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SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS
OVER FINITE FIELDS

ERICH KALTOFEN AND VICTOR SHOUP

Abstract. New probabilistic algorithms are presented for factoring univariate
polynomials over finite fields. The algorithms factor a polynomial of degree
n over a finite field of constant cardinality in time O(n1.815). Previous al-

gorithms required time Θ(n2+o(1)). The new algorithms rely on fast matrix
multiplication techniques. More generally, to factor a polynomial of degree
n over the finite field Fq with q elements, the algorithms use O(n1.815 log q)
arithmetic operations in Fq .

The new “baby step/giant step” techniques used in our algorithms also yield
new fast practical algorithms at super-quadratic asymptotic running time, and
subquadratic-time methods for manipulating normal bases of finite fields.

1. Introduction

In this paper, we present a new probabilistic approach for factoring univariate
polynomials over finite fields. The resulting algorithms factor a polynomial of degree
n over a finite field Fq whose cardinality q is constant in time O(n1.815). The best
previous algorithms required time Θ(n2+o(1)).

This running-time bound relies on fast matrix multiplication algorithms. Let ω
be an exponent of matrix multiplication; that is, ω is chosen so that we can multiply
two n×n matrices using O(nω) arithmetic operations (we assume that 2 < ω ≤ 3).
Using the result of Coppersmith and Winograd [11], we can take ω < 2.375477.

More generally, we prove the following:

Theorem 1. For any 0 ≤ β ≤ 1, there exists a probabilistic algorithm for factoring
a univariate polynomial of degree n over a finite field Fq that uses an expected
number of

O(n(ω+1)/2+(1−β)(ω−1)/2 + n1+β+o(1) log q)
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1180 ERICH KALTOFEN AND VICTOR SHOUP

arithmetic operations in Fq. In particular, choosing ω < 2.375477 and minimizing
the exponent of n, we get O(n1.815 log q) operations in Fq.

Relation to Previous Work. The first random polynomial-time algorithm for
this problem is due to Berlekamp [4]. Berlekamp’s algorithm reduces the problem to
that of finding elements in the null space of an n×n matrix over Fq. Using standard
techniques from linear algebra, Berlekamp’s algorithm can be implemented so as
to use an expected number of O(nω + n1+o(1) log q) operations in Fq. Note that
the algorithm by Rabin [31] has an inferior running time, but Rabin completes
the mathematical justification for the expected running time of the probabilistic
Berlekamp method.

A very different algorithm is described by Cantor and Zassenhaus [9] (see also
Ben-Or [3], especially for the case where the characteristic is 2). Starting with a
square-free polynomial, that algorithm first separates the irreducible factors of dis-
tinct degree (distinct-degree factorization), and then completely factors each of the
resulting factors (equal-degree factorization). The Cantor/Zassenhaus algorithm
can be implemented so as to use an expected number of O(n2+o(1) log q) operations
in Fq.

Von zur Gathen and Shoup [17] developed new algorithmic techniques that es-
sentially allow one to implement the Cantor/Zassenhaus algorithm so that it uses
an expected number of O(n2+o(1) + n1+o(1) log q) operations in Fq. Their tech-
niques allow one to solve the special problem of equal-degree factorization using an
expected number of O(n(ω+1)/2+o(1) + n1+o(1) log q) operations in Fq.

Niederreiter [28] developed an alternate approach to factoring polynomials over
finite fields. However, from a complexity point of view this method is closely related
to Berlekamp’s original algorithm (Fleischmann [15] Niederreiter and Göttfert [29]).

Kaltofen and Lobo [20] adapted the linear system solver of Wiedemann [36] to
Berlekamp’s algorithm. Utilizing techniques from von zur Gathen and Shoup, they
show how their Black Box Berlekamp algorithm can be implemented so as to use
an expected number of O(n2+o(1) + n1+o(1) log q) in Fq.

Notice that at β = 0, the running-time of our algorithm matches that of Ber-
lekamp’s, and at β = 1 it matches that of Cantor/Zassenhaus, so that in some sense
it interpolates between these two algorithms.

When log q is not too large in relation to n, then our new algorithm is asymptot-
ically faster than previous algorithms. This is certainly clear if q is a constant and
ω < 3. Also, for ω < 2.375477, as n and q tend to infinity with log q = O(n0.454),
our new algorithm uses O(n2−Ω(1)) operations in Fq, whereas the best previous algo-
rithms require Θ(n2+o(1)) operations. Figure 1 plots the running times of selected
algorithms in dependence of both n and log q when a fast matrix multiplication
algorithm is used. The method by von zur Gathen and Shoup to-date remains
the champion when log q = Ω(n0.454) and simultaneously log q = O(n1.375477). At
larger fields the term n log q in the Berlekamp algorithm dominates all running
times.

Overview. Our Theorem 1 is proved using the Cantor/Zassenhaus strategy. The
main technical contribution here is a subquadratic distinct-degree factorization
algorithm, which is based on a “baby step/giant step” strategy. Our Fast
Cantor/Zassenhaus algorithm is described in §2.

We also show how to modify the Black Box Berlekamp algorithm, using a very
similar baby step/giant step technique, to get a subquadratic-time algorithm as
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Figure 1. Running time comparisons for variable field cardinality

well. This algorithm is described in §3. Interestingly, our techniques for the Black
Box Berlekamp algorithm lead to subquadratic algorithms for finding a normal
element in a finite field and for converting to and from normal coordinates. We
present those algorithms in §4.

At the heart of our algorithms is the following problem. Given polynomials f ,
g, and h in Fq[x] of degree bounded by n, compute g(h) mod f ∈ Fq[x]. Recently,
this so-called modular polynomial composition problem has arisen in many contexts
(von zur Gathen and Shoup [17], Shoup [34]). The algorithm of Brent and Kung
[6] solves this problem using O(n(ω+1)/2) operations in Fq.

Any improvement in the complexity of this problem would yield an improve-
ment in the complexity of factoring. Indeed, if this problem could be solved using
O(n1+o(1)) operations in Fq, then our Fast Cantor/Zassenhaus algorithm could be
implemented so as to use O(n1.5+o(1) + n1+o(1) log q) operations in Fq.

