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Background: Association mapping is a common strategy for finding disease-related genes in complex
disorders. Different association study designs exist, such as case-control studies or admixture mapping.
Methods: We propose a strategy, subpopulation difference scanning (SDS), to exclude large fractions of
the genome as locations of genes for complex disorders. This strategy is applicable to genes explaining
disease incidence differences within founder populations, for example, in cardiovascular diseases in
Finland.
Results: The strategy consists of genotyping a set of markers from unrelated individuals sampled from
subpopulations with differing disease incidence but otherwise as similar as possible. When comparing
allele or haplotype frequencies between the subpopulations, the genomic areas with little difference can be
excluded as possible locations for genes causing the difference in incidence, and other areas therefore
targeted with case-control studies. As tests of this strategy, we use real and simulated data to show that
under realistic assumptions of population history and disease risk parameters, the strategy saves efforts of
sampling and genotyping and most efficiently detects genes of low risk—that is, those most difficult to find
with other strategies.
Conclusion: In contrast to admixture mapping that uses the mixing of two different populations, the SDS
strategy takes advantage of drift within highly related subpopulations.

A
common strategy for association mapping of disease

genes is to compare allele differences between a group
of cases who have the disease and a group of controls

who do not. This approach has been used for multifactorial
diseases with their complex genotype-phenotype relation-
ships.1 2 There, the situation can be brought closer to the
monogenic one (that is, the genetic homogeneity can be
maximised) by applying strict phenotypic criteria in the
selection of subjects, by considering subphenotypes, and
possibly by studying genetic isolates. However, there are
inherent problems in defining disease status due to low
penetrance, high phenocopy rates, and often also late disease
onset.

We propose here a strategy that we call subpopulation
difference scanning (SDS). To avoid the tedious determina-
tion of disease status, it compares not cases and controls but
instead individuals randomly sampled from two subpopula-
tions that have differing disease incidence. The strategy is
outlined in more detail below, and we also use simulations
and real genotype and incidence data to study its benefits and
limitations.

THE SUBPOPULATION DIFFERENCE SCANNING
STRATEGY
Outline
If regional differences in disease incidence (fig 1A, B) are
partly determined genetically, it is intuitive that a genetic
variant with similar variation trends can explain them (fig 1C,
D, respectively), whereas one with a different trend (fig 1E)
or one with minor variation (fig 1F) cannot. Thus, the
genomic location of the incidence difference causing variant
could be narrowed down by sampling the unselected
population from regions of high and low incidence, rather
than cases and controls, and genotyping the samples with a
set of markers across the genome. The genomic areas where

no frequency difference between the regional samples
exceeds a given threshold could be excluded from subsequent
analyses.

The method thus avoids case-control sampling and
phenotype ascertainment by using subpopulation pairs
where, during population history, cases have been enriched
in one subpopulation and controls in the other. Homogeneity
of non-genetic factors between the subpopulations is
essential to ensure that the observed incidence differences
are predominantly of genetic origin.

The procedure will save in cost and labour by eliminating
the need for an initial careful phenotype ascertainment and
by reducing the potentially interesting genome area. The
major determinants of cost are then the sample sizes and
number of loci needed to achieve a sufficiently reliable
exclusion. As we show by the simulations detailed below,
genotyping samples of as few as 100–200 random individuals
from two subpopulations for loci at 1 cM distance may
suffice to exclude 90% of the genome for acute myocardial
infarction (AMI) susceptibility genes.

Population background
The proposed strategy is based on allele and haplotype
frequency differences between subpopulations. One possible
origin of such differences is shown (fig 2A), in which an
initial population splits into several subpopulations that first
grow in relative isolation. Founder effects and genetic drift
cause shifts in the subpopulation allele frequencies. These
shifts will mostly remain visibly large even though later
subpopulation contacts can somewhat smooth them. Because
the founder effects and drift are random, the size of the shifts
they produce varies between loci. If such a shift happens in a

Abbreviations: AMI, acute myocardial infarction; MCMC, Markov
chain Monte Carlo; SDS, subpopulation difference scanning
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disease causing variant, the disease incidence will also differ
between the subpopulations; conversely, only the loci that
show a certain amount of difference are possible genetic
causes of incidence variation of a disease. A disease causing
variant with a given difference is thus easiest to locate when
average frequency differences in loci are small—that is, when
the subpopulations of study are closely related.

