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A b s t r a c t .  Hartigan's subsample and half-sample methods are both shown to 
be inefficient methods of estimating the sampling distributions. In the sample 
mean case the bootstrap is known to correct for skewness. But irrespective of 
the population, the estimates based on the subsample method, have skewness 
factor zero. This problem persists even if we take only samples of size less than 
or equal to half of the original sample. For linear statistics it is possible to 
correct this by considering estimates based on subsamples of size An, when the 
sample size is n. In the sample mean case ,~ can be taken as 0.5(1 - 1/v/5). In 
spite of these negative results, the half-sample method is useful in estimating 
the variance of sample quantiles. It is shown that this method gives as good 
an estimate as that given by the bootstrap method. A major advantage of the 
half-sample method is that it is shown to be robust in estimating the mean 
square error of estimators of parameters of a linear regression model when the 
errors are heterogeneous. Bootstrap is known to give inconsistent results in 
this case; although, it is more efficient in the case of homogeneous errors. 

Key words and phrases: Half-sample method, bootstrap, variance estimation, 
linear models, asymptotic relative efficiency, Bahadur's representation, quan- 
tiles. 

I. Introduction 

Hart igan (1969, 1975) has suggested using the subsample values of an esti- 
ma to r  of a parameter  as indicators of variability of the est imator .  He has shown 

tha t  asymptot ical ly  valid confidence s ta tements  can be made under  fairly general 
conditions by choosing subsamples randomly, wi thout  replacement,  from all the 
possible non-empty  subsamples of the original sample. 

The  subsample methods  have been in use in the l i terature  for a long time. 
Mahalanobis  (1946) used it under  the name, " in terpenetra t ing samples". Efron 
(1979) discusses Hart igan 's  work (see his Remark  I on p. 24). While comparing 
the subsample me thod  with the boots t rap ,  observing the first order asymptot ic  
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equivalence of the methods in several cases, Efron notes that there is no evidence 
to prefer the one method over the other. When the subsample size is fixed, the 
estimator is popularized by Wu (1986, 1990) under the name "detete-k jackknife". 
See also Shao and Wu (1989). 

Even though both the half-sample and the subsalnple methods are less compu- 
rationally intensive than the bootstrap, these techniques have been overshadowed 
by the popular bootstrap method. In some situations like sample surveys, where 
one deals with finite populations, conceptually the subsample method has distinct 
advantages over the bootstrap. On the other hand, Singh (1981) and Babu and 
Singh (1988, 1984a) have established that, for a wide class of statistics, bootstrap 
automaticMly corrects for skewness of the sampling distribution, thereby giving a 
better performance than tile classical normal approximation. 

The subsample and the half-sample methods are described in the next section. 
It is shown that both the hMf-sample and the subsample estimators of the sampling 
distribution of the sample mean are asymptotically symmetric. This holds whether 
or not the underlying population distribution is symmetric. As a consequence, 
these methods cannot correct for the skewness of the sampling distribution. It is 
also established that this problem can be corrected for linear statistics like sample 
mean by restricting to subsamples of size An, where ~ = (1 - 1 /v~  )/2. However, 
using the results of Babu and Singh (1985) on samples from finite populations, 
it is established that  no such correction for skewness is possible for statistics like 
t-statistic. 

In spite of these negative results, the subsample method is useful in estimating 
the variance of estimators, even when methods like the ordinary jackknife fails. 
In the i.i.d, case Shao and Shi (1989) have established the superiority of the half- 
sampling method to jackknife in some situations. When the observations are 
independent but not identically distributed, the relative asymptotic efficiency of 
the bootstrap and the half-sample methods in estimating the asymptotic variance 
of sample quantiles is shown to be one in Section 5. By asymptotic efficiency, we 
mean the ratio of the variances of the estimators. 

Bahadur's representation of quantiles for the half-sample method in general 
non-stationary case is established in Section 4. Strong representation for the half- 
sample variance estimator of the least squares estimate of tile regression parameter 
is established in Section 6. The variance estimator is shown to be v ~  consistent 
in the case of heterogeneous errors, whereas the bootstrap estimate is generally 
known to be inconsistent. In this connection, among others, Freedman's comments 
in the discussion of Wu (1986) are noteworthy. Of course there have been several 
variations of the standard bootstrap method in the literature, to suit specific 
situations to force a consistent result (see Babu (1984)). The main point here is 
that the subsample method, as a general method, is ~ consistent in a variety of 
situations. 