Our algorithms rely on fast multiplication of matrices, indeed of n1/2 × n1/2

matrices, and therefore are not particularly practical. Interestingly, however, the
techniques themselves can be adapted so as to give a quite practical factoring
algorithm that uses

O(n2.5 + n1+o(1) log q)

operations in Fq and space for O(n1.5) elements in Fq, where the implied “big-O”
constants are quite reasonable. From practical experience, we have found that
when q is a large prime, this new algorithm allows much larger polynomials to be
factored using a reasonable amount of space and time than was previously possible
using other algorithms. This is briefly discussed in §5; a more complete discussion,
including a description of an implementation of this algorithm as well as the results
of empirical tests, is given in Shoup [35].
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1182 ERICH KALTOFEN AND VICTOR SHOUP

To attain a subquadratic running time, our algorithms rely on randomization.
Even if we restrict ourselves to the field F2, the asymptotically fastest known de-
terministic algorithm (Shoup [33]) runs in time O(n2+o(1)), and it remains an open
problem to find a subquadratic deterministic algorithm.

2. The fast Cantor/Zassenhaus algorithm

Like the original Cantor/Zassenhaus algorithm, our algorithm splits the problem
of factoring into three sub-problems:

Square-free factorization: The input is a polynomial f ∈ Fq[x] of degree n.
The output is f1, . . . , fn ∈ Fq[x] such that

f = f1 · f2
2 · · · · · fnn .

Distinct-degree factorization: The input is a square-free polynomial f ∈
Fq[x] of degree n. The output is f [1], . . . , f [n] ∈ Fq[x] such that for 1 ≤ d ≤ n,
f [d] is the product of the monic irreducible factors of f of degree d.

Equal-degree factorization: The input is a polynomial f ∈ Fq[x] of degree
n and an integer d such that f is the product of distinct monic irreducible
polynomials, each of degree d. The output is the set of irreducible factors
of f .

The factoring algorithm proceeds in three stages as follows. In the first stage, the
input polynomial is fed into a square-free factorizer. In the second stage, the non-
trivial outputs from the first stage are fed into distinct-degree factorizers. In the
last stage, the non-trivial outputs from the second stage are fed into equal-degree
factorizers.

The square-free factorization problem can be solved on degree n inputs using
O(n1+o(1) + n log q) operations in Fq, using the algorithm of Yun (see Knuth [23]).

The equal-degree factorization problem can be solved on degree n inputs with
the probabilistic algorithm of von zur Gathen and Shoup [17] using an expected
number of

O(n(ω+1)/2+o(1) + n1+o(1) log q),

or

O(n1.688 + n1+o(1) log q)

operations in Fq.
We shall now present a family of (deterministic) algorithms for the distinct-

degree factorization problem, parameterized by β with 0 ≤ β ≤ 1, that uses

O(n(ω+1)/2+(1−β)(ω−1)/2 + n1+β+o(1) log q)

operations in Fq. For any choice of β, this dominates the time required for square-
free factorization and equal-degree factorization, establishing Theorem 1.

Our distinct-degree factorization algorithm uses a “baby step/giant step” strat-
egy that exploits the following fact.

Lemma 1. For nonnegative integers i and j, the polynomial xq
i − xqj ∈ Fq[x] is

divisible by precisely those irreducible polynomials in Fq[x] whose degree divides i−j.
Proof. Assume without loss of generality that i ≥ j. Then xq

i−xqj

= (xq
i−j −x)qj

,
and the result follows at once from the factorization of xq

k − x, which consists of
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all irreducible factors whose degree is a divisor of k (see Lidl and Niederreiter [24],
Theorem 3.20).

We first present a high-level description of our distinct-degree factorization al-
gorithm. The details of how each step is to be implemented are deferred until
later.

Algorithm D. This algorithm takes as input a square-free polynomial f ∈ Fq[x]
of degree n. The output is f [1], . . . , f [n] ∈ Fq[x] such that for 1 ≤ d ≤ n, f [d] is
the product of the monic irreducible factors of f of degree d. The algorithm is
parameterized by a constant β, with 0 ≤ β ≤ 1.

Step D1 (compute baby steps): Let l = dnβe. For 0 ≤ i ≤ l, compute
hi = xq

i

mod f ∈ Fq[x].
Step D2 (compute giant steps): Let m = dn/2le. For 1 ≤ j ≤ m, compute
Hj = xq

lj

mod f ∈ Fq[x].
Step D3 (compute interval polynomials): For 1 ≤ j ≤ m, compute

Ij =
∏

0≤i<l
(Hj − hi) mod f ∈ Fq[x].

Note that by Lemma 1, the polynomial Ij is divisible by those irreducible
factors of f whose degree divides an integer k with (j − 1)l < k ≤ jl.

Step D4 (compute coarse DDF): In this step, we compute polynomials
F1, . . . , Fm, where Fj = f [(j−1)l+1]f [(j−1)l+2] · · · f [jl]. This is done as follows.

f∗ ← f ;
for j ← 1 to m do

{Fj ← gcd(f∗, Ij); f∗ ← f∗/Fj }
Step D5 (compute fine DDF): In this step, we compute the output polyno-

mials f [1], . . . , f [n]. First, initialize f [1], . . . , f [n] to 1. Then do the following.
for j ← 1 to m do
{g ← Fj ;
for i← l− 1 down to 0 do
{f [lj−i] ← gcd(g,Hj − hi); g ← g/f [lj−i]}

}
if f∗ 6= 1 then f [deg(f∗)] ← f∗;

The correctness of this algorithm is clear from the comments contained therein.
Before establishing the running-time bound in Theorem 1, we begin with the

following slightly weaker, but simpler, result.

Theorem 2. Algorithm D can be implemented so as to use

O(n(ω+1)/2+1−β + n1+β+o(1) log q)

operations in Fq. In particular, choosing ω < 2.375477 and minimizing the exponent
of n, we get O(n1.844 log q) operations in Fq.

The proof of Theorem 2 is based on the observation that for any positive integer
r, if we are given h = xq

r

mod f ∈ Fq[x], then for any g ∈ Fq[x], we can compute
gq

r

mod f as g(h) mod f ∈ Fq[x]. To solve this so-called “modular composition”
problem, we use the following result.
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Lemma 2. Given a polynomial f ∈ K[x] of degree n over an arbitrary field K,
and polynomials g, h ∈ K[x] of degree less than n, we can compute the polynomial
g(h) mod f ∈ K[x] using O(n(ω+1)/2) arithmetic operations in K.

