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This paper proposes a new approach to subpixel registration, under local/global shifts or rotation, using the phase-difference
matrix. We establish the exact relationship between the continuous and the discrete phase difference of two shifted images and show
that their discrete phase difference is a 2-dimensional sawtooth signal. As a result, the exact shifts or rotations can be determined
to subpixel or subangle accuracy by counting the number of cycles of the phase-difference matrix along the frequency axes. The
subpixel portion is represented by a fraction of a cycle corresponding to the noninteger part of the shift or rotation. The rotation
angle is estimated by applying our method using a polar coordinate system. The problem is formulated as an overdetermined
system of equations and is solved by imposing a regularity constraint. The tradeoff for imposing the constraint is determined by
exploiting the rank constraint leading to a closed-form expression for the optimal regularization parameter.
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1. MOTIVATION

Registration is a crucial step in the analysis and fusion of in-
formation between multiple images. Examples can be found
in remote sensing, robotics, and biomedical imaging, among
others [1–3]. Some applications, such as coding and com-
pression registration, need to be established locally, while
other applications require only global registration. In this
paper, we are particularly motivated by applications that re-
quire registration at subpixel accuracy. An important exam-
ple of such applications is multi-frame super-resolution [4–
20], which aims to combine several degraded low-resolution
images into a single high-resolution image in order to ap-
proach the Nyquist rate.

The key to success in these multiframe super-resolution
techniques is the accurate registration with subpixel pre-
cision. Essentially, subpixel registration is the step that al-
lows merging the samples of the low-resolution data in
a denser grid. In the absence of subpixel registration and
fusion, the super-resolution problem would essentially re-
duce to that of classical deconvolution. Among existing sub-
pixel registration techniques, Fourier domain methods [21–
25] and also closely related spatial domain variations [26]
are an important class of registration techniques that have
gained popularity due to their remarkable accuracy. Most of
these methods are in fact variations of the original phase-
correlation method [27]. For instance, in [21], Foroosh
et al. demonstrated how the method can be extended to
subpixel accuracy, in [25] Stone et al. investigated the ef-

fect of aliasing error, and in [23] Hoge describes how
the shift parameters can be decoupled in the dominant
left and right eigenvectors of the phase-correlation matrix
(not the phase-difference matrix) using its rank-one con-
straint.

This paper revisits the concepts underlying the phase-

correlation method and shows how these methods are inter-

related. By deriving an exact model for the phase difference of

two discrete shifted images, we show that for shifted images

(or for rotated images if we work with polar coordinates) the
discrete phase-difference matrix is a 2-dimensional sawtooth

signal. This in particular leads to a simple solution directly

from the phase-difference matrix in the form of an overde-
termined system of linear equations. The overdetermined na-

ture of the formulation allows for handling random noise. In

the next section, in order to describe the algorithms in the

discrete domain, we will discuss the concepts and the theory

that are commonly borrowed from the continuous domain.

We then argue in Section 3 that the continuous domain rep-

resentation is rather misleading, and that a proper represen-

tation can be derived directly in the discrete domain. Once

an exact model is known, the formulation of the problem

becomes straightforward as described in the subsequent sec-

tions.

Since by changing from Cartesian to polar coordinates

both translation and rotation can be treated in the same

manner, we discuss the background and our formulation in
terms of translation.
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2. BACKGROUND

Consider two continuous signals f1(x, y) and f2(x, y) = f1(x
− xo, y− yo), whose Fourier transforms exist (i.e., are square
integrable). Their cross-power spectrum (also known as the
phase correlation) is then given by

ĉ(u, v) =
f̂1 f̂

∗
2∣∣ f̂1 f̂ ∗2
∣∣ = exp

(
− ixou− iyov

)
, (1)

where the hat sign indicates the Fourier transform and the
asterisk stands for the complex conjugate.

This result follows immediately from the Fourier shift
property, which states that the translations in the spatial do-
main lead to linear phase differences between the two signals
along each frequency axis, that is,1

ϕ̂(u, v) = ∠ĉ(u, v) = xou + yov, (2)

which is a planar surface through the origin. As a result, the
spatial translations can be determined by inverse transform-
ing ĉ(u, v), which leads a Dirac delta function centered at
(xo, yo).