In general, the half-sample estimate is asymptotically as efficient as the jack- 
knife estimate, in the sense that the ratio of their variances tends to one. In tile 
case of Ll-estimators the jackknife is known to give inconsistent variance estima- 
tors even in the homogeneous case. However, it should not be difficult to establish, 
as in the special case of quantiles, the v/~ consistency of the half-sample variance 
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estimators for the Ll-estimates of the regression coefficients. For recent results on 
Ll-estimation (see Babu (1989) and for a review see Rao (1988)). 

The messy estimates needed in the proofs are established in the Appendix. 

2. Description of the subsample and bootstrap methods 

Let X 1 , . . .  , X n be a sample from a population. Let 3' be a parameter to 
be estimated by ;/ = "~(X1,. . . ,An). Let S denote the class of all 2 n subsets 
of {1 ,2 , . . . ,n} .  For any non-empty s C S, let "~8 denote the estimate based 
on {X~ : i E s}. Let ~/¢ = 0. The empty set is included only for notational 
convenience. Exclusion of the empty set does not affect the asymptotic results 
considered in this paper, as the contribution of any single subset s in the estimation 
of the sampling distribution is O(2-n).  An example here would help in fixing 

?2 
the general ideas. If ") = 2 = (l/n)}-'~i=1 Xi, then for any non-empty s E S, 
%8 = 2,  = Is1-1 ~ c ~  xe, where Isl denotes the number of elements in s. The 
subsample estimate of the sampling distribution of x/n(') - ?) is given by the 
histogram Ds of v ~ ( ~  - ~). That is 

(2.1) Ds(x) = #{s  E S:  v~(~/8 - ~) <_ x}/IS I. 

The subsample estimate of the mean square error of v~(-~ - ~/) is given by 

(2.2) v s  = ~lS1-1 X~(~8 - %)2. 
s E S  

Note that [SI = 2 n. 
The half-sample method consists of considering, instead, the class of all subsets 

H C S of size In/2] from {1, 2 , . . . ,  n} and defining DH and VH as in (2.1) and 

(2.2), but with S replaced by H. Note that IN I = [n/2] " 

Let X { , . . . ,  X n be a sample drawn with replacement from X1 . . . .  , Xn and let 
"y* = ~(Xi~,. . . ,  X~). The bootstrap estimate of the sampling distribution and of 
the variance of v ~ ( ~ / -  ~/) are given by F* and 

vB,~ = E*(v~(-y* - ~ ) )2  

where, 

F * ( x )  = P* (v~ ( 'Y*  - ~) ¢ x) ,  

and P* and E* denote the probability and expectation (given the sample 
X1,. .  •, X~) induced by the bootstrap sampling mechanism. Instead of sampling 
from the empirical distribution one can sample from a smoothend version of the 
empirical distribution. The same theory goes through. 
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3. Subsample estimate of the distribution of the sample mean 

Let N be a binomial random variable with parameter values n and 1/2. For 
any non-negative integer k, let Sk = {s e S :lsl  = k}. A close examination of 
D s  reveals that the subsample scheme is equivalent to observing N = k (say) and 
then choosing at random an s ~ S~. Clearly 

(3.1) us(x) = ~ P(N = ~)C~(x), 
k=0 

where Gk denotes the empirical distribution of v~(;/~ - ~) restricted to s E Sk, 
that is 

(32) 
- 1  

sESk  

Since 

(3.3) P ( N - > log ) = 

only the subsamples of size k close to n /2 ,  would significantly influence the asymp- 
totic properties of D s .  The other samples have negligible effect on the asymptotics 
of D s .  To study the asymptotics of Gk we require a result from Babu and Singh 
(1985), which is stated as Theorem 3.1 after introducing some notation below. 
When the subsamples are restricted to Sk, Wu (1986, 1990) called the estimators 
based on Sk dele te- (~-  k) jackknife and studied their asymptotic properties. 

Let ?] . . . . .  1~ be independent random variables from a common d-variate 
distribution. Let Yl . . . . .  Yk be a simple random sample drawn, without replace- 
ment. from }'~ . . . .  , Y,~. Suppose that  the distribution of !/1 is strongly non- 
lattice, EI:t~I 3.~ < ~ and ~ < Pk = k / n  < 1 - ~ for some 6 > 0. Let 
l' = (11 . . . . .  ld) denote the transpose of the vector l, Let L = ( (L i j ) )  be a 
matrix~ # = E(Y1) ,  Y = ( 1 / n ) ~ Y / ,  E ,  = ( 1 / n ) ~ i ~ = l ( } ;  - - Y ) ( Y ~ -  Y ) ' ,  