Proof. This is essentially Algorithm 2.1 in Brent and Kung [6].

We now prove Theorem 2.
Step D1 is performed by iterating the standard repeated-squaring algorithm l

times. This takes O(n1+β+o(1) log q) operations in Fq.
Step D2 is performed by setting H1 = hl, and then iterating the algorithm

of Lemma 2, computing each Hj as Hj−1(H1) mod f ∈ Fq[x]. This takes
O(n(ω+1)/2+1−β) operations in Fq.

Step D3 is performed as follows. Let R be the ring Fq[x]/(f). We first compute
the coefficients of the polynomial H(Y ) ∈ R[Y ] of degree l, where

H(Y ) =
∏

0≤i<l
(Y − (hi mod f)).

Then we evaluate H(Y ) at the m points

(H1 mod f), . . . , (Hm mod f) ∈ R.
Using fast algorithms for multiplication of polynomials in R[Y ] (Cantor and
Kaltofen [8]) Step D3 can be implemented so as to use O(n1+β+o(1) + n2−β+o(1))
operations in Fq (Aho et al. [1]).

In Step D4, we need to compute O(m) GCD’s and divisions, requiring
O(n2−β+o(1)) operations in Fq.

To implement Step D5 efficiently, we first reduce each hi modulo each Fj . Re-
ducing one hi modulo each Fj takes O(n1+o(1)) operations in Fq, using standard
“Chinese remaindering” techniques (Aho et al. [1]). Thus, reducing all of the hi’s
modulo all of the Fj ’s takes just O(n1+β+o(1)) operations in Fq. Also, we compute
Hj mod Fj for each Fj . This takes O(n2−β+o(1)) operations in Fq. With these
pre-computations, the total cost of computing the GCD’s and divisions in the inner
loop amounts to O(n1+β+o(1)) operations in Fq. Thus the total cost of Step D5 is
O(n1+β+o(1) + n2−β+o(1)) operations in Fq.

That proves Theorem 2.
We now show how to modify the implementation of Step D2 to obtain the slightly

better running-time bound of Theorem 1.

Theorem 3. Algorithm D can be implemented so as to use

O(n(ω+1)/2+(1−β)(ω−1)/2 + n1+β+o(1) log q)

operations in Fq. In particular, choosing ω < 2.375477 and minimizing the exponent
of n, we get O(n1.815 log q) operations in Fq.

To prove this theorem, it will suffice to show that we can compute the polynomi-
als H1, . . . , Hm in Step D2 using O(n(ω+1)/2+(1−β)(ω−1)/2) operations in Fq. This
is an immediate consequence of the following two lemmas.

Lemma 3. Given a polynomial f ∈ K[x] of degree n over an arbitrary field K, and
polynomials g1, . . . , gk, h ∈ K[x] of degree less than n, where k = O(n), we can
compute

g1(h) mod f, . . . , gk(h) mod f ∈ K[x]
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SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1185

using

O(n(ω+1)/2k(ω−1)/2)

arithmetic operations in K.

Proof. Setting t = d√nke, we decompose each of the input polynomials g1, . . . , gk
as

gi =
∑

0≤j<n/t
gi,jy

j , y = xt,(1)

where the gi,j ’s are polynomials of degree less than t. We first compute the poly-
nomials h(i) = hi mod f for 0 ≤ i ≤ t. Next, we compute all of the polynomi-
als gi,j(h) mod f by computing the following product of an n × t matrix and a
t× (kdn/te) matrix:[

~h(0)
∣∣∣ . . . ∣∣∣ ~h(t−1)

]
· [ ~g1,0 ∣∣ . . . ∣∣ ~g1,dn/te−1

∣∣ . . . ∣∣ ~gk,0 ∣∣ . . . ∣∣ ~gk,dn/te−1

]
.

Here, we use the notation ~· to denote the column vector consisting of the coefficients
of a polynomial. This computation is done by performing O(

√
n/k) multiplications

of t×tmatrices. Finally, we compute for 1 ≤ i ≤ k the polynomial gi(h) mod f(x) ∈
K[x] by substituting the polynomial h(t) for y in the formula (1), and performing
a Horner evaluation scheme. This is done by iteratively performing dn/te − 1
polynomial multiplications mod f and O(n/t) polynomial additions.

It is easily seen that the dominant cost is again the matrix multiplication step,
which can be carried out using the stated number of operations.

We remark that when k = 1, the algorithm in the above proof is the same as
Brent and Kung’s modular composition algorithm.

Lemma 4. Let f ∈ Fq[x] be a polynomial of degree n. Suppose that we are given
xq

r

mod f ∈ Fq[x]. Then we can compute

xq
r

mod f, xq
2r

mod f, . . . , xq
kr

mod f ∈ Fq[x],
where k = O(n), using

O(n(ω+1)/2k(ω−1)/2)

operations in Fq.

Proof. For i ≥ 1, let Gi = xq
ir

mod f ∈ Fq[x]. Assume we have computed
G1, . . . , Gm. Then we can compute Gm+1, . . . , G2m by computing G1(Gm) mod
f, . . . , Gm(Gm) mod f using the algorithm in the previous lemma.

So to compute G1, . . . , Gk given G1, we simply repeat the above “doubling” step
O(log k) times. The stated running-time estimate then follows easily.

3. The Fast Black Box Berlekamp algorithm

In Kaltofen and Lobo [20], a version of Berlekamp’s factoring algorithm was
given based on Wiedemann’s [36] sparse linear system solver. In this section, we
show how to modify that algorithm to obtain a probabilistic, subquadratic-time
algorithm.

We split this section into two parts. In §3.1, we review the ideas behind the
Black Box Berlekamp algorithm, presenting a high-level description of that algo-
rithm. Then in §3.2, we describe a subquadratic-time implementation, first proving
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a running time bound of O(n1.880 + n1.808 log q) operations in Fq. We then modify
this method to obtain the bound O(n1.852 +n1.763 log q). With yet a bit more work,
we show how to obtain the bound O(n1.815 log q).