The way such frequency differences are reflected in the
incidence of a disease is shown in more detail (fig 2B); two
populations are depicted, both consisting of carriers and non-
carriers of a disease variant. In each population, penetrance
determines the fraction of diseased individuals among

carriers, and phenocopy rate the corresponding fraction
among non-carriers. Although the populations are similar
with respect to penetrance and phenocopy rate, if their
variant frequencies (and thus their carrier frequencies)
differ, their total proportions of diseased individuals will
also differ.

The fact that many key features of the proposed origin of
differences (fig 2A) characterise Finnish population history
makes Finland a promising test ground for the SDS strategy.
Indeed, the small numbers of founders and immigration
waves, gradual habitation of the inland regions, relative
isolation both within the country and from neighbouring
populations, and a fairly recent population growth have led to
genetic differences within the country.3–7 Several diseases also
vary in their incidence: in addition to AMI and type 1
diabetes (fig 1A, B) and many monogenic diseases,8 examples
include cerebrovascular diseases, dementia, and malignant
neoplasms of colon, prostate ,and ovary, all with between
province mortality differences of more than 2.2 fold (StatFin
Online Service, Statistics Finland). Some of these differences
undoubtedly result from variation in non-genetic risk factors,
but, for example, the east-west incidence difference in
coronary heart disease seems to be partly genetic, because
non-genetic factors do not fully explain it and it has persisted
despite a general decline in incidences.9 10

Evaluating the strategy
Intuitiveness alone is no proof to the efficiency of the SDS
strategy. For instance, the observed incidence differences of a
disease of interest might be produced by a variant whose
frequency difference is not very large relative to other loci,
and thus the exclusion of genome areas would be inefficient.
In addition, if the detection of even a large frequency
difference would require genotyping a vast number of
samples or markers, the strategy would save little in cost or
effort.

We have studied the determinants of the efficiency of the
strategy in the following sections. Firstly, we tested how
different population history parameters affect the frequency

Figure 1 (A) Age standardised incidence of acute myocardial
infarction among 35–74 year old men. The map is based on cross
sectional years 1983, 1988, and 1993. (B) Age standardised incidence
of type 1 diabetes mellitus among children younger than 15 years in
1987–1996. Frequency of one allele of markers: (C) D9S1677; (D)
D20S196; (E) D5S641; and (F) D8S277.

Penetrance
Phenocopy rate

A B

Non-carriers

Carriers

Non-carriers

Carriers

Figure 2 (A) Origin of allele and haplotype frequency differences
between subpopulations through founder effects and drift. In the first
step, a small population divides into several isolated subpopulations with
distinct founder effects on allele frequencies. In the second step, drift
modifies these differences further, resulting in regional allele frequency
differences within the population. (B) Incidence variation of a disease.
Two subpopulations are presented (large squares; individuals with a
complex disease are shown in grey, healthy in white). Penetrances of the
susceptibility gene are equal in the subpopulations, as are phenocopy
rates, but the upper subpopulation has fewer carriers of the susceptibility
gene than the lower, and as a result their disease incidences also differ.
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difference distribution in simulations, and compared the
result to the distribution in a real dataset from the Finnish
population. We then assessed how sample size, genotyping
density, and population history influence the efficiency of
detecting these differences. Finally, we investigated how the
frequency difference of a disease causing variant relates to
the incidence difference that the disease will show, both
theoretically and in the case of AMI.

MATERIALS AND METHODS
Simulated data
We simulated a population history resembling the one shown
(fig 2A). In the simulation, an initial population split into
three, and the daughter populations grew exponentially for a
given number of generations to a given size in the absence of
selection, mutation, or migration. Assuming no migration is
realistic for geographically distant regions in a sparsely
inhabited country. Generations were non-overlapping, and
mating was random with the exception that sibling mating
was prevented. In the final generation, non-sibling indivi-
duals were randomly sampled from two of the daughter
populations.

Further details of the simulation, including a rationale for
parameter values, are described in appendix A.

Genotype data
We chose to use microsatellites as the demonstration data for
their high information content and sufficient stability to
record subpopulation differences within the time scale
relevant for the Finnish population. Alternatively, as pre-
sented for the simulations, haplotype tagging SNPs would
yield similar information.