Zl,. = v / n / { k ( n -  k)} ~,i=l(Yik _ ~ ) ,  ~:~ = l'E,~l, ck = (1 - 2pk)(pk(1 -- pk))  -1/2 
and let Z denote the dispersion matrix of 1~]. Let 0 and q~ denote density and 
distribution functions of a standard normal variable. Then from the proofs of 
Theorems 1 and 2 of Babu and Singh (1985) we have 

THEOREM 3.1. Let max{l/~l, ILsjI, II~1-1} be bounded and 

T~: = (I'Z~: + k - 1 / 2 Z ~ L Z ~ . ) a g  1 + R,~, 

where 
P(~/-~ IR~I > a,~) = o(~ -1t2) 

f o r  some  sequence a ,  ---* O. Then  with probability 1, 

(3.4) P(T~  < y I }~ . . . . .  ~:;~) = ~(Y)  - ~(Y)~(Y)  n - 1 / 2  + ° ( ~ - 1 / ~ )  " 
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uniformly in y and in Pk E (6, 1 - ~), where 

(3.5) ~(y) ---- O "-1 t r ( E L ) p k  1/2 

+ cr-a(y 2 - 1)[l 'rrElp[.  U2 + (1/6)ckE(l ' (Y1 - p))3], 

and a 2 = l'El. 

By taking L u  = 0 and ll = 1, we obtain 

COROLLARY 3.1. I f  d = 1, then with probability 1, 

(3.6) i) P(Z~  <_ yo-,~ I Y, , . . . .Y,~)  

= q2(y) - n - U 2 O ( y ) ( y  2 - 1 )ck (6cr3 ) - lE (y  1 - p)3 + 0(n-1/2)  

uniformly in y and in Pk E (5, 1 - ~). In addition if pk = 1/2 + o(1), then ck ---+ 0 
and consequently, 

(3.7) ii) P ( Z k  <_yah I Y1 . . . . .  Y,) =d2(y) 4-o(n -1/2) a.e. 

Note that ,  
E(Z~¢ [ Y 1 , . . . ,  Y,~) = ( n / ( n -  1))cry, 

so essentially, Zk/o'n is a s tandardized statistic.  On the other  hand  by the Edge- 
worth  expansions in the i.i.d, case 

(3.8) P(v/-~(9 - #) < y~r) = (I)(y) - (y2 _ 1)¢(y)(633v/-~)- i  + o(n-1/2) .  

So from (3.6) and (3.8), it follows tha t  

sup ~-n IP(v~(i  > - p )  < y(r)- P(Zk < ya,~ IF1 . . . . .  }n)l 
Y 

= sup ](y2 _ 1)]05(y)11 - ckl(6a3) -1 + o(1) --+ 0, 
Y 

only when ck + 1. This  holds only when 

(3.9) Pk -+ (1 - ( 1 / v ~ ) ) / 2 .  

Using (3.3), we have 

n 

(3.10) E l c k l P ( N = k )  
k = l  

< 2  E '  ~ - ~  ( l + O ( ~ - U 2 1 o g n ) ) P ( N = k ) + O ( n  -6) 

n 

-< 2n-1 E [2k - n l P ( N  = k) + O(n -1/2 logn)  
k = 0  

<_ 2 n - I { E ( 2 N  - n)2} 1/2 + O(n -1/2 logn)  

= O(n -1/21ogn)  = o(1) 
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where ~ '  denotes sum over k satisfying 12k - n I < 2v/n log n. 
Hence, from (3.9), (3.10) and Corollary 3.1 ii) we have 

If ]I1 has a non-lattice distribution, then for the estimator THEOREM 3.2. 
~/ = sample mean, 

x/-d [ D s ( y ~ )  - ~ ( Y ) I  --* 0 

and 

v ~  I D ~ ( y ~ n )  - ¢(Y)I ~ 0, 

uniformly in y a.e. But 

(3.11) v ~  [Dsk (ya~) - P ( v ~ ( Y  - p) <_ yg)[ ~ 0, 

uniformly in y a.e. provided k = fan], where 

), = (1 - ( 1 / v / 5 ) ) / 2 .  

From Theorem 3.2, it is clear that  neither the half-sample method nor the 
subsample method corrects for skewness. Consequently, if E(Y1 - #)3 ~ 0, then 
the subsample approximation is much worse than that  given by the bootstrap. 
However (3.11) shows that  if only the subsamples of size k = [An] are considered 
with A = (1 - 1 / v ~ ) / 2 ,  then the approximation is as good as the one given by 
the bootstrap. 