3.1. The Black Box Berlekamp Algorithm. We first recall the main ideas
behind the Black Box Berlekamp algorithm. Suppose the coefficient field Fq has
characteristic p. Let f ∈ Fq[x] be a monic square-free polynomial of degree n to be
factored. Assume that the factorization of f into irreducibles is

f = f1 · · · fr.
For 1 ≤ i ≤ r, let di = deg(fi), and let pei be the highest power of p that divides
di. Furthermore, let e = max{ei : 1 ≤ i ≤ r}.

Now consider the q-th power map σ : α 7→ αq for α ∈ Fq[x]/(f). Let φ ∈ Fq[λ]
be the minimum polynomial of σ over Fq, i.e., φ is the monic polynomial of least
degree such that φ(σ) = 0. The polynomial φ can easily be described in terms of
the degrees of the irreducible factors of f , as follows. By the Chinese remainder
theorem we have the Fq-algebra isomorphism

Fq[x]/(f) ∼= Fq[x]/(f1)⊕ · · · ⊕ Fq[x]/(fr).
For 1 ≤ i ≤ r, let σi be the q-th power map on Fq[x]/(fi), and let φi ∈ Fq[λ]
be its minimum polynomial. From the basic theory of finite fields, we know that
φi = λdi − 1. Moreover, by the Chinese remainder theorem,

φ = lcm{φ1, . . . , φr} = lcm{λd1 − 1, . . . , λdr − 1}.
Now consider the polynomial µ(λ) = φ(λ)/(λ − 1), and the image Ii ⊂ Fq[x]/(fi)
of µ(σi). Since (σi − 1)(α) = αq − α = 0 for all α ∈ Ii, it follows that Ii ⊂ Fq. It is
easily seen that λ − 1 divides λdi − 1 exactly to the power pei , which implies that
Ii = Fq if ei = e, and Ii = {0} if ei < e (see Kaltofen and Lobo [20], §3, for more
details).

These considerations motivate the following recursive algorithm. The details of
how each step is to be implemented are deferred until later.

Algorithm B. The algorithm takes as input a monic square-free polynomial f ∈
Fq[x] of degree n, and produces as output the set of irreducible factors of f .

Step B1 (compute minimum polynomial): Probabilistically compute a
polynomial φ∗ ∈ Fq[λ] that with probability at least 1/2 is equal to φ, the min-
imum polynomial of the q-th power map σ on Fq[x]/(f), and that otherwise
divides φ.

Step B2 (evaluate polynomial): If φ∗(λ) = λn − 1, then halt, as f is then
certified to be irreducible. If λ− 1 does not divide φ∗(λ), go back to Step B1,
as then φ∗ is clearly erroneous. Otherwise, set µ∗(λ) = φ∗(λ)/(λ− 1), choose
a random α ∈ Fq[x]/(f), and compute

α∗ = (µ∗(σ))(α) ∈ Fq[x]/(f).

Step B3 (split): Let α∗ = (g mod f). Compute h1 = gcd(g, f) and h2 = f/h1.
If φ∗ = φ then the degrees of all irreducible factors of h2 are divisible by pe

and the residues of h2 modulo these factors are random elements in Fq \ {0}.
Compute h∗ ∈ Fq[x]/(h2) as

h∗ =

{
g(q−1)/2 mod h2 if p > 2,∑k−1

j=0 g
2j

mod h2 if q = 2k.
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SUBQUADRATIC-TIME FACTORING OF POLYNOMIALS OVER FINITE FIELDS 1187

Recursively factor h1, h∗2 = gcd(1 + h∗ mod h2, h2) and h2/h
∗
2.

Before going into the details of each step, we first calculate a bound on the
recursion depth of this algorithm.

Lemma 5. The expected value of the recursion depth of Algorithm B is
O(dlogp ne log r), where r is the number of irreducible factors of f .

Proof. Consider one invocation of the algorithm and recall the notation preceding
the algorithm. Each factor fi with ei = e will be separated from the factors fj
with ej < e in Step B3 with probability bounded away from 0 by a constant. If f
has several factors with ei = e, then each pair of such factors will be separated in
Step B3 with probability bounded away from 0 by a constant. These statements
follow easily from the fact that φ∗ is correctly computed with probability 1/2, and
from the discussion preceding the algorithm.

Using a standard argument (see, for example, Lemma 4.1 in von zur Gathen and
Shoup [17], at an expected depth of O(log r), all irreducible factors fi with ei = e
will be isolated, and the only reducible factors remaining will have ei < e.

It follows that at an expected depth of O(dlogp ne log r), all irreducible factors
of f will be isolated.

Next, we discuss the problem of computing φ∗ in Step B1. Following Wiedemann
[36], this is done as follows. We choose random α ∈ Fq[x]/(f) and a random Fq-
linear map u : Fq[x]/(f)→ Fq, and compute the minimum polynomial of the linearly
generated sequence {ai : ai = u(σi(α)) and i ≥ 0}. Using an asymptotically fast
version of the Berlekamp-Massey algorithm (Massey [27], Dornstetter [12]), given
the first 2n terms of the sequence {ai : i ≥ 0}, we can determine the minimum
polynomial φα,u ∈ Fq[λ] of this sequence using O(n1+o(1)) operations in Fq. In
general, φα,u divides φ, but the probability that φα,u = φ (for random α, u) may be
less than 1/2, and indeed not even bounded away from 0 by a constant. To increase
this probability, we repeat the above procedure some number ρ(n, q) times, each
time choosing a new α and a new u at random, thus obtaining polynomials φαi,ui ,
where 1 ≤ i ≤ ρ(n, q). Then we compute

φ∗ = lcm{φαi,ui : 1 ≤ i ≤ ρ(n, q)}.
The value ρ(n, q) can be chosen as indicated in the next lemma.

Lemma 6. Let ρ(n, q) be defined as follows. If q ≥ 4n, then ρ(n, q) = 1. Other-
wise,

ρ(n, q) =


6 if q = 2,
4 if q = 3,
3 if 4 ≤ q ≤ 9,
2 if q ≥ 11.

Then the probability that φ∗ = φ is at least 1/2.

