Figure 8 presents the three statistical indexes (POD, FAR, CSI) of the average of the four events

using the SPLK method at +30, +60, +90, +120 min lead time with different rain-intensity thresholds

(1, 5, 10, 20 mm/h). As shown in the figure, SPLK has a good performance in the whole forecast time

with the minimum threshold (1 mm/h) with the index of POD all over 0.5. With the increasing of the

threshold, the precipitation detection skills diminish, especially for the maximum threshold (20 mm/h),

the POD only 0.2. This is because high intensity precipitation usually connects with tropical cyclones

or convective storm development in a highly unstable atmosphere. This is typically on a smaller scale,

and more unpredictable than low intensity precipitation [15]. In terms of the forecast time, the SPLK

algorithm provides promising predictions in the first 30 min (Figure 8a). The POD with different

thresholds reach 0.45 to 0.7, indicating that the rainfall patterns are well captured at the beginning

of the forecast period, especially at thresholds less than 5 mm/h. It may be that the deformation

of shape is too large to predict. As the threshold and lead time increase, the FAR increases rapidly

(Figure 8b), which means that during intense precipitation events, it is easy to overestimate the rainy

pixels. In terms of CSI (Figure 8c), with the increasing of the forecast time, the value decreases sharply,
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especially in a high threshold. This is because that intensity of rainfall is usually associated with

tropical cyclones or convective development in highly unstable atmosphere, and thus, difficult to

predict when compared to low-intensity rainfall [15].

94°	W − 100°	W, 32°	N − 37°	N80°	W − 86°	W, 38°	N − 43°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N

 

Figure 7. CORR and RMSE of SPLK in four selected storms. (a) The CORR versus lead time, in which

the larger values represent a better prediction; (b) The RMSE versus lead time, in which the smaller

values represent a better prediction.

94°	W − 100°	W, 32°	N − 37°	N80°	W − 86°	W, 38°	N − 43°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N94°	W − 100°	W, 32°	N − 37°	N

 

Figure 8. Contingency statistics of SPLK for (a) probability of detection (POD); (b) false-alarm ratio

(FAR); and (c) critical success index (CSI). These indexes measure the agreement between observed and

nowcasting rainfall estimates.

Table 2 presents the SAL values for the four selected events with the threshold of 2 mm/h in

various forecast time. It can be seen that all components of SAL are fairly small for the first half hour,

indicating a high-quality forecast in all cases. As the lead time increases, the value of SAL increases

quickly, indicating that SPLK overestimates the occurrence of precipitation. It is noted that in all case

studies, the value location (L) is low in the whole forecast period (average L = 0.105), which means that

the SPLK captures the location of the precipitation accurately. The structure (S) values are all greater

than 0, and the mean value reaches 1, which indicates that the SPLK forecast does not capture the

localized, and rather peaked characteristics of the storms. Also, there is a general overestimation of

the precipitation amount (average A = 1.06). In terms of the average scores, storm3 shows the best

performance, where most of the components are lower than others, and the worst is storm4.

As shown in the previous result, the SPLK has a good performance in the selected events,

especially in the first 30 min, but decreased very quickly in the last lead time. It is confirmed that

the extrapolation-based QPF forecast skill decreases quickly with the increasing of forecast time [1],

and the decrease in skill is because of the characteristic and developing process of the rainfall [38].
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Table 2. The SAL values for the four selected storms with the threshold of 2 mm/h. The lead time

including 30 min, 60 min, 90 min, and 120 min. The last four rows are the average values.

Lead Time Case S A L

30 min

storm1 0.2660 0.5022 0.0604
storm2 0.3996 0.4864 0.0235
storm3 0.3498 0.5075 0.0104
storm4 0.4908 0.9372 0.0839

60 min

storm1 1.1044 0.9994 0.1276
storm2 1.7340 0.9527 0.0760
storm3 0.5013 0.8488 0.0532
storm4 1.2269 1.1193 0.1347

90 min

storm1 1.5339 1.3932 0.1587
storm2 1.6550 1.0625 0.1382
storm3 0.5277 1.0615 0.0635
storm4 1.5784 1.4312 0.1480

120 min

storm1 1.4840 1.6312 0.1506
storm2 1.7911 1.2628 0.2407
storm3 0.4945 1.2503 0.0552
storm4 1.5561 1.6578 0.1779

average

storm1 1.0971 1.1315 0.1243
storm2 1.3825 0.9464 0.1163
storm3 0.4808 0.9118 0.0489
storm4 1.2131 1.2864 0.1361

4.2. Comparison of the SPLK with TREC and PPLK Method

To demonstrate advantage of the SPLK over other QPF algorithms, three nowcasting algorithms

(i.e., the SPLK, TREC, and PPLK) are selected for experiments. The comparison results are displayed

in Figures 9–13.

 

Figure 9. Cont.
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Figure 9. The forecast images obtained by three nowcasting methods with lead time of 12 min and

30 min. (a,b) are the radar images at the lead time 12 min and 30 min; (c,d) are the forecast images

using the SPLK methods at the lead time of 12 min and 30 min, respectively; (e–h) are the same as

(c,d) but using the TREC and PPLK methods, respectively.