We genotyped 30 autosomal microsatellite markers in 465
Finnish subjects. All subjects were anonymous, unrelated
male blood donors aged 40–55 and had given an informed
consent. As the population samples are unidentifiable, no
ethics approval was required for their use. The birthplaces of
each subject’s grandparents lay near each other. The markers
(D2S117, D2S2382, D3S1278, D3S1566, D3S1569, D4S391,
D4S405, D4S413, D5S641, D5S647, D6S264, D6S462, D7S510,
D7S640, D8S277, D9S158, D9S273, D9S286, D9S1677,
D10S185, D11S925, D12S345, D13S153, D13S171, D13S285,
D13S1265, D15S131, D20S100, D20S107, D20S196) were
amplified from 10 ng of DNA in 5 ml volume using
fluorescently labelled commercial primers (from Linkage
Mapping Set MD-10; Applied Biosystems, Foster City, CA,
USA) and AmpliTaq Gold DNA polymerase (Applied
Biosystems), detected with MegaBACE 1000 capillary elec-
trophoresis instrument (Molecular Dynamics/Amersham
Biosciences, Sunnyvale, CA, USA), and analysed with
Genetic Profiler allele calling software (version
1.1;Molecular Dynamics/Amersham Biosciences) according
to the manufacturers’ instructions.

Subpopulation differences
In the real genotype data, frequencies of the observed alleles
were calculated in the provinces best corresponding to the
areas of high and low AMI incidence (fig 1A): central east
(111 samples), central west (46), and southwest (38)
Finland. Absolute allele frequency differences were then
calculated in east versus west and east versus southwest, and
the maximum difference per marker was recorded in each
comparison.

In the simulated data, the frequency differences of the
number of initially equifrequent haplotypes per locus were
calculated between the two sampled daughter populations.
Only the largest absolute difference was recorded for each
locus. The distribution of the differences was used to
determine an effective exclusion threshold and the risk of

excluding, with the threshold, a disease gene with a given
frequency difference (details in appendix A). Both the
threshold and risk were studied from several simulation
settings of population history factors, initial LD, number of
haplotypes, sample size, and genotyping density.

To examine the relationship of the frequency differences
and incidence differences, we constructed a simple model
that consists of two subpopulations, each in Hardy-Weinberg
equilibrium, and a disease with high incidence in one
subpopulation and low in the other. The whole incidence
difference was assumed to be genetic and due to a single
predisposing allele that was dominant with incomplete
penetrance; other risk factors, both genetic and non-genetic,
were assumed to be identical in both subpopulations and
their distribution in individuals independent of the presence
or absence of the predisposing allele. (Note that even when
the observed incidence difference of the disease of interest is
attributable to several factors, the model is still valid if the
power calculations use, instead of the whole incidence
difference, the estimated difference due to a single allele—
that is, the difference that would result if the assumption of
identical distribution of all other factors would hold.)
Appendix A gives further model details and estimates of
relevant AMI incidences.

Incidence and allele frequency maps
Frequency maps of four microsatellite alleles and incidence
maps of AMI and type 1 diabetes (fig 1) were estimated using
a Bayesian spatial conditional autoregressive model.11 12 The
allele frequencies were modelled in municipalities, and the
incidences on a 10610 km grid. Model details are given in
appendix B.

RESULTS
Exclusion threshold
When differences in disease incidence (resulting from
differences in disease gene frequency) are caused by
population history factors such as founder effects and drift,
the same factors have also caused frequency differences in
non-disease causing loci. The efficiency of the SDS strategy to
locate interesting genome areas therefore essentially depends
on frequency differences in average loci.

Five distributions are shown (fig 3; curves A–E) of
simulated haplotype frequency differences between samples
of 100 individuals, genotyped at 1 cM intervals, from
subpopulations with different histories (see figure legend).
From the 90th percentile of the curves, we can estimate that a
frequency difference exclusion threshold between 0.12 and
0.25, depending on subpopulation history, should on average
reduce the genomic area of interest to approximately 10% of
the original.

Fig 3 also shows two distributions (triangles and circles) of
allele frequency difference between areas of high and low
AMI incidence within Finland based on 30 microsatellites.
The median frequencies of the microsatellite alleles depicted
in the picture, 0.18 and 0.19, correspond well to the haplotype
frequency of 0.20 in the simulations. Although the sample
sizes differ slightly more, the overall distributions of real data
agree well with the simulations that show low to moderate
frequency differences. Thus, the exclusion threshold relevant
to AMI is likely a frequency difference of approximately 0.13–
0.15.