Proof. If q ≥ 4n, then the result follows by the analysis of Kaltofen and Pan
[21]. Otherwise we argue along the same lines as Wiedemann [36, §VI]. Suppose
φ = ψη11 · · ·ψηs

s is the factorization of φ into irreducibles. Suppose α ∈ Fq[x]/(f)
and u : Fq[x]/(f) → Fq are chosen at random. As above, let φα ∈ Fq[λ] be the
minimum polynomial of the sequence {σi(α) : i ≥ 0} and let φα,u be the minimum
polynomial of the sequence {u(σi(α)) : i ≥ 0}.
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Claim. For any single j with 1 ≤ j ≤ s, the probability that ψηj

j does not divide
φα,u is no more than

(2/q − 1/q2)δ where δ = deg(ψj).

We prove this claim by using a fact established by Wiedemann. He shows that
there exists a surjective Fq-linear map L : V → W depending on α, where V is
the linear space of Fq-linear maps from Fq[x]/(f) to Fq and W is the linear space
of polynomials of degree less than deg(φα), such that for any u ∈ V we have
φα,u = φα/ gcd(φα,L(u)). Suppose now that ψηj

j divides φα. Then ψ
ηj

j divides
φα,u if ψj does not divide L(u), which for a random u is a random polynomial
over Fq of degree less than deg(φα). Clearly, of all qdeg(φα) such polynomials only
qdeg(φα)−δ are divisible by ψj , so the probability that ψj does not divide L(u) is
1 − 1/qδ. Furthermore, by considering the rational canonical form of the linear
transform σ we can show the existence of an element α0 such that φα0 = φ. As L
is surjective, there also must exist a u0 such that φα0,u0 = φα0 = φ. By switching
the rôles of u and α, as Wiedemann does in the proof of his Proposition 4, we can
obtain that the probability that ψηj

j divides φα,u0 is 1−1/qδ. Thus, the probability
that ψηj

j divides φα is no less.
Therefore, the probability that ψηj

j does not divide φα,u is no less than 1 −
(1− 1/qδ)2 = 2/qδ − 1/q2δ. The claim then follows from the inequality 2cδ − c2δ ≤
(2c − c2)δ, which holds for all real numbers c with 0 < c ≤ 1/2 and all integers
δ ≥ 1.

From this claim, one sees that if this procedure is repeated k = ρ(n, q) times,
and we compute φ∗ as the polynomial least common multiple of all of the φαi,ui ’s,
then the probability that ψηj

j does not divide φ∗ is at most (2/q − 1/q2)k deg(ψj).

Since the factorization of xq
l − x includes each irreducible polynomial of degree

l, the number of irreducibles of degree l is at most ql/l. Hence summing over all
irreducible polynomials dividing φ, as well as all those irreducible polynomials not
dividing φ, we get an upper bound on the probability that φ∗ 6= φ of∑

l≥1

ql

l
(2/q − 1/q2)k l = − log(1− q(2/q − 1/q2)k).

The lemma then follows from a simple numerical calculation.

For sufficiently large q it is possible to improve the expected recursion depth of
Algorithm 1 to O(logp n + log r) as follows. First, we make the probability that
φ∗ 6= φ in Step B1 smaller than 1/q by computing the least common multiple of ρ′

many polynomials φαi,ui , where

ρ′(n, q) =


6 if q = 2,
5 if q = 3,
4 if q = 4, 5,
3 if q ≥ 7,
2 if q > 4n2.

The values for ρ′ follow as in the proof of Lemma 6. Suppose now that φ∗ = φ.
Then the probability that all re irreducible factors fi of f with ei = e are separated
from the remaining factors in a single gcd in Step B3 is equal to the probability that
re random elements of Fq are simultaneously not equal to zero, which is (1−1/q)re.
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Overall, we succeed to separate the fi with ei = e from the rest in a single try with
probability ≥ (1− 1/q) (1− 1/q)re.

Let rη be the number of irreducible factors fj of f with ej = η. Then with
probability no less than

e∏
η=0

(
1− 1

q

)1+rη

≥
(

1− 1
q

)e+r+1

≥
(

1
4

)(e+r+1)/q

the factors with ej = η are split off for all η by a recursion of depth e + 1. Now
suppose that for a constant c > 0 we have

q ≥ c (blogp nc+ r + 1).

Then the probability that all pairs fi and fj with ei 6= ej are separated at recursion
depth O(logp n) is bounded away from 0 by a constant (namely 4−1/c). It is then
easy to show that the expected depth is O(logp n+log r). We note that for constant
q, however, the expected recursion depth can be Θ((log n)2).

3.2. A Subquadratic-Time Implementation.

Theorem 4. For any constant β with 0 ≤ β ≤ 1, Algorithm B can be implemented
so as to use an expected number of

O(n(ω+1)/2+(3−ω)|β−1/2|+o(1) + n(ω+1)/2+1−β+o(1) + n1+β+o(1) log q)(2)

operations in Fq. In particular, choosing ω < 2.375477 and minimizing the exponent
of n, we get O(n1.880 + n1.808 log q) operations in Fq.

Remark 1. The first term in (2) is dominated by the second exactly when β <
(ω − 5)/(2(ω − 4)), and thus at least when β < 3/4.

To prove Theorem 4, we first show that one invocation of Algorithm B, not
counting the recursive calls, can be implemented so as to satisfy the bound in
Theorem 4. By Lemma 5, multiplying this by O((log n)2) gives a bound on the
total cost of the algorithm, and thus the theorem will follow.

The cost of Step B3 is O(n1+o(1) log q) operations in Fq, and the cost of the
Berlekamp-Massey algorithm in Step B1 is O(n1+o(1)) operations in Fq. So to
prove our result, we have to solve the following two types of problems within the
stated time bounds.

automorphism projection: Given α ∈ Fq[x]/(f), u : Fq[x]/(f) → Fq, and a
positive integer k = O(n), compute u(σi(α)) ∈ Fq for all i with 0 ≤ i < k.

automorphism evaluation: Given α ∈ Fq[x]/(f) and a polynomial µ ∈ Fq[λ]
of degree less than k, where k = O(n), compute (µ(σ))(α) ∈ Fq[x]/(f).