 

Figure 10. Performance of SPLK, PPLK, TREC in terms of correlation coefficient (CORR) versus lead

time (min) for the four selected precipitation storms : (a) storm1; (b) storm2; (c) storm3; (d) storm4.
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Figure 11. RMSE versus lead time [min] for the four selected precipitation events: (a) storm1; (b) storm2;

(c) storm3; (d) storm4, using SPLK, PPLK, and TREC.

 

≤
≤ ≤ ≤ ≤

Figure 12. The average statistical scores for eight events. (a) POD; (b) FAR; (c) bias versus lead time

using SPLK and PPLK, with the thresholds 1, 10, and 20 [mm/h].

 

≤
≤ ≤ ≤ ≤

Figure 13. The verification results of the forecast with SAL method for the threshold of 2 mm/h and 2 h

lead time. The horizontal and vertical axes of subfigures are S and A parameters, respectively. Single

forecast is represented by marks. Colors show the magnitude of the L parameter (red: L ≤ 0.1, green:

0.1 ≤ L ≤ 0.2, blue: 0.2 ≤ L ≤ 0.5, black: L > 0.5). The median values for the S and A components are

shown as colored lines.
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Figure 9 shows the observed images and the forecast precipitation images derived by three

models (SPLK, TREC, PPLK) at the lead times 12 min and 30 min. The forecast began at 3:00 UTC on

18 October 2015 (Figure 6a) and the time interval is 6 min. The results show that SPLK and PPLK track

advection cell without deformation at the first 12 min, because both of them are using PLKOF to track

the storm. It is clear that the forecast image by SPLK is closer to the original image (Figure 6a), and the

result from PPLK shows more “holes” in the forecast image. The reason may stem from the spatial

interpolation process (Section 2.2.4). The PPLK method estimates the non-date pixels just considering

the condition that non-date pixels located in the square of four rainy pixels as vertices, and the SPLK

method used the two rainy pixels that are located in the 3 × 3 windows. The TREC method using the

correlation coefficient usually overestimated the intensity and location, especially in the intensity area.

However, the forecast images in the 30 min using the SPLK and PPLK method still has the “aperture”

problem, which is an inherent problem from the optical flow.

Figures 10 and 11 show the comparison results for the CORR and RMSE of the four selected

events using three nowcasting methods. According to Figures 10 and 11, the SPLK shows improved

performance in the forecasting time, especially in the first 30 min. Compared with the other algorithms,

the SPLK algorithm performs best, the PPLK is second, and the TREC last.

As shown in Figure 10, SPLK has better CORR than other algorithms in the four storms, especially

in storm1, storm3, and storm4. This indicates that the SPLK method has pretty good performance in

most of the precipitation events.

Figure 11 presents the RMSE of three nowcasting algorithms (SPLK, PPLK, and TREC) in four

precipitation storms. All of the methods show prediction skill decreasing rapidly over the forecast time.

In each case, the RMSE always increased with lead time for all the forecasting methods. Comparing

with the other two methods, the RMSE of SPLK is the lowest among three nowcasting algorithms for

storm1, storm3, and storm4 (Figure 11a,c,d), and especially for storm4, the RMSE only reached 1.2 for

2 h forecast time. This illustrates that SPLK outperforms PPLK and TREC. In Figure 11b, the SPLK and

TREC methods perform compatibly, with very close RMSE values, and show much better skill than

PPLK. Overall, the SPLK algorithm has better performances than PPLK and TREC.

Figure 12 provides the results of the statistical indexes at different intensity levels by comparing

the skill of SPLK and PPLK for the four selected events. It is noted that the ability of the SPLK to

capture the location of rainfall events is superior to PPLK at different intensity levels.

As shown in Figure 12a–c, it is clear to see that the SPLK is more skillful than the PPLK for the

different thresholds. In general, the POD and bias all decrease with increasing lead time (Figure 12a,c).

Furthermore, both SPLK and PPLK show a little improvement with the lower threshold for all the

cases at the first one hour of lead time. This is because the lower threshold can decrease the number

of misses and increase the number of hits. Therefore, the POD and bias with lower threshold are

higher than the larger one. In terms of FAR (Figure 12b) both of two technologies increase sharply in

a higher threshold, and almost reach to 1, because the extrapolation-based QPF tends to overestimate

the intensity and the area of the precipitation events, and leads to a worse index, as shown.