We also tested several other simulation parameter combi-
nations; table 1 lists some of the resulting exclusion thresh-
olds. In summary, large thresholds resulted from small initial
sizes, slow growth rates, large initial haplotype frequencies
and small sample sizes. High LD and low genotyping density
increased variation between single simulations, but neither
affected the average threshold from a set of simulations.
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Exclusion risk
The exclusion of genome areas is based on sample frequency
differences in the genotyped markers, not on true differences
of the disease gene. Thus sampling errors or low LD, for
instance, can create a risk of excluding the gene.

Table 1 lists, from various simulation settings, the minimal
frequency difference that a gene should show between the
whole subpopulations in order to have at most a 20% risk of
being excluded along with 90% of the genome. For the
simulations closest resembling AMI in fig 3, this minimal
difference is approximately 0.2 or lower.

When based on 100 simulations, the minimal differences
in table 1 are only approximate, owing to the large variation
between simulations. General trends are nevertheless visible;
large minimal differences result from large exclusion thresh-
olds, low genotyping density, and low LD. Similar or slightly
elevated minimal differences were also reachable at a
detection power of 0.95 with up to fivefold increases in
sample size (data not shown).

Incidence differences
In SDS, only genetic variants with sufficiently large
frequency differences can reliably avoid exclusion. How can
we recognise diseases caused by such variants—that is, the
optimal target diseases for the strategy?

According to fig 2(B) and the analysis in Appendix A,
incidence difference Di is the product of disease risk
difference Dp (penetrance minus phenocopy rate) and carrier
frequency difference Dc (related to gene frequency difference
Dq). In genotyping, we try to detect Dq (or to be precise, its
reflection in a nearby locus from the genotyped sample) and
therefore the strategy will work best for diseases with large
Di; with small Di, Dp becomes very limited, if Dq is to remain
detectably large. In more detail, the size of Dq that various
combinations of Di and Dp will produce is shown (fig 4) (note
that the case shown is the most stringent one where the
variant is completely absent from one of the subpopulations;
with larger frequencies, a given combination of Dp and Dq
will produce a smaller Di, and thus yield a wider range of
potential target diseases.)

What would these restrictions mean in practice, for
instance in the case of AMI in Finland? If the genetic
lifetime incidence difference is ca. 0.04 (see appendix A),
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Figure 3 Cumulative distributions of absolute frequency differences
from simulations (curves) and from real data (triangles and circles). The
curves show maximal haplotype frequency differences of 101 loci at
1 cM intervals in samples of 100 individuals from two subpopulations
that have grown into 100 000 individuals in 20 generations from an
initial size of 100 (D) or 800 individuals (A), or in 40 generations from
100 E), 400 (C), or 800 individuals (B); initial haplotype frequencies in
all simulations are 0.2. The curves are averages of 100 simulations. The
circles show maximum allele frequency differences of 30 microsatellite
loci between areas of high and low incidence of acute myocardial
infarction (AMI): east (111 samples) versus west (46 samples; triangles)
or southwest (38 samples; circles) Finland.

Table 1 Haplotype frequency difference thresholds that yield a 90% genome exclusion,
and corresponding sizes of gene frequency difference (GFD) that will produce a gene
detection power of 0.80 (that is, an exclusion risk of 20%) in various population history
simulations with five haplotypes.

Initial
size

No. of
generations D9

No. of
simulations

Sample
size

HFD
threshold GFD

100 20 0.5 100 100 0.19 0.27
100 20 0.7 100 100 0.19 0.23
100 40 0.5 100 100 0.25 0.33
100 40 0.7 100 100 0.25 0.29
400 40 0.5 1000 100 0.16 0.21
400 40 0.7 1000 100 0.16 0.19
800 20 0.5 100 200 0.10 0.13
800 20 0.7 100 200 0.09 0.12
800 40 0.5 100 200 0.12 0.15
800 40 0.7 100 200 0.12 0.14