We first claim that these two problems are computationally equivalent, in a
very strong sense. Consider the n × k matrix A whose columns consist of the co-
ordinates with respect to the natural power basis 1, x, x2, . . . , xn−1 for Fq[x]/(f)
of α, σ(α), . . . , σk−1(α). Then the automorphism projection problem consists of
multiplying A on the left by a row vector (u0, . . . , un−1) ∈ F1×n

q . The automor-
phism evaluation problem consists of multiplying A on the right by a column vector
(µ0, . . . , µk−1)T ∈ Fk×1

q . Thus these two problems are merely the transpose of each
other, and by the so-called transposition principle a straight-line program of length l
for one can be quickly converted (in time O(l)) into a straightline program of length
O(l) for the other, provided the straight-line program computes linear forms in the
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input variables {ui} (respectively, {µi}). It should be noted that this observation
applies to the Wiedemann algorithm in general. For example, in Algorithm 1 in
Wiedemann [36] step 4 and step 6 are computationally equivalent within a constant
factor. The discovery of the transposition principle goes back to the Ph.D. thesis
of Fiduccia [14], Theorem 2 for multiplications (see also Fiduccia [13], Theorem 4)
and Theorem 5 for additions and subtractions. The additive version with a similar
proof is rediscovered in (Kaminski et al. [22]). Furthermore, we remark that the
transposition principle is a direct consequence of the so-called reverse mode in au-
tomatic differentiation, see Canny et al. [7]; for reverse mode see also Ostrowski et
al. [30], Linnainmaa [25], Baur and Strassen [2], and Griewank [19].

Thus, to prove our theorem, it will suffice to prove the required bound for just
one of these problems. We prove it for the automorphism evaluation problem.
The following algorithm for automorphism evaluation is based on the same “baby
step/giant step” strategy used in Brent and Kung’s modular composition algorithm.

Algorithm AE. This algorithm takes as input an element α ∈ Fq[x]/(f), where
f ∈ Fq[x] is of degree n, and a polynomial µ ∈ Fq[λ] of degree less than k, where
k = O(n). The output is (µ(σ))(α) ∈ Fq[x]/(f). The algorithm is parameterized
by a constant β, with 0 ≤ β ≤ 1.

We set t = dnβe and m = dk/te, and we write µ as

µ =
∑

0≤j<m
µj(λ)λtj ,

where each µj ∈ Fq[λ] has degree less than t.
Then we have

(µ(σ))(α) =
∑

0≤j<m
σtj( (µj(σ))(α) ).

The algorithm proceeds as follows.
Step AE1: Compute σi(α) ∈ Fq[x], for all i with 0 ≤ i < t, by iterating a

repeated squaring algorithm.
Step AE2: Using the values computed in Step AE1, we next compute

(µj(σ))(α) ∈ Fq[x] for all j with 0 ≤ j < m. This is done by multiplying an
m× t matrix by a t× n matrix.

Step AE3: We compute xq
t

mod f , using the method of Algorithm 5.2 in von
zur Gathen and Shoup [17], which requires the computation of xq mod f , plus
O(log t) modular polynomial compositions.

Step AE4: We use the values computed in Steps AE2 and AE3 together with
a Horner evaluation scheme to get (µ(σ))(α). This is done iteratively, per-
forming m− 1 modular compositions.

Lemma 7. Algorithm AE can be implemented so as to use

O(n(ω+1)/2+(3−ω)|β−1/2| + n(ω+1)/2+1−β + n1+β+o(1) log q)

operations in Fq[x]. Moreover, the algorithm satisfies the conditions of the transpo-
sition principle.

Proof. Step AE1 takes O(n1+β+o(1) log q) operations in Fq.
In Step AE2, if β > 1/2, we compute O(n1+β/n2(1−β)) multiplications of square

matrices of dimension O(n1−β); otherwise, if β ≤ 1/2, we perform O(n2−β/n2β)
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multiplications of square matrices of dimension O(nβ). In either case, the number
of operations in Fq is readily calculated as O(n(ω+1)/2+(3−ω)|β−1/2|).

Step AE3 takes O(n(ω+1)/2 + n1+o(1) log q) operations in Fq.
Step AE4 takes O(n(ω+1)/2+1−β) operations in Fq.
To prove the second assertion in the lemma, one easily checks that all of the

values computed by the algorithm are linear in the input variables representing the
coefficients of µ.

Although the above discussion implies the existence of an algorithm for automor-
phism projection, it is not too difficult to give an explicit algorithm. We describe
one here.

Let Q be the n×n matrix representing the q-th power map σ on Fq[x]/(f), with
respect to the natural power basis. The matrix Q is the transpose of Petr’s matrix
(see Schwarz [32]) computed in the classical Berlekamp algorithm. We represent the
projection map u as a row vector ~uT, and we let ~α be the column vector consisting
of the coordinates of α. We want to compute the values

~uTQi~α (0 ≤ i < k).(3)

Algorithm AP. This algorithm takes as input α and u as above and computes
the quantities (3). The algorithm is parameterized by a constant β, with 0 ≤ β ≤ 1.

Set t = dnβe and m = dk/te. We rewrite (3) as

(~uTQtj) · (Qi~α) (0 ≤ j < m, 0 ≤ i < t).(4)

The algorithm proceeds as follows.
Step AP1: Compute the vectors Qi~α, for 0 ≤ i < t, by iterating a repeated

squaring algorithm t − 1 times (left multiplication by Q is the same as q-th
powering).

Step AP2: Compute xq
t

as in Step AE3.
Step AP3: Compute the vectors ~uTQtj, for 0 ≤ j < m, by iteratively comput-

ing m − 1 “transposed” modular polynomial compositions to carry out the
right multiplications by Qt, each of which (by the transposition principle) has
the same cost as an ordinary modular composition (with xq

t

mod f).
Step AP4: Using the values computed in Steps AP1 and AP3, all of the values

in (4) are computed by multiplying an m× n matrix by an n× t matrix.

It is straightforward to check that Lemma 7 also holds for Algorithm AP. We
point out that an explicit algorithm for the “transposed” modular composition
problem in Step AP3 is given in Shoup [35, §4.1].

Interestingly, Algorithm AP suggests a slightly faster algorithm for automor-
phism projection. Notice that the term n(ω+1)/2+1−β in the running-time bound
comes from Step AP3. Using the transposition principle and the strategy used to
prove Theorem 3, we can reduce this term to n(ω+1)/2+(1−β)(ω−1)/2 as follows.

Lemma 8. Given xq
t

mod f , we can compute ~uTQtj for all j with 0 ≤ j < m,
where m = O(n), using O(n(ω+1)/2m(ω−1)/2) operations in Fq.