If Tk represents the studentized statistic, then under appropriate moment 
conditions (see Example 1 of Babu and Singh (1985)), 

(3.12) P ( T k  < x [ Y1 , .  . . , Y~)  

= ~(x)  + E(Y1 - , ) 3 ( 6 ~ 3 v ~ ) - 1  

• [312 + ((2pk - 1 ) /qk)(x  2 - 1 ) ] ~ , ( x )  
+ o(n-1/2) ,  

where qk = 1 - P k .  On the other hand the Edgeworth expansion for t-statistic is 
given by 

(3.13) P(v/-n(~ z - #) < xan) = O(x) + E(Y1 - p)3(6a3v~)-1(2x2 + 1)¢(x) 
+ o(n-1/2) .  

The only way the coefficients of (1/v/-n) in (3.12) and (3.13) can be matched is by 
taking 

qk/Pk = 1 + o(1) and (1 - 2pk)qk --+ 1 

which is impossible. Consequently subsample estimates based on size k = [An], 
for any A > 0, cannot correct for skewness for t-statistic. Using the results of 
Babu and Singh (1985), Wu (1990) obtained the expressions (3.11) and (3.12) 
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independently. A close observation of Theorem 3.1 shows that this conclusion 
holds whenever Tk is not linear, that is when L ¢ 0. 

The same argument implies that even if we restrict to half-samples, the skew- 
ness factor is not taken care of. On the other hand Singh (1981) and Babu and 
Singh (1984a) have shown that the bootstrap corrects for skewness for a wide class 
of statistics. In this respect, both the half-sample and the subsample methods are 
inferior to bootstrap; they do not correct for the second order term. 

It may be mentioned here that Hartigan (1969) observes that, "An empirical 
investigation of eigen vector analysis shows that the confidence statements based 
on subsample values are not as accurate as the ones based on the standard normal 
asymptotic methods." On the other hand, in the i.i.d, case, bootstrap confidence 
intervals are quite accurate (see Abramovitch and Singh (1985), Babu and Bose 
(1988) and Hall (1988)). 

4. Bahadur's representation of sample quantiles 

In this section we obtain Bahadur type representations for sample quantiles 
under both the subsample and the half-sample methods. We do not assume that 
the observations come from a single population. Occurrence of such independent 
but not identically distributed observations is common in medical studies. Let 
X 1 , . . . ,  X~ be independent random variables with Xi having a continuous distri- 
bution Hi. Let G,~ = (I/n)~-~i=1 Hi. For any distribution F and 0 < u < 1, 
let F - t ( u )  = inf{x : F ( z )  > u}. Let 0 < p < 1. Suppose G,~ has derivative g~ 
in a neighborhood of G;~(p),  and liminfn__,~ hn > 0, where hn = gn(G~l(p)) .  
Further suppose 

(4.1) [gn(x) - g,~(Y)I -< KIy  - x[ °, 

for x , y  E (G~l(p)  - e ,G~l(p)  + e ) ,  for some e > 0, K > 1 and 0 > 1/2. For 
nonempty s E S, let Fs denote the empirical distribution function of {Xi  : i E s}. 
Let F~ denote the empirical distribution function of {X1 . . . .  ,Xn}. Let for s E S, 

(4.2) R~: ) = Rn(8, X l , . . . ,  Xn) 

= l ( F j l ( p )  - F([I(p))g,~(F(~I(p)) - (p - F s F n l ( p ) ) l  

THEOREM 4.1. Under the above set up for some A > O, we have 

(4.3) E(PH(Rn(')  > An -3/4 logn [X 1 . . . . .  Xn) ) : O(n -4) 

and 

(4.4) E(Ps (R~( . )  > An-3 /41ogn  [X1 . . . . .  X~)) = O(n-4),  

where t )H and Ps  denote probability measures induced by the half-sample and the 
subsample methods respectively. Further, with probability 1, we have 

(4.5) (F,~-l(p) - G~l(p))h~ - (p - F,~G~I(p)) : O(n-3/410gn) .  
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From (4.2) and (4.3) we have for almost all samples, 

(4.6) R~ = Opn (7t -3 /4  log n) 

and 

(4.7) R~ z O p  s (7/-3/4 log n). 

Here ORs(. ), denotes convergence in Ps probability. Similarly Opt(.) denotes 
convergence in PH probability. The theorem still holds if g,~(Fjl(p)) is replaced 
by h~ in the definition of Rn. 