A discrete interpretation of this result is used in practice
for image registration [27, 28], which yields very good re-
sults. In the discrete case, the shift parameters are similarly
determined by inverse transforming the discrete cross-power
spectrum, which yields a unit impulse centered at (xo, yo).
This, of course, is true only for pixel displacements. For shifts
that include subpixel components, additional results are de-
rived in [21].

When applying this approach locally, within a small win-
dow size, the estimation of local motion becomes inaccurate
and dominated by noise. The main cause for this is due to
the fact that the Fourier transform is an operator that cannot
localize signals both in space and frequency. As a result, the
noise process and the aliasing errors, which often are local-
ized at the high-frequency components of the Fourier spec-
trum, become dispersed in the spatial domain upon inver-
sion of ĉ(u, v).

A possible approach to overcome this problem is there-
fore to avoid inverse transforming the cross-power spectrum
and try to estimate the shifts directly in the Fourier domain,
typically by also applying the method within a window of
smaller size and smooth shape [23, 25]. A practical solution
for estimating registration directly in the Fourier domain was
first proposed by Hoge [23]. His method requires the follow-
ing two steps prior to computing the shifts:

(i) a subspace approximation of the noisy phase-
correlation matrix (not the phase difference) to im-
pose a rank-1 constraint,

1 Note that, throughout the paper, we call exp(−ixou − iyov) the phase-
correlation function and ϕ̂(u, v) = ∠ĉ(u, v) the phase-difference func-
tion. Similarly, their discrete counterparts are referred to as the discrete
phase-correlation matrix and the discrete phase-difference matrix, re-
spectively.

(ii) unwrapping of the dominant left and right eigenvec-
tors.

He then estimates the shift parameters using the slopes of
these unwrapped eigenvectors.

It is worth noting that 2-dimensional phase unwrap-
ping is a notoriously ill-posed problem. This is perhaps why
Hoge proposed to perform the unwrapping step on the 1-
dimensional dominant eigenvectors of the phase-correlation
matrix rather than directly on the phase-difference matrix
itself. We will show below that due to the special shape of
the phase-difference matrix, its unwrapped version has to be
rank 2. As a result, the unwrapping process becomes separa-
ble along the two frequency axes. In other words, it reduces to
two 1-dimensional unwrapping steps. Therefore, very good
results may also be found without subspace approximation.
We will also show that even phase unwrapping is an un-
necessary step since we will determine the exact paramet-
ric shape of the discrete phase-difference matrix by examin-
ing the relationship between the discrete and the continuous
cases. This exact relationship allows for determining the reg-
istration parameters by simply fitting a model directly to the
phase-difference matrix.

3. RELATION BETWEEN DISCRETE AND
CONTINUOUS PHASE DIFFERENCES

From (2), the phase difference of the underlying continu-
ous signals has the following representation in the spatial do-
main:

ϕ(x, y) =

∫∫∞
−∞

(
x0u + yov

)
exp(iux + ivy)dudv (3)

= −ixo
dδ(x)

dx
− iyo

dδ(y)
dy

, (4)

where the derivatives are understood in the distributional
sense [29].

Although inverse transforming the phase-difference
function in this way may not be customary, it facilitates our
understanding of the relationship between the continuous
and the discrete phase difference. In particular, this will lead
to an exact parametric model of the discrete phase-difference
matrix, as shown below.

From bandlimited sampling theory and (4), it follows
that the spatial domain representation of a component of the
discrete phase-difference matrix is given by

ϕkl = −i
xo
πk

(
2 sinc

k

xo
− 2 cos

πk

xo

)

− i
yo
πl

(
2 sinc

l

yo
− 2 cos

πl

yo

)
.

(5)
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Figure 1: (a), (b) Two aerial images with some shifts, (c) noisy sawtooth phase-difference matrix corresponding to shifts of (7.3,5.6) pixels,
(d) noisy sawtooth phase-difference matrix corresponding to shifts of (30.5,25.4) pixels, and (e), (f) one row of the phase-difference matrices
shown in (c) and (d), respectively.