Proof. We use the same “doubling” strategy used in the algorithm in the proof of
Lemma 4. Assume we have computed the row vectors

~uT, ~uTQt, . . . , ~uTQ(k−1)t,(5)
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as well as xq
kt

mod f for some k ≥ 1. Then we multiply each vector in the sequence
(5) by Qkt and compute xq

2kt

mod f . The problem of applying Qkt to the sequence
(5) is precisely the transpose of the problem solved by the algorithm in Lemma 3,
and so by the transposition principle, now applied to a block diagonal matrix with
Qkt as diagonal blocks, we can do this in O(n(ω+1)/2k(ω−1)/2) arithmetic operations.
Computing xq

2kt

mod f from xq
kt

mod f requires just one modular composition.
That completes the description of the doubling step. The running time bound
follows easily.

Again, by the transposition principle, this implies the existence of an algorithm
for the automorphism evaluation problem with the same complexity, although it is
not entirely clear at the moment how to explicitly describe this algorithm.

Combining all of this with our previous analysis of Algorithm B, we have proved
the following.

Theorem 5. For any constant β with 0 ≤ β ≤ 1, Algorithm B can be implemented
so as to use an expected number of

O(n(ω+1)/2+(3−ω)|β−1/2|+o(1) + n(ω+1)/2+(1−β)(ω−1)/2+o(1) + n1+β+o(1) log q)(6)

operations in Fq. In particular, choosing ω < 2.375477 and minimizing the exponent
of n, we get O(n1.852 + n1.763 log q) operations in Fq.

Remark 2. The first term in (6) is dominated by the second exactly when β <
2/(5− ω), and thus at least when β < 2/3.

For ω = 2.375477, by making use of techniques for fast rectangular matrix mul-
tiplication, the operation count (6) in Theorem 5 can be reduced to

O(n(ω+1)/2+(1−β)(ω−1)/2+o(1) + n1+β+o(1) log q),

and in particular to O(n1.815 log q) for an appropriate choice of β. We indicate how
this is done.

The first term in (6) arises from the rectangular m × n times n × t matrix
multiplication in Step AP4. By the remark after Theorem 5, we may assume
β ≥ 2/3 and in particular that t > m.

Techniques for fast rectangular matrix multiplication allow us to multiply a bδ×b
matrix by a b× b matrix with O(b2+o(1)) operations for some δ > 0 (Coppersmith
[10], Lotti and Romani [26]). With the construction yielding ω < 2.375477 by
Coppersmith and Winograd [11], we may chose δ = 0.29 (Coppersmith, private
communication).

The needed m × n × t matrix product is done with O(n/t) products of m × t
times t× t matrices. We shall carry out each of the latter products by multiplying
a (t/b) × (t/b) block matrix with (mb/t) × b blocks times a (t/b) × (t/b) block
matrix with b × b blocks. If mb/t = bδ, i.e., b = (t/m)1/(1−δ), each block product
costs O(b2+o(1)) operations, yielding a total of O((t/b)ωb2+o(1)) operations for the
m× t× t product. Substituting m = O(n1−β) and t = O(nβ), we get for the entire
m× n× t product

O(n1−β+ωβ−(ω−2)(2β−1)/(1−δ)+o(1))(7)

operations.
Now, for ω = 2.375477 and δ = 0.29, one routinely checks that for 2/3 ≤ β ≤ 1,

the quantity (7) is dominated by either the second or the third term of (6).
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4. Applications to normal bases

The results of §3 can be used to speed certain operations with so-called normal
basis of finite extensions of Fq. In this section we describe those subquadratic
algorithms.

A finite field Fqn of qn elements can be represented as an n-dimensional vector
space over Fq. For instance, if f(x) ∈ Fq[x] is an irreducible monic polynomial of
degree n over Fq, the powers 1, x, . . . , xn−1 form a basis for the Kronecker repre-
sentation Fq[x]/(f(x)) of the field Fqn . It can be advantageous for performing arith-
metic in Fqn , in particular exponentiation, if one finds a normal element α ∈ Fqn

with the property that

α, αq, . . . , αq
n−1

is a Fq-vector space basis for Fqn . Von zur Gathen and Giesbrecht [16] give a ran-
domized algorithm for finding a normal element α ∈ Fq[x]/(f(x)) in O(n2+o(1) log q)
arithmetic operations in Fq. The running time of their algorithm is reduced in (von
zur Gathen and Shoup [17]) to O(n2+o(1) + n1+o(1) log q) arithmetic operations in
Fq. Here we give O(n1.815 log q) solutions to the following three problems:

basis selection: Given f(x) ∈ Fq[x] irreducible monic of degree n, compute a
normal element α ∈ Fq[x]/(f(x)).

conversion to power basis coordinates: Given f and α as above and c0, . . . ,
cn−1 ∈ Fq, compute c0α+ · · ·+ cn−1α

qn−1
in power basis representation.

conversion to normal coordinates: Given f and α as above and γ ∈
Fq[x]/(f(x)), compute c0, . . . , cn−1 ∈ Fq such that

c0α+ · · ·+ cn−1α
qn−1

= γ.

Theorem 6. We have probabilistic algorithms that can solve the basis selection
and conversion to and from power basis coordinates problems in

O(n(ω+1)/2+(1−β)(ω−1)/2+o(1) + n1+β+o(1) log q),(8)

arithmetic operations in Fq for any β with 0 ≤ β ≤ 1.