D9, the degree of average linkage disequilibrium at 1 cM distances in the initial population; HFD, haplotype
frequency difference; GFD, gene frequency difference.
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Figure 4 The relation of disease risk differences Dp (penetrance minus
phenocopy rate) and incidence differences Di and disease allele
frequency differences Dq between two subpopulations (see fig 2B).
Depicted is the most stringent case where the disease allele is absent
from one subpopulation. The dashed line indicates the minimal possible
disease risk difference Dp = Di. Diseases with combinations of Di and
Dp that produce a Dq exceeding the corresponding critical gene
frequency difference (GFD) listed in table 1 are potential targets for the
SDS approach.
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gene frequency differences of 0.2 or more (as in the section
on exclusion risk) would require disease risk differences of
0.12 or less (fig 4). For example, if the phenocopy rate was
approximately 0.05, the method would thus work for
penetrances of approximately 0.17 or lower.

In the analysis above, the disease related allele was
assumed to be dominant and predisposing, but the approach
will work identically in finding alleles with a protective effect,
and at least equally well for recessive alleles with carrier
frequencies ,0.5.

DISCUSSION
We have proposed and tested here a strategy for exclusion
mapping of complex disease susceptibility loci. We found that
the SDS strategy works best for diseases with large incidence
difference and with disease alleles that have a small effect on
disease risk. The latter might first seem counterintuitive,
especially as such alleles tend to be the most difficult for
other gene localisation strategies; at a closer look, however, it
is obvious that when a given incidence difference results
from a low effect allele, the allele frequency difference will be
large and thus easier to detect (fig 2B). In more detail, our
example of AMI suggested that a 90% exclusion of genome
area with a 20% risk of missing the true locus could be
accomplished by genotyping loci at 1 cM intervals from 100–
200 individuals from a high incidence and 100–200 indivi-
duals from a low incidence subpopulation.

The proposed SDS strategy clearly has both limitations and
advantages. The main advantage is that subpopulation
sampling is easier (and thus cheaper) than the sampling of
cases and controls, where the quest for a genetically
homogeneous sample makes careful phenotype ascertain-
ment crucial, and is often complicated by low penetrance and
high phenocopy rate.

Another advantage of sampling subpopulation individuals
regardless of their phenotype is that the results of a one time
sampling and genotyping will be valid for any phenotype that
has sufficiently large incidence difference between the
sampled subpopulations due to a sufficiently low effect
variant. In settings that compare cases and controls, the
sampling is inevitably phenotype specific.

A third advantage of the phenotype insensitive sampling is
that the approach only uses information on allele frequencies
in the subpopulations, not on the distribution of those alleles
into individuals. Consequently, the correlation of allele
frequency differences between the gene of interest and its
nearby markers, and thus the genotyping density needed to
detect the gene frequency difference, depends on the LD that
prevailed when the frequency differences formed through
drift. As most drift took place in a small population (fig 2A)
that had probably been of relatively constant size, this crucial
LD was probably stronger than that observable in the
expanded present day populations, for example, in
Finland.13–16 An immediate drawback from this advantage is
that knowledge of present day LD patterns, however
detailed,17 will be of limited use in the choosing of loci to
be genotyped, and the effectiveness of the SDS approach
ultimately needs to be tested in practice.

An obvious limitation of the strategy is that its use is
confined to diseases with sufficiently large incidence differ-
ences. On the other hand, in Finland several diseases show
incidence differences that are of general interest. The strategy
is also applicable to diseases where the incidence difference is
only partly genetic, as long as the power calculations are
based on an estimate of the genetic part.

Another limitation is the array of suitable target popula-
tions. It appears (table 1) that the strategy will work best
when the differences between subpopulations are moderate;
large differences radically limit possible disease parameter

values, whereas small differences can be reliably detected
only with large samples and dense genotyping.

The performance of the method could be further improved
by comparing several high and low incidence subpopulations
when such exist. Provided that the subpopulations have
separate histories of genetic drift but that their disease
causing variant is the same, further investigations could be
limited to the fraction of genome where the frequency
difference pattern matches the incidence pattern of all the
subpopulations.