On the other hand, note that

iϕkl =
x2
o

π2k2

(
2 sin

πk

xo
− 2

πk

xo
cos

πk

xo

)

+ π
y2
o

π2l2

(
2 sin

πl

yo
− 2

πl

yo
cos

πl

yo

) (6)

=
xo
π

2

2π/xo

∫ π/xo

−π/xo
u sin kudu

+
yo
π

2

2π/yo

∫ π/yo

−π/yo
v sin lv dv.

(7)

It can also be verified that

xo
π

2

2π/xo

∫ π/xo

−π/xo
u cos ku du

+
yo
π

2

2π/yo

∫ π/yo

−π/yo
v cos lv dv = 0

(8)

and similarly,

xo
π

2

2π/xo

∫ π/xo

−π/xo
u du +

yo
π

2

2π/yo

∫ π/yo

−π/yo
v dv = 0. (9)

From (7), (8), and (9), and using the definition of the dis-
crete Fourier transform (DFT) based on Fourier series [30],

it follows immediately upon substituting u = n(2π/N) and
v = m(2π/M) that ϕkl is a DFT coefficient of the following
discrete periodic signal:

φmn =
2π

N

(
xon + J

N

xo

)
+

2π

M

(
myo + K

M

yo

)
, (10)

where J and K are arbitrary integers.
In other words, the discrete phase-difference matrix for a

pair of shifted images is given by

Φ =
[
φmn

]
, (11)

where m = 0, . . . ,M − 1 and n = 0, . . . ,N − 1.
This is a discrete 2D periodic sawtooth signal as opposed

to the continuous phase-difference function in (2), which
is a plane through the origin. Figure 1 shows examples of
noisy discrete phase-difference matrices. The underlying 2-
dimensional sawtooth signals are clearly visible. Figures 1(e)
and 1(f) show one row of Figures 1(c) and 1(d). The first
observation that can be made from this result is that the
unwrapping of a 2-dimensional sawtooth signal is separa-
ble, since its unwrapped matrix has to be rank-2. This also
correlates to the fact that the phase-correlation matrix has
to be rank-1 [23]. In particular, it implies that a subspace
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approximation can be disregarded. But even a more inter-
esting conclusion that can be drawn from the above result
is that unwrapping is also an unnecessary step for registra-
tion.

For this purpose, note how the period of the sawtooth
signal along each axis determines the shifts along corre-
sponding axis: the period along the u-axis is N/xo, and hence
there are xo repeated cycles along each row of the phase dif-
ference, where xo may or may not be an integer. When xo is
not an integer, the number of repeated cycles in a row is given
by the integer part of xo plus a fraction of a cycle defined by
the noninteger portion of xo. A similar argument applies to
the columns of Φ. This process of counting the number of
cycles along the rows and columns of the phase-difference
matrix is essentially all that is required to determine the local
or the global shifts. The challenge of course is to determine
the exact fractional portion of the repeated cycles. In the next
two sections, we will design a linear estimator for this prob-
lem.

4. PROBLEM FORMULATION

As indicated above, the key to solve the problem is to find
how many cycles of the discrete sawtooth phase difference fit
in the range [0, 2π] along each frequency axis. The number
of cycles, that is, xo and yo, may or may not be integer values
and are given by

xo =
cycles

2π
=

N

2π

dΦ(m,n)

dn

yo =
cycles

2π
=

M

2π

dΦ(m,n)

dm
.

(12)

Due to noise and other sources of error, however, counting
the number of cycles per 2π using (12) may lead to inaccu-
rate results. To overcome this problem, we exploit the fact
that a total of M ×N data points are available for regression.
Therefore, an accurate solution can be obtained by minimiz-
ing an appropriate error function, that is, by solving a largely
overdetermined problem of fitting the parameters to the data
set.