An expression similar to (4.6) can be shown to hold for the bootstrap. See 
for example Babu and Singh (1984b) for the i.i.d, case. A proof of Theorem 4.1 is 
given in the Appendix. 

Liu and Singh (1989) observed that a useful interpretation exists for the i.i.d. 
bootstrap confidence intervals even when the data are independent but not identi- 
cally distributed. In general, even though the variance estimators are inconsistent 
in non i.i.d, setting, they serve useful purpose in providing lower bounds for the 
coverage probability. Liu and Singh (1989) have shown that the coverage prob- 
ability for non-identically distributed case is at least that of i.i.d, case. One can 
assess the difference between the two situations by using the so called heterogene- 
ity factor. It turns out that the same behavior is exhibited by the half-sample 
and the subsample methods. Furthermore the same heterogeneity factor appears 
in all these cases. To see this let Is denote the subsample confidence interval, 
with coverage probability (t - 2 a )  under the i.i.d, setting (i.e. one obtained by as- 
suming that Xi are i.i.d, from G~). Then using the Bahadur type representation 
(Theorem 4.1) it can be shown that 

Ps(G~l(p) E Is) - [2~(z1_~(1 + d~) 1/2) - 1] ~ 0, 

d 2 for almost all samples for some sequence { ~ }, which can be called a heterogeneity 
factor. Further note that 

+ - 1 ]  > 1 - 

So the asymptotic coverage probability is at least that of i.i.d, case. For details on 
heterogeneity factor for other statistics see Liu and Singh (1989). Suppose 

(4.8) m,~ = / [ l o g ( 1  + Ix[)]4dG~(x) = O(1), 

then it follows that 

(4.9) = ( v :  - v b v :  2, 

where V 2 is the estimator of the asymptotic variance of the p-th sample quan- 
2 is the variance in the non i.i.d, setting. tile using the subsample method and v n 

Consistency of the half sample variance estimator (and other estimators based on 



SUBSAMPLE AND HALF-SAMPLE METHODS 711 

Sk) for the sample quantile in the i.i.d, case was shown in Shao and Wu (1989). 
Clearly by Theorem 4.1, 

(4.10) 2 2 hnV~ = nEs(p  - FsF~I(p)) 2 (1 
~ - - k = l  ~((?'~ --'~- i-~) 2 - - n  

= p(1 - p) + O(1/n) a.s. 

~ ( p  - ~(x~ _ F:~(p)))  2 
i ~ l  

By (4.5) of Theorem 4.1, (see Babu (1986) for the i.i.d, case) 

(4.11) 2 2 h~vn = n E ( F n ( a ;  l(p)) - p)2 
?z 

-- ! E E(IT(Xi <- G n l ( p ) ) -  Hi(GSI(P)))2 
f~ 

i = i  
?2 

- ~(  - ~  )))~ 1 Hi(Gn (p . 
= P - n  

1 

Suppose 

(4.12) liminf v~ > 0. 
rt ---~ OO 

From (4.9), (4.10) and (4.11), it follows that the heterogeneity factor d~ is given 
by 

( - '~ 1 Hi(Gn (p (4.13) d2n = Hi(Gga(P) ) -  P)~ P -  n 
i = i  

This shows that the heterogeneity factor is essentially the same for both the sub- 
sample method and the bootstrap. Consequently the subsample method is prefer- 
able here, as it is less computationally intensive than the bootstrap as explained 
in Section 3. The same arguments establish that the heterogeneity factor is the 
same even for the half-sample method. 

5. The efficiency of the variance estimator 

From now on we concentrate on half-sample estimates. In view of (3.3), similar 
results hold for subsample estimates. In this section we go one step further and 
show that the relative asymptotic efficiency of the half-sample variance estimator 
of a sample quantile compared to that given by bootstrap in one (i,e. the ratio of 
the variances tends to one), even in the not identically distributed case. 

Let r = [np] if np is not an integer and = n p  + 1 otherwise. Let k ~ [n/2]. 
Let h = ~pk I if pk is not an integer and = 1 + kp otherwise. Further let 

f n - l ~  m I ~)n--m 
fn'rn(?~) ~- f ~ ? T Z -  1) u - ( 1 -  

and 
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Let p, F~, Fs, G,~, Xi and hn be as in Section 4. Clearly for h < i < n - k + h, 

(5.1) PH{F~-I(p)=Fnl(i) X1 ..... Xn} 

:(;) 1)(: ;) 

= f k , h ( u ) p n - k , i - h ( u ) d u ,  

and 

otherwise. Now it is straight forward to establish the next theorem, the proof of 
which is omitted. 