Proof. Suppose ~α is the column vector containing the coefficients of the canonical
representative of α. Using the notation of §3 we have that Qi~α is the coefficient
vector of the canonical representative of αq

i

, where Q is the matrix representing
the q-th power map on Fq[x]/(f(x)). Hence α is normal if

~α,Q~α,Q2~α, . . . , Qn−1~α

are linearly independent vectors. Since f is irreducible and the minimum polyno-
mial of Q is λn − 1 such an α must exist. Furthermore, for a random row vector
~uT and for a random column vector ~α the probability that the minimum linear
generator of

~uTQi~α (0 ≤ i)
remains λn − 1 is no less than 1/(12 max{logq(n), 1}) (see Wiedemann [36, Propo-
sition 3], or Giesbrecht[18, §6.1]). Therefore, a normal element can be found with
success probability no less than 1 − 1/e by running the automorphism projection
algorithm of §3 12 max{logq(n), 1} times. The stated complexity (8) then follows
from our estimates at the end of §3.
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Conversion to power basis coordinates is simply the automorphism evaluation
problem of §3, so it remains to demonstrate conversion to normal basis coordinates
in time (8). By first applying the q-th power map n− 1 times to

γ = c0α+ · · ·+ cn−1α
qn−1

and then applying a linear map u from Fqn to Fq we obtain

u(γq
j

) =
n−1∑
i=0

ciu(αq
i+j

) (0 ≤ j < n).(9)

If the linear map u preserves λn − 1 as the minimum linear generator for u(αq
i

),
where i ≥ 0, then the Hankel matrix on the right side of (9) must be non-singular,
because otherwise one could find a second linear generator of degree n. Such a u is
a by-product of our basis selection method and can be found in a similar way if only
α is given. The same is true for the entries u(αq

i+j

) in the Hankel matrix, while
the left side elements u(γq

j

) are computed again by automorphism projection. The
Hankel system is finally solved for the ci in O(n1+o(1)) arithmetic steps (Brent et
al. [5]).

5. Practical algorithms

In this section, we describe how the methods developed in this paper can be used
to obtain practical algorithms, without relying on fast matrix multiplication.

Consider our Fast Cantor/Zassenhaus algorithm. A practical variant of Al-
gorithm D, the distinct-degree factorizer, runs as follows. In Step D1, we set
l ≈ √

n/2, so m ≈ √
n/2 as well. We compute xq mod f via repeated squar-

ing. We generate both the baby steps and the giant steps (Steps D1 and D2) by
iteratively applying a modular composition algorithm. Steps D3, D4, and D5 are
performed by carrying them out quite literally as they are described, without any
“tricks.”

The cost of each step is then as follows:
Steps D1 and D2: ≈ √2n modular compositions;
Step D3: ≈ n/2 multiplications of polynomials modulo f ;
Step D4: ≈√

n/2 GCD’s;
Step D5: O(n3/4) polynomial divisions and the equivalent of at most ≈√

n/2
GCD’s.

To appreciate the practical significance of this, one must realize that, in spite
of popular prejudice, asymptotically fast polynomial multiplication algorithms are
in fact fast in practice, for quite reasonably sized n. This is demonstrated, for
example, in Shoup [35].

Because of this, the dominant cost in Brent and Kung’s modular composition
algorithm is indeed the ≈ n2 scalar multiplications and additions, although the cost
of the O(n1/2) polynomial multiplications cannot be entirely ignored.

The time spent taking GCD’s can be reduced by using a fast “Half-GCD” al-
gorithm (which is in practice faster than Euclid’s algorithm, although not spectac-
ularly so), and by “buffering” the GCD’s, i.e., computing the product of several
polynomials modulo f , and then taking just one GCD. With these techniques, the
time spent taking GCD’s can be made a small percentage of the total. Also the
time spent is Step D5 is in practice a small percentage of the total.
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Finally, we note that the space requirement of this algorithm is just O(n1.5)
elements in Fq.

In summary, this variant of our distinct-degree factorizer uses

O(n2.5 + n1+o(1) log q)

operations in Fq and space for O(n1.5) elements in Fq. Moreover, both of the implied
“big-O” constants are reasonably small.

Of course, in general, we may have to perform one or more equal-degree factor-
izations as well. The equal-degree factorization algorithm in von zur Gathen and
Shoup [17] can be implemented so as to use

O(n2 logn+ n1+o(1) log q)

operations in Fq and space for O(n1.5) elements in Fq, where again the implied
constants are reasonably small.

In Shoup [35], this factoring algorithm is developed in further detail, and an
implementation as well as the results of empirical tests are described. That paper
concludes that if q is a large prime, then this new algorithm allows much larger
polynomials to be factored in a reasonable amount of time and space than was
previously possible using other algorithms. As an example from that paper, a
pseudo-random degree 128 polynomial was factored modulo a 128-bit prime on a
SUN SPARC-station ELC, which is rated at about 20 MIPS. The running time
was under 2 minutes. To put this in some context, for the same polynomial on the
same machine, the built-in Maple factorizer (based on Cantor/Zassenhaus) required
about 25 hours. As another example, a pseudo-random degree 1024 polynomial was
factored modulo a 1024-bit prime in about 50 hours, using about 11 megabytes of
memory.

It is also possible to obtain a practical version of the Fast Black Box Berlekamp
algorithm using similar techniques, although we have not as yet implemented this.
That algorithm would require significantly fewer GCD calculations than the above
algorithm, and would also avoid the occasional need to perform a large equal-
degree factorization; however, it would require at least twice as many modular
compositions as the above algorithm. Empirical analysis of the relative costs of
these operations indicate that the disadvantages would outweigh the advantages of
Fast Black Box Berlekamp over Fast Cantor/Zassenhaus. Moreover, a Fast Black
Box Berlekamp algorithm would require about twice as much space. Therefore, at
the moment, for practical purposes, Fast Cantor/Zassenhaus appears preferable to
Fast Black Box Berlekamp.

Note added in proof

Bürgisser et al. [37] have traced the transposition principle discussed in §3.2
to Tellegen’s theorem of control theory. By use of the new exponents for rectan-
gular matrix multiplication [38] the asymptotic complexity of modular polynomial
composition and hence of our factorization algorithms can be lowered a little bit.
For example, the O(n1.815 log q) running time of Theorem 1 can be lowered to
O(n1.8054 log q). For large q and small characteristic p it is possible to improve the
binary running time of the von zur Gathen/Shoup algorithm. In [39] we show, for
example, that for q = 2k with k = Ω(n1.46) one may factor a polynomial of degree
n with coefficients in Fq in O(n(log q)1.67) fixed precision operations. Here the field
Fq is represented as a polynomial residue ring, performing ring arithmetic modulo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1196 ERICH KALTOFEN AND VICTOR SHOUP

an irreducible polynomial of degree k with coefficients in F2. Binary running time,
that is, fixed precision cost, includes the time for executing each field operation in
Fq.

Many of Kaltofen’s publications are accessible through links in the BibTEX bib-
liography database at http://www.math.ncsu.edu/∼kaltofen/bibliography/.
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