For this purpose note that the 2D sawtooth signal Φ

has constant slopes for the vast majority of frequencies
along each row or each column, except for a small number
of frequencies, where discontinuities occur. As depicted in
Figure 1(e), visually we use a landmark point of the cycle to
count the number of cycles along each row or each column.
This idea can be implemented as follows. A particular useful
landmark point is the zero-crossing of the phase-difference
matrix, where φmn = 0. Since the same set of zero-crossings
can be independently obtained by scanning along the rows or
columns, we can fix J = 0 in (10), and after some algebraic
manipulations obtain

n cos θ + m sin θ + ρ = 0, (13)

where

tan θ =
Nyo
Mxo

, ρ = K
M

yo
sin θ. (14)

This shows that the zero-crossings are represented by a family
of lines in the phase space parameterized by K—that is, each
integer value of K would give a different line along which the
phase difference is zero. Each line itself is parameterized by
the angle θ and its distance ρ from the center frequency (i.e.,
the origin of the frequency domain). This set of zero-crossing
lines form a function that is ideal for detection using Hough
transform. The Hough transform basically maps these lines
to a parameter space of (θ, ρ). As can be verified from the
above derivations, θ remains invariant among all lines and ρ
varies as integer multiples of some other invariant parameter,
that is, ρ = Kρo. Therefore in the Hough-transform domain
(i.e., in the Hough matrix), we expect to see a set of peak val-
ues situated at equal distances from each other, and parallel
to the ρ-axis. Figure 2 shows an example of the Hough trans-
form of the zero-crossing of the phase-difference matrix of
two shifted images, where the peaks can be clearly identified
by a simple thresholding process. As is customary in Hough
transform, we used the local maxima for finding a suitable
threshold value. In our case, since all the peaks are known to
be aligned parallel to the ρ-axis, we took the maximum of the
Hough matrix for each ρ as the local maximum. This yields a
curve similar to the one shown in Figure 2(b). We then used
the average of the local maxima curve as a threshold.

The problem now reduces to estimating (xo, yo) from
these peak values in the Hough transform domain. For this
purpose note that by combining (14), we can obtain the fol-
lowing linear constraint on xo and yo:

ρ

cos θ
xo +

ρ

sin θ
yo = K(M + N). (15)

Each peak point in the Hough-transform domain provides
one such linear constraint on xo and yo. Given a total of t such
peak values, we can construct a system of linear equations of
the form

Ar = b, (16)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

ρ1

cos θ1

ρ1

sin θ1
...

...
ρt

cos θt

ρt
sin θt

⎤
⎥⎥⎥⎥⎥⎦

, (17)

r = [xo yo]T , and b = (M + N)[K1 · · · Kt]T .
In the next section, we devise an approach to solve this

overdetermined problem.
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Figure 2: (a) The Hough transform of the phase discontinuities, (b) the local maxima and the threshold, and (c) the peaks detected by
thresholding.

5. PROPOSED SOLUTION

In order to solve the overdetermined system of equations in
(16), we formulate it as the following constrained optimiza-
tion problem

ropt = arg min‖Ar− b‖ + λ‖Lr‖, (18)

where λ is the regularization parameter, and L is such that

L
T

L =

[
2 −1
−1 2

]
. (19)

This choice of L [31] implies that our a priori belief is
that our solution should be constant over all equations in
the system, that is, the equations should be consistent with
each other. The formulation in (18) is basically a Tikhonov-
Arsenin norm-regularization of the least-squares solution to
the problem in (16). The first term imposes the faithfulness
to data and the second term the regularity. The solution is
given by

ropt =
(

A
T

A + λL
T

L
)−1

A
T

b. (20)

We now have the solution given by (20) up to an unknown
regularization parameter. The optimal value of this param-
eter is given by the method of generalized cross validation
(GCV), which amounts to minimizing

GCV(λ) =

∥∥∥
(

I− A
(

ATA + λLTL
)−1

AT
)

b

∥∥∥
2

(
tr
(

I− A
(

ATA + λLTL
)−1

AT
))2 (21)

with respect to λ, where tr(·) is the trace of a matrix.
The minimizer of (21) is usually obtained using numer-

ical techniques by making simplifying assumptions, for ex-
ample, circulant A and L, or by using numerical techniques
such as quadrature rules and Lanczos algorithm [32]. How-
ever, in our case, due to the rank constraint of A, we can
find a simplified closed-form solution. For this purpose, let
P = I−A(ATA +λLTL)−1AT . The GCV function can then be

written as

GCV(λ) =
‖Pb‖2

(
tr(P)