THEOREM 5.1. Assume (4.8). Under the setting of Section 4, given the sam- 
ple, the bootstrap and half-sample estimates of the variance of the p-th sample 
quantiles are given by 

(5.2) 

and 
fO YB,n = ( F : I ( u )  - F : l ( p ) ) 2 f n , r ( u ) d u  

Y~.~ = EH(F71(p) - F£l(p))  2 

= ( k ) - l ' ~  h ( : - 1 1 ) ( ; 2 : ) (  F~-I ( i ) - F ~ - l ( P ) )  2 
i=h 

du 

Maritz and Jarrett (1978) derived an expression similar to (5.2) in the sample 
median case. Note that by (4.8), 

p ( max I X~l l<i<_n 

\ 
> e x p ( n x / ~ l o g n ) )  < 24n-l(logn)-4mn 

] 

= o(~-~(log ~)-~). 
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Hence with probability 1, 

(5.3) max IX~l < e x p ( v / ~  logn) 
l < i < n  

for all large n. The assumption (4.8) can be omitted in the i.i.d, case. Using simple 
exponential inequality, one can show that in the i.i.d, case, for some A > 0, 

} 
with probability 1. Using Stirling's formula and (5.3) we conclude that with prob- 
ability 1, 

(5.4) nVB,n = nB~ + O((logn)3u -W2) 

and 

(5.5) nVH,n = nB~n + O((logn)3n-1/2), 

where q = 1 - p ,  

f 
log n 

B" = (Fn l(p + Y V ~ / n )  - YZ I(p))2¢(y)dv- 
J - log n 

Further, by letting On = (pq/nhn) U2 and using Theorem 4.1, we get that 

l log n 

(5.6) B~= -20~ (F~l(p+yv'~--~)-G-gi(p+yV~/n))y¢(y)dy 
d -- log n 

+ 02(1 + O(n-°/2)) + O(n-3/2(logn)2), 

where 0 is as in (4.1). Consequently with probability 11 

nl/4(nB~ - nO 2) = - 2 X / ~ / h n  B,~ + O(n-(2e-1)/4), (5.7) 

where 

(5.8) Bn  = n 3/4 rffogn (Fn l(p + yv/-ffq/n ) G~l(p + yv / -~ /n  ))y¢(y)dy. 
J - log n 

We immediately have the following. 

THEOREM 5.2. 

(5.9) 

then as n --~ e~, 

Under the conditions of Theorem 5.1, if (4.8) holds and 

lim E(B2n) = a > 0, 

(5.10) [E(VB,n - 02)/E(VH,,~ - 02)] ~ 1. 



714 G U T T I  J O G E S H  BABU 

As a consequence both the bootstrap and half-sample estimates of variance of 
quantiles are equally efficient. The condition (5.9) clearly holds in the i.i.d, case. 

Under (4.8), pqh~lE(B 2) is clearly approximated by the second moment Mn 
of 

r n = n3/4 [ yar~(y)O(y)dy, 
J 

where 

(5.11) 

Note that 

an(y) = G~ (F£ -1 (p + yv/pq/n )) - Gn(F~ 1 (p) ) - y v ~ / n .  

f f  
(5.12) M~ = n 3/2 I J  xyO(x)O(y)E(a,~(x)a~(y))dxdy. 

Under suitable conditions, which include 

(5.13) lim sup sup IFj(GXl(p + u)) - Fj(GXI(p))I -- O, 
n ~ c  i~l<_(logn)n_W2 l<_j<n 

it can be shown that 

(5.14) l i r a  M~ = r/2 - l i n ~ / J '  xy¢(x)C(y)an (x, y)dxdy, 

and the random variable T~ converges weakly to the normal distribution with 
variance r/2. where 

rl2 = f l xy min(x, y)#)(x)O(y)dxdy = 1/2v~,  

bn(y ) = a n  1 (p --~ y V / ~ / n  ) 

and 

an(x, y) = n -1/2 E(F j (b~(y ) )  - Fj(b,~(O)))(Fj(b~(x)) - Fj(b,~(O))). 
j = l  

Clearly for lY[ < log n 

la (x, y)l _< o(v lxl,/pq/n) = o(Lxl). 