When the disease of interest has known genetic risk
factors, their correlation to the observed incidence differences
is naturally worth investigating before proceeding to a whole
genome scan. For example, the variation in HLA antigen DR3
frequencies in Finland;18 (fig 5) could perhaps partly explain
the incidence differences in type 1 diabetes (fig 1B); in
contrast, the frequency variation of apolipoprotein E allele e4
does not explain the incidence variation observed in coronary
heart disease in Finland.19

At first glance, our approach might resemble that of
admixture mapping (Patterson et al20, and references therein).
The differences, however, are also obvious. Admixture
mapping focuses on populations that have a long history of
separation before a recent admixture event, and finds among
loci that are known to differ radically between the ancestral
populations those loci that show disproportionate ancestry in
the diseased individuals of the admixed population. SDS, in
turn, uses subpopulations with long common history and
detects the few differences between them. Both approaches
use LD to reduce the amount of genotyping needed; in
admixture mapping, this LD results from the recent
admixture, in SDS from older events of population history
(as discussed above; in this sense SDS could be seen as an
extension of the ‘‘drift mapping’’ approach,13 and could in
fact overcome some of its difficulties of sampling a small
population). Both approaches are limited to a subset of
diseases in populations with suitable history. Of course, they
might be complementary when applied to different popula-
tions.

As research tools such as high resolution tagging marker
sets and microarrays to assess variation at a multitude of
markers in parallel become available, the proposed subpopu-
lation difference scanning strategy could prove a useful
addition to the repertoire of complex disease gene localisation
strategies. It also shows that population stratification, a

0.11–0.14

0.14–0.17

0.17–0.20

0.20–0.23

Antigen DR3 frequency

Figure 5 Variation of HLA antigen DR3 frequencies in Finland (data
from Sirén et al18).

594 Salmela, Taskinen, Seppänen, et al

www.jmedgenet.com



nuisance in case-control analyses, could actually be turned
into an advantage.
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Uhlén M, Pääbo S. Extensive linkage disequilibrium in small human
populations in Eurasia. Am J Hum Genet 2002;70:673–85.

17 The International HapMap Consortium. The International HapMap Project.
Nature 2003;426:789–96.

18 Sirén MK, Sareneva H, Lokki ML, Koskimies S. Unique HLA antigen
frequencies in the Finnish population. Tissue Antigens 1996;48:703–7.
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APPENDIX A

PARAMETER VALUES USED IN POPULATION
SIMULATIONS
The simulations had initial daughter population sizes of 100,
400, or 800 individuals, encompassing the estimates of
breeding unit size in a Finnish rural population in the 19th
century.3 Growth times were either 20 or 40 generations,
corresponding to the time scale relevant to Finnish popula-
tion history, with southwestern coastal areas inhabited more
than 1000 and eastern inland areas less than 500 years ago.21

The final size of the subpopulations was 100 000 and chosen
mostly for technical convenience; obviously, the initial sizes
are more crucial because in large populations the effects of
drift will be negligible. Linkage disequilibrium (LD) was
measured in terms of the multiallelic extension of Lewontin’s
normalized LD measure D9,22 and D9>0.5 at 1 cM distances
was mostly used.

MATING AND REPRODUCTION
All initial individuals were assumed non-siblings. In each
generation, individuals formed random non-sibling pairs
from which the individuals of the next generation randomly
‘‘chose’’ their parent pair. Thus, virtually the whole popula-
tion was reproducing, apart from individuals who did not
find a non-sibling pair, or pairs who did not happen to
produce children.

RECOMBINATION
Each individual had one pair of 100 cM long chromosomes.
In the meioses that produced the child chromosomes from
the parent chromosomes, chiasma numbers were Poisson
distributed, and the distribution of chiasma locations on the
chromosomes was uniform.

ELECTRONIC DATABASE INFORMATION

The URL for data presented herein is as follows:
StatFin -Online service, Statistics Finland, http://statfin.

stat.fi
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SAMPLING AND GENOTYPING
The descent of the initial chromosomes through the popula-
tion was monitored for 1001 loci located at 0.1 cM intervals.
In the final generation, the number of copies of each initial
chromosome in each locus was recorded from two of the total
daughter populations as well as from independent random
samples of 50, 100, 200, 500, and 1000 non-sibling
individuals that were drawn without replacement from the
daughter populations. Evenly spaced subsets of the 1001 loci
were used to mimic the results of genotyping, which were
assumed to contain no errors or missing data.