)2 . (22)

Upon rearranging P as follows:

P = I− AL
−1

L
(

A
T

A + λL
T

L
)−1

L
T

L
−T

A
T

= I− AL
−1
(

L
−T

A
T

AL
−1 + λL

−T
L
T

LL
−1
)−1

L
−T

A
T

= I−K
(

K
T

K + λI
)−1

K
T

(23)

and applying the matrix inversion lemma, we find

P =

(
I +

1

λ
KK

T

)−1

, (24)

where K = AL−1.
Now, let

KK
T = VΣV

T =

t∑

j=1

σ jv jv
T
j (25)

be the eigen decomposition of KKT , where v j ’s are the
columns of V that form a set of orthonormal basis, and σ j ’s
are the corresponding eigenvalues. P can then be written as

P =

t∑

j=1

λ

λ + σ j
v jv

T
j

=

2∑

j=1

λ

λ + σ j
v jv

T
j +

t∑

j=3

v jv
T
j ,

(26)

where the last equality follows from the fact that A is rank 2.
In order to simplify the GCV function in (22), we make

a first-order approximation of the rank-2 matrix KKT using
its largest eigenvalue KKT ≃ σ1v1v

T
1 . In practice, we found

that the dominant eigenvalue is usually orders of magnitude
larger than the second eigenvalue (see the appendix for more
formal discussions). Therefore

GCV(λ) ≃

(
λ/(λ + σ1)

)2
s2

1 +
∑t

j=2 s
2
j(

t − 1 + λ/
(
λ + σ1

))2 , (27)



6 EURASIP Journal on Applied Signal Processing

Figure 3: Some of the images used for simulation.

where s j are the components of the vector VTb =

[s1 s2 · · · st]T .
Differentiating this equation with respect to λ and setting

it equal to zero, we find after simplification that the optimal
regularization parameter is given by

λ∗ =
σ1

∑t
j=2 s

2
j

(t − 1)s2
1 −

∑t
j=2 s

2
j

. (28)

Using (20) and (28), we can compute the optimal solu-
tions for xo and yo.

6. EXPERIMENTAL RESULTS

We applied the technique to both the global subpixel regis-
tration problem and the local motion estimation. We also
applied our approach to rotated images using polar coor-
dinate transformation. The experimentations included both
synthetically generated shifts and real data with and without
ground truth. In all cases, very good results were obtained.
We used the synthetic simulations to evaluate our approach
under various conditions.

For global registration, we synthetically generated the
shifts by filtering and downsampling shifted versions of a
high-resolution image. Using appropriate combinations of
these operations, shifts with subpixel contents were pro-
duced. Figure 3 shows some of the images to which the tech-
nique was applied. Results are shown in Table 1 and are com-
pared to those reported in [21]. The accuracy was predom-
inantly higher than [21], which we attribute to the largely
overdetermined nature of the problem in the proposed ap-
proach. This of course introduces resiliency to random noise
(assuming that random noise is zero-mean and has a well-
behaved distribution).

As for random noise, it is worth noting that in many
practical problems, dealing with data obtained from real
imaging instrumentation, one may typically have the high-
frequency portion of the phase-difference matrix cluttered
and highly corrupted with noise. Figure 4 shows an exam-
ple of such phase-difference matrix. This in practice does not
introduce a major difficulty in our algorithm, since similar to
[23, 25], we can apply our algorithm within a window in the
low-frequency portion by cropping out the lower frequencies

Table 1: Results for global shifts of the images in Figure 3.