It follows that the second limit in (5.14) is zero, leading to the conclusion 

lim M~ = rl 2 = 1/2v/~ > O. 
r t ~  

Consequently in this case (5.9) holds. 
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6. A linear model 

Bootstrap and the half-sample methods are shown to be equally efficient, for 
estimating the variance of a sample quantile in the last section. This is achieved 
via the representations (5.4), (5.5) and (5.8). It turns out that this equivalence fails 
to hold for the least squares estimators of linear regression parameters when the 
errors are heterogeneous. Liu and Singh (1992) have shown that bootstrap is more 
efficient than jackknife when the errors are homogeneous, but yields inconsistent 
estimates in the heterogeneous case. In this section we establish that the half- 
sample method is equivalent to jackknife in the heterogeneous case. 

The procedure is best illustrated by the simple linear model 

(6.1) }% = c~ + 3:ci + ~i 

i = 1, 2 , . . . ,  n, where ei are independent random variables with mean zero and 
variance cry. Let 

Let f o r s E H ,  

and 

Ln:Z(x~-~) 2, ~ : - Z x , ,  
i=1  i = 1  

n 

i = 1  

1 
28 : ~ Z x,, L8 : Z ( x {  - ~8) 2, 

iEs iEs 

~s = Z ( X i  -- x s ) E L s  1 
i68 

08 = 2L~(~8 - J ) .  

Recall that H consists of all subsets of {1 , . . . ,  n} of size k = In/2]. Clearly 

and 

2EH(Ls) = 2L~ ( kn n~---2)n-k ) 

2EH(Ls/3J = ,2L~(I + O(n-1)). 

-- L7,(1 + O(7%-1)) 

Practically negligible bias above, dictated the use of weights 2Ls/L~. Note that 
X 2 Ln can be taken as ~ i, and L8 = }-'~ie8 x?,, when ct = 0. In this case the chosen 

weights yield unbiased estimators. See Liu and Singh (1992). The equality above 
gives 

(;) E.(08) = Z< =0(~-~). 
s6H 
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A simple algebra leads to 

(6.2) EH(O~ - EH(O~)) ~ = (~  - ~)~ 

- 2 ( 8 -  9) ~ ( ~ -  ~ ) %  (1 
i=1 

Let a~ _< c for all i and for some c > O. Further, let 

n 
(6.3) v~ = L ;  2 E ( x ~ -  2)2a~2, 

i=1 

and given the sample let 

(6.4) VH = EH[2Ls(9~ -/~)Lnl] 2. 

n 

i=1 

n 
~2n ~- E °-2/(7~Ln) 

i=1 

-4- O( r t -1 ) ) .  

(6.5) 

(6.6) 

and 

(6.7) 

0 < ai < c for all i 
r~ 

Cl <_ wn = n3Ln 4 E ( x i  - 2)4(E(e4) - ( r  4) _< c2 
i=1 

n 

n - 1 - 6  Z [x~]4(1+5) --* 0. 
i=1 

then 

(6.8) [ n l n 3/2 ( V H - v ~ ) - L - ~ 2 E ( x ~ - 2 ) 2 ( e ~ - .  2) = o r ( l )  
i=1 

and n3/2(VH --Vn)Wn 1/2 tends weakly to the standard normal distribution. 

PROOF. By (6.2), (6.3) and (6.4), the left hand side of (6.8) 

t n = 0 v L~ 2 Z ( x i -  2)4V ~ 
1 

+ nL~ 2 (xi -- :~)3£i 

+V/-~ L~2 E ( x  i - 2)2e 2 
i=1 

~ 0  

THEOREM 6.1. Suppose n = O(Ln) and for some positive 5, c, cl and c2, 

As mentioned above, the weights 2Ls/Ln are chosen as they lead to negligible 
bias. These weights were considered by Wu (1986). 
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in probability by (6.5) and (6.7). By (6.6), (6.7), (6.8) and Lyapounov's Theo- 

rem (see B(ii) on p. 275 of Lo~ve (1963)) that n3/2(VH , -1/2 - VnJWn converges in 
distribution to the standard normal. This completes the proof. 

Let VB : E B ( j B  -- ~)2 be the bootstrap estimate of the variance of/9. If 
cl <_ n/L,~ <_ c2 for some cl, c2 > O, then Liu and Singh (1992) have shown that 

n 

n(VB - 5n) = E ( e ~  - a~)L~ t + Op(n-1)  • 
i=1 

(They consider the case a = 0 in which case Ln can be taken, instead, as }-~-L1 x~.) 
Theorem 6.1 gives the half-sample estimate of the variance v,~. This is asymptot- 
ically equivalent to the jackknife estimate (see Theorem 4(I) of Liu and Singh 
(1992)). As discussed in that paper if ai are not all the same, the bootstrap is not 
a reliable method to estimate the variance, as in this case v,~ # ~,. This leads to 
inconsistent estimators. However, if a~ = a 2 for all i, then indeed the bootstrap 
is more efficient. This can be seen by comparing the variances of n3/2(VB -- ~ )  
and n a / 2 ( V H  - vn) .  See Liu and Singh (1992). 