HAPLOTYPES AND INITIAL LD
The initial chromosomes were assigned to carry at each
simulated locus one of n equifrequent haplotypes of
nonrecombining SNPs. Each of these haplotypes was
assumed to be uniquely recognisable from one tagging SNP.
Linkage disequilibrium (LD) between haplotypes of adjacent
loci in the initial population was created by letting the
haplotypes on a given chromosome depend on each other: In
the first locus, the haplotypes were assigned to the chromo-
somes randomly. In each following locus, a given number of
randomly chosen chromosomes received haplotypes identical
to the previous locus; in the rest of the chromosomes, the
haplotypes of the previous locus were randomly shuffled into
the new one. Thus, in the two extreme cases, either all loci
along a chromosome have the same haplotype (D9 = 1) or all
haplotypes are assigned anew in all loci (D9 = 0). For
intermediate LD values, the appropriate number of chromo-
somes to be shuffled was determined based on average LD
produced in 1000–5000 pairs of loci located 1 cM (that is, 10
reshufflings) apart; for example D9 = 0.5 is produced by
shuffling ca. 6.7% (depending somewhat on haplotype
number n) of the chromosomes at each 0.1 cM interval.

IMPLEMENTATION
The simulations of chromosome descent were implemented
in C using the GNU Scientific Library (version 1.3)23 for
random number generation, and the haplotype assignment
and further calculations were performed in Matlab (release
12.1; MathWorks Inc., Natick, MA, USA). The initial
chromosomes were labelled uniquely in the descent simula-
tions, and simulation effort could therefore be minimised by
using the same set of descent simulations in several
combinations of n and D9; this introduced no pseudoreplica-
tion, however, because each simulation was used only once
per combination.

EXCLUSION RISK
In each simulation setting—that is, with a given population
history, haplotype number, initial LD, sample size, and
genotyping density, the exclusion threshold was calculated
based on the distribution of allele frequency differences in
genotyped loci between subpopulation samples. Intuitively, if
a locus has a large frequency difference between the total
subpopulations, it is likely to exhibit a large difference in the
genotyping of the subpopulation samples, and thus has a
lower risk of being excluded than a locus whose frequency
difference is small. To allow comparison between simulation
settings, we calculated for each setting the true frequency
difference that a locus should have between the total
subpopulations in order to have a given risk of exclusion.

Firstly, we recorded for each simulated locus the frequency
difference that would be observed when genotyping every
mth locus from subpopulation samples. For a non-genotyped
locus, this observed difference was taken to be the larger of
the absolute sample frequency differences in its two closest
genotyped loci (thus all loci between two genotyped ones
have the same observed difference). For a genotyped locus,

the observed difference was taken to be the largest of the
absolute sample frequency differences in the locus itself and
the two closest genotyped loci. In this manner, an observed
difference was calculated for all possible placements of
genotyped loci at m locus intervals (that is, for locus subsets
beginning from simulated locus 1, 2, ..., m); thus, all
simulated loci had altogether m observed differences. The
loci were then divided according to their true absolute
frequency difference into overlapping categories of width
0.05 at 0.01 intervals (that is, 0.00…0.05, 0.01…0.06, and so
forth). In each category, the proportion of observed frequency
differences that remain below the exclusion threshold of the
simulation setting determines the exclusion risk. To inspect
the true frequency difference corresponding to an exclusion
risk of 20% (that is, gene detection power of 0.80), the 20th
percentile of the observed frequency differences was calcu-
lated in each category. The highest category where the 20th
percentile did not exceed the exclusion threshold was found,
and from the category immediately above that, the median of
the true frequency differences was recorded as the frequency
difference with a 20% exclusion risk for the simulation
setting in question.

PENETRANCE MODEL
Denote by qx the frequency of a disease predisposing,
dominant allele in subpopulation x (where x is h or l for
high or low incidence, respectively), and by cx the carrier
frequency in subpopulation x, that is, the proportion of
individuals in subpopulation x who have at least one copy of
the predisposing allele. In addition, denote by pa and pn the
risk of a carrier and a non-carrier for developing the disease
(that is, penetrance and phenocopy rate), respectively. Now
(see fig 2B) the disease incidence in subpopulation x is ix = cx

6 pa+(12cx)6pn, and, in Hardy-Weinberg equilibrium,
cx = 12(12qx)

2. As frequencies and probabilities, pa, pn, ix, cx

and qx are all between 0 and 1. Because the allele is assumed to
be predisposing, pn,pa; furthermore, ix is between pn and pa.