Table 3 presents the average scores of three statistics indexes (POD, FAR, CSI) for all eight events at

different lead times (12 min, 30 min, 60 min, 90 min, 120 min), with a threshold of 1 mm/h. The results

indicate that SPLK performs best compared with the other two methods, with POD improving 20%

compared to PPLK, and 5% compared to TREC for the whole forecast time. The improvement was

obvious for the first hour, based on the POD and the average of POD reaching 0.761, compared to

0.57 of SPLK and 0.719 of TREC. However, beyond 60 min, the performance of SPLK and PPLK are

worse when compared with the TREC, and the average POD of SPLK and PPLK are 0.411 and 0.399,

respectively, slightly lower than the average POD of TREC (0.416). This is because SPLK and PPLK use

the spatial interpolation process, and led to a lot of “holes” regarded as no rain, and led to the rate of

“hits” decreasing while the “false alarms” increased.
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Table 3. The average scores of SPLK, PPLK, and TREC in terms of POD, FAR, and CSI in different lead

time intervals for eight events for the threshold 1 mm/h.

Lead Time
SPLK PPLK TREC

POD FAR CSI POD FAR CSI POD FAR CSI

12 min 0.848 0.182 0.713 0.735 0.227 0.604 0.692 0.253 0.561
30 min 0.746 0.447 0.630 0.533 0.363 0.409 0.723 0.435 0.464
60 min 0.689 0.537 0.527 0.434 0.466 0.315 0.743 0.587 0.361
90 min 0.452 0.793 0.356 0.427 0.580 0.269 0.504 0.750 0.201
120 min 0.370 0.904 0.060 0.372 0.728 0.192 0.329 0.826 0.158
average 0.621 0.573 0.457 0.500 0.473 0.358 0.598 0.570 0.349

Figure 13 shows the variation results with SAL for the threshold of 2 mm/h with 2 h lead time

using the three nowcasting models SPLK, PPLK, and TREC, respectively. It can be seen that the three

models captured the precipitation location (L) quite accurately in the whole forecast time, and the

parameters of L are low in all cases. The SPLK performs best in decreasing the displacement errors.

According to the parameter A (>0), three models all slightly overestimated the precipitation, which is

due to these models using the linear extrapolation schema in the initial process. In terms of S, the results

of three models are varied. The SPLK is best with the mean structure (S) <0.4, suggesting that SPLK is

better capable of capturing information about size and shape of precipitation than other models. The S

of PPLK is negative, with mean value around −1, indicating that PPLK is not good at the prediction of

precipitation structure, and slightly underestimates the precipitation band. TREC shows both negative

and positive S values with median values of S close to −0.4. This indicates the TREC is not stable in

capturing the precipitation. Above all, the SPLK forecast shows the best results in the three nowcasting

models in terms of SAL, with the capability of capturing the precipitation location and structure.

The above analysis reveals that the proposed algorithm SPLK is able to better handle and track

the precipitation events’ efficiency. It can be concluded that SPLK is a reliable precipitation forecast

tool, especially for fast-moving and large-scale events.

5. Summary and Conclusions

Short-term high-resolution quantitative precipitation forecasting (SQPF) at high spatial and

temporal resolutions is critical to the flash-flood warning, navigation safety, and other hydrological

applications. In this study, a high-resolution SQPF algorithm called SPLK has been developed by using

the subpixel method and extrapolation technology. The SPLK model uses the subpixel-based pyramid

optical flow technology to track the convection cell and extrapolate the rainy by liner schema with

subpixel accuracy. Different types of storm events between 2015 and 2016 in CONUS are selected in

this study to evaluate the performance of this model. Both the pixel-to-pixel-based and objective-based

verification methods are used for verification of SPLK. The performance of SPLK was compared with

two other extrapolation-based methods (TREC and PPLK). The results illustrated, so far, indicate the

maximum achievable performance of SPLK for the given case study.

The main finding of this study showed that the proposed SPLK algorithm is suitable for the

short-term high-resolution forecast, and can produce a reliable nowcasting product. Main conclusions

are drawn as follows:

(1) The SPLK can improve the accuracy of precipitation forecasting within the 2 h lead time.

The experiment results (Figures 7 and 8, Table 2) indicate that SPLK has the capability of

improving the predictability of storm positions and intensities with high CORR, and low RMSE

and SAL components. The SPLK shows good performances in complicated storms, especially in

the small-scale and fast-moving storms.

(2) The SPLK achieved better performance than both TREC and PPLK. Compared with the TREC,

SPLK improves the predictability about 15–20% with the measured CORR and RMSE (Figures 10
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and 11), especially in the small-scale severe storms. Compared with PPLK, SPLK shows better

accuracy in both heavy rain events (>20 mm/h) and light rain events (<10 mm/h) with the better

POD, FAR, and CSI during the 2 h lead time (Figure 12).

(3) The SAL verification results indicate that SPLK is superior to PPLK in capturing the precipitation

location (L) and structure (S) with the component values close to zero, and more stable to the

TREC in capturing the precipitation band.

The proposed algorithm SPLK shows good performance in nowcasting selected storm events

with varied characteristics. However, the results also showed that the model contains some challenges.

The main weakness of the model was overestimation of heavy rain. Moreover, this study only focuses

on the algorithm SPLK itself, and this algorithm needs more testing in more complex forecasting

scenarios in different regions, time periods, and weather regimes, with the aim to keep the algorithm

more robust. More work will be put on the deployment of the SPLK in a real-time nowcasting system

for operational tests, and provide the public with better weather service in the near future.
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