Image
True Foroosh et al. Proposed

shifts [21] method

Pentagon

(0.50,−0.50) (0.48,−0.51) (0.496,−0.493)

(0.25, 0.50) (0.28, 0.49) (0.255, 0.498)

(−0.25,−0.50) (−0.25,−0.52) (−0.25,−0.52)

(0.0, 0.75) (0.0, 0.80) (0.0, 0.744)

Paris

(0.167,−0.5) (0.152,−0.49) (0.163,−0.51)

(0.67, 0.25) (0.69, 0.33) (0.679, 0.242)

(−0.33,−0.167) (−0.32,−0.15) (−0.331,−0.159)

(0.33, 0.33) (0.325, 0.32) (0.333, 0.329)

of the phase-difference matrix. The important remark to re-
alize is that, we would then be counting the number of cycles
within less than 2π. So for instance (12) (or other equations
thereafter) would be adjusted accordingly.

When the data is contaminated with random noise or
aliasing, the high-frequency portion of the phase-difference
matrix is not useful, and in fact can introduce error in the
results. In order to avoid this problem, similar to [23, 25],
we windowed the Fourier spectra of the images to their low-
frequency portion. Therefore, in order to evaluate the per-
formance of our approach under noise, we introduced addi-
tive Gaussian random noise with standard deviation in the
range [0, 5]. We then computed the peak signal-to-noise ra-
tio (PSNR) over 100 independent trials as we varied the size
of the lowpass window, where we took the true shift value as
the peak value of the signal. The results are shown in Figure 4
for σ = 5, and lowpass windows of width 10–100. It can be
seen that the method is fairly stable over a wide range of win-
dow sizes. The SNR for the y coordinate was better in this
experimentation, because the shift along that direction was
an integer value.

We then applied the technique to real data in a frame-
work using short-length Fourier transform. The images used
are stereo pairs from the CMU data set [33] and the Tsukuba
pair. Results are shown in Figures 5, 6, and 7 for the Pen-
tagon, baseball, and the Tsukuba image pairs, respectively.
Of course, one challenge in the case of real data is that
due to lack of ground truth, the performance evaluation is
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Figure 4: (a) A phase-difference matrix corrupted by aliasing and high-frequency noise, (b) average PSNR over 100 independent trials with
varying window sizes and the standard deviation of noise σ = 5.

Figure 5: Pentagon stereo pair and the estimated local motion.

somewhat subjective. For our real data, however, it is im-
portant to note that we used small windows (e.g., of width
15–25) to compute the short-length Fourier transform. This
has a very important implication, since unlike global regis-
tration, we now have a very small set of linear equations to
estimate the parameters.

Essentially, in global registration, we estimate two pa-
rameters using a huge number of pixels (i.e., for a 256× 256
image, t is typically a very large number). In the case of lo-
cal motion estimation, if we for instance use window sizes of
15 × 15, t is typically reduced by a factor of 300. As a result,
it is quite natural to assume that the accuracy will drop. It
should be however noted that this comment equally applies
to all existing methods in the literature. In order to be able
to evaluate how the method performs for varying lengths
of short-length Fourier transform, we synthetically gener-
ated a stereo pair with known ground truth (see Figure 8),
where the parallax for the house in the image is artificial.
We then computed the PSNR for varying range of window
sizes of short-length Fourier transform. The plot in Figure 8
shows the result of this experimentation. One can notice that
the PSNR reaches the highest value for an optimal window
size. Our interpretation is that for local motion, if the win-
dow size is too small, then the number of data points will be
insufficient to get the optimal result, and if it is too large it

may get dominated by the motion in the neighboring pix-
els. This is similar to what is known to as the aperture prob-
lem in optical flow. There is in fact an optimal window size
for which we get the best tradeoff between the two con-
straints.

Finally, we applied our method to estimate rotation in

polar coordinates. For this purpose we used also a real

stereo pair from the CMU data collection [33] for which the
ground truth was known. Figure 9 shows the stereo pair, their

polar coordinate representations, and the resulting phase-

difference matrix. We estimated the rotation as 4.737 de-

grees, which nicely matched the ground truth. Note that the
number of the sawtooth cycles can be used to determine the

rotation even if only a small portion is useful (i.e., not badly

contaminated with noise). Also, note that we can virtually
get the correct solution regardless of number of steps used

to sample the angular axis in the polar domain. For instance,

in Figure 9 the steps used (as can be seen from the horizon-

tal axis) are every one degree. But our solution is not limited
to one degree accuracy due to subdegree (subpixel) accuracy

provided by the proposed method. Therefore, for instance,

we could sample the angular axis at every 2 degrees and still

get sub-angle results as long as the aliasing can be avoided by

lowpass windowing as discussed above.
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Figure 6: Baseball stereo pair and the estimated local motion.