From above, the carrier frequency difference between the
two subpopulations is Dc = ch - cl = (ih2il)/(pa2pn) =Di/Dp.
Thus, a large Dc can result from a large incidence difference
Di or a small disease risk difference Dp. For given Dp and
disease allele frequency difference Dq = qh2ql, the corre-
sponding Di will in turn be largest when ql = 0.

ESTIMATING AMI INCIDENCES
As the penetrance model above has no time component, the
closest real life counterpart of its incidences would be lifetime
incidences. In the case of AMI, these could be estimated by
transforming the age standardised yearly incidences ix1 of
literature to n year incidences ixn = 12(12ix1)n. The inci-
dences from fig 1(A) thus become il20 = 0.0844 and
ih20 = 0.1346 and those from Tuomilehto et al24 il30 = 0.1419
and ih30 = 0.2556; these can be considered minimum esti-
mates of regional lifetime incidences. A part of their
differences (0.0502...0.1136) is, however, undoubtedly due
to differences in nongenetic risk factor levels between east
and west, and we therefore use 0.04 (from il = 0.06 and
ih = 0.10) as an estimate of the genetic lifetime incidence
difference of AMI.

APPENDIX B

INCIDENCE AND ALLELE FREQUENCY MAPS
The maps in fig 1 were drawn using Gibbs sampling on
Bayesian regression models that describe the geographical
variation in incidence and in allele frequency. Autoregressive
regression models allow separating the random variation in
the data from the spatial trends without need to specify a
parametric model for the spatial trend. Gibbs sampling,
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which is a Markov chain Monte Carlo (MCMC) method,
yields numerical samples from the posterior distribution of
the model.

In the incidence model, the cases are placed on a
10610 km grid. In each grid cell, the number of cases
depends on several factors: the baseline risk, the size and age
structure of the population in the cell, the geographical effect
that we want to extract, and random variation. The
geographical effect, denoted by li where i is the number of
the grid cell, was assigned an autoregressive model. Denoting
by l2i the mean value of l in the neighbouring cells of grid
cell i and by mi the number of neighbouring cells, the model
has the form

where t is a precision (inverse variance) parameter.
The number of cases in a grid cell is assumed to have a

Poisson distribution whose mean depends on the known
variables and the geographical effect. Denoting the mean of
grid cell i by mi, the model has the form

log(mi) = a + bk + li + log(Ni)
where a is the baseline, bk is the age group effect, li is the

local deviation of the risk from the baseline, and Ni is the
population at risk in the location i.

The incidence data was collected as described in Rytkönen
et al25 and Karvonen et al.26 Pooled data from years 1983, 1988,
and 1993 were used for AMI and from 1987 to 1996 for diabetes.
Age standardised incidences were calculated using the mean
population structure of Finland from respective years,

The allele frequency maps were drawn using a similar
model, with the genotype data described in Material and

Methods. The 10 modelled alleles were chosen by visual
inspection of province-level frequency differences in x2

significant alleles; four alleles were selected for presentation
based on the pattern and reliability of the modelled
frequencies. In this model, the allele frequency pi of
municipality i, has a logistic regression structure of the form

where a is again the baseline and li is the local deviation
from the baseline. The local deviations were again assumed
to have a geographical dependency of a similar form as in the
incidence model. There are two differences: firstly, instead of
a grid structure, neighbours were defined as municipalities
having a common border, or in isolated cases, as the closest
municipality; secondly, the model needs another random
effect because of uncertainty about the allele origins. The
reason for the uncertainty is that for each subject, only the
grandparents’ birthplaces are known, not which of the
grandparents carried the subject’s alleles. For the two alleles
in a genotype, there are eight possible combinations of
municipalities where one allele originates from the birthplace
of a maternal grandparent and the other allele from the
birthplace of a paternal grandparent. The probabilities of
these combinations were considered equal and fixed, and the
stochastic origin of the alleles was modelled by sampling a
random combination of origins of individuals during each
iteration.

In both models, the parameters a and t were given
uninformative priors, p(a)1 and t,c(0.05,0.0005). Posterior
means of incidence and allele frequency were based on 10000
iterations after an initial burn in of 5000 iterations. No
parallel chains were run as hierarchical models with a large
number of random effects converge fast. We used WinBUGS
1.427 for the MCMC estimation and ArcView (version 8.3 Esri,
Redlands, CA, USA) for the mapping.
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