Figure 7: Tsukuba stereo pair and the estimated local motion.
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Figure 8: A synthetic stereo pair and the PSNR as a function of the window size used for short-length Fourier transform in local motion
estimation.

7. CONCLUSION

The analyses and the experimentations presented in this pa-
per show that accurate results can be obtained for subpixel
registration directly in the Fourier domain by counting the
number of cycles of the phase-difference matrix. Since no
inverse transforming is required, the computational com-
plexity is mostly dominated by the forward Fourier trans-
form, which is N logN . There are of course small overheads
associated with computing the phase-difference matrix and
its Hough transform. In the context of super-resolution, sub-
pixel registration directly in the Fourier domain is particu-

larly advantageous and of interest for the super-resolution

algorithms that work directly in the Fourier domain. It is
also worth mentioning that some sensor modalities naturally
provide the Fourier spectrum of the field of view. Examples
of such imaging modalities are magnetic resonance imaging
(MRI) [34] and synthetic aperture radar (SAR) [35].

APPENDIX

In this appendix we show that the largest singular value of
KKT is at least three times the second singular value. For this
purpose we use the following results from linear matrix alge-
bra.
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Figure 9: Top and middle: stereo pair and their corresponding polar representations; bottom: their phase-difference matrix and one row of
the matrix.

(i) The nonzero singular values of KKT are equal to the
singular values of KTK.

(ii) The singular values of a real-square symmetric matrix
are always real, see [36, Theorem 6.6.3].

It therefore follows that the two nonzero singular values of
KKT (which are also the two largest singular values) are given
by the solution of the characteristic polynomial of the 2 × 2
real-square symmetric matrix KTK, that is,

λ2 − tr
(

K
T

K
)
λ + det

(
K
T

K
)
= 0. (A.1)

The two solutions are given by

λ1 =
1

2
tr
(

K
T

K
)(

1 +
√[

tr
(

KTK
)]2
− 4 det

(
KTK

))
,

λ2 =
1

2
tr
(

K
T

K
)(

1−
√[

tr
(

KTK
)]2
− 4 det

(
KTK

))
.

(A.2)

Since KTK is a real-square symmetric matrix, both singular
values have to be real. This implies that

tr
(

KTK
)2

det
(

KTK
) ≥ 4. (A.3)

First-order Taylor series approximation of these singular val-
ues are given by

λ1 =

[
tr
(

KTK
)]2
− det

(
KTK

)

tr
(

KTK
) + O

2,

λ2 =
det
(

KTK
)

tr
(

KTK
) + O

2.

(A.4)

The ratio of these two singular values is therefore given by

λ1

λ2
=

[
tr
(

KTK
)]2

det
(

KTK
) − 1. (A.5)

Combining (A.3) and (A.5), we conclude that

λ1

λ2
≥ 3. (A.6)
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Figure 10: (a) Discriminant of the characteristic equation and its linear approximation, (b) ratios of the singular values.

A question that may be raised with regards to this demon-
stration is the error involved in the Taylor series truncations
and its effect on the results in (A.6). These truncations are ba-
sically based on expanding the discriminant of the quadratic
characteristic equation of the matrix KTK. We now show that
this truncation is practically unconsequential. Basically, al-
though (A.4) have truncation errors, the error in their ratio
is extremely negligible.

Instead of giving a formal proof of this claim, we give
a graphical proof. Figure 10(a) shows the possible values
of the discriminant of the characteristic equation and its
linear approximation using first-order Taylor series, where
the discriminant of the characteristic equation is plotted
against det(KTK)/[tr(KTK)]2 (i.e., the independent variable
in the Taylor series expansion). Although the errors grow for
small values of the discriminant, the error in the ratio of
the two singular values is practically negligible as shown in
Figure 10(b).
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