Unlike bootstrap the half-sample method is robust aga{nst departures from 
the homogeneous case. Robustness of related jackknife estimators was studied 
by Hinkley (1977), Wu (1986) and Shao and Wu (1987). Consequently, the half- 
sample method is more appealing than the bootstrap. However, it should be 
emphasized that the half-sample method is robust but not as efficient as the boot- 
strap in the homogeneous case. 

Appendix 

We assume the conditions of Theorem 4.1. We clearly have for almost all 
samples, 

1 
(A.1) 0 <_ Fs(F~-l(t)) - t <_ 

uniformly in t and in s E H. 

LEMMA A.1. For some b, bl and b2 we have 

(A.2) P ( I F ~ ( x )  - F n ( y )  - G n ( X )  - G n ( y ) l  :> bin -3/a logn) = O ( n  -6)  

.uniformly for x, y in 

and 

(A.3) 

(G~l(p) - bv / ( logn) /n ,  G~I(p)  + bv / ( logn) /n  ), 

P ( IF~I ( t )  - G~l( t ) l  > bv / ( logn) /n  ) = O(n -6) 

uniformly for It - Pl <- b2v/ ( logn) /n .  
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PROOF, The inequality (A.2) follows by using, a Bernstein type inequality, 
Lemma 1 of Babu (1989). The estimate (A.3) follows again by Lemma 1 of Babu 
(1989) on noting that  for some b3 and b4, 

implies 

IF,~(t) - G~( t ) l  ~< b3v/(logn)/n for I t - p l  <- bav/(logn)/n 

] F f l ( t ) - G ~ l ( t ) [  <_bv/(logn)/n for I t -P[  <_b2v/(logn)/n. 

This completes the proof. 

We first note that  from the hypothesis of Theorem 4.1, we have for any b > 0, 

(A.4) C(b) -- l iminfinf{g~(x):  Ix - G~l(p)[ _< b~/(logn)/n } > O. 

bn = C(b)bv/(log n)/n. 

For some b > 0 

E(PH(IF~-I(p) - F~-l(p)l > b, IX1 , . . .  ,Xn) ) ---- O(n-5) ,  

Let for any b > 0, 

(A.5) 

L~,MMA A.2. 

(A.6) 

Lemma A.2 follows by using (A.3), (A.4), (5.1) and Stirling's formula. 

PROOF OF THEOREM 4.1. We only prove (4.3). Proof of (4.4) is similar. For 
s E H, let 

Js = F~(F~-I(P)) - Fs(Fyl(P)) - Fn(F~-I(P)) + F~(Fn-I(P)) - 

Note that  

(A.7) Fs(F~ 1 (p)) - p - G n ( F ~  1 (P)) "~- G n ( V ~  1 (p)) 

= - . I s  + (Fs(Fff l (P))  - P )  

+ [Fn(F~I(p) )  - F~(F~-I(p))  - G ~ ( F n l ( p ) )  + Gn(F~-I(p))] 

= - J s  + [~ + I Is  (say).  

Let b~ be as in (A.5). By (A.1), 0 <_ Is <_ 1/k and by dividing the region {x : 
[ X -  Gnl(p) t  _< 2bn} into sub intervals of length (B/C(b))n-3/41ogn for some 
B > 0, and using (A.2) and (A.3) we obtain that  

(A.8) E(PH(III~I > b h n - 3 / 4 1 0 g n l X 1 , . . . , X , ) )  -- O(n-5) ,  
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for some b5 > 0. On the se t  ] F ~ - I ( p )  - G ~ I ( p ) I  < bv/(logrt)/n, we have for some 
b6 :> 0, 

(A.9) ]J~l-< 2sup{J~(x): [x - G~(p ) [  <_ b6 x / ( logn) /n  }, 

where 

(A .10)  g s ( x )  = I F s ( x )  - - F n ( z )  + Fn(G l(p))l. 

As in the proof of (A.8), the result now follows from (A.7) and (A.8) if we show 
that, for s o m e  b6 > 0 and b7 > 0, 

(A.11) E(PH(lJs(x) l  > brn-3 /a logn I X 1 , . . .  ,Xn) )  = O(n-6),  

uniformly in I x -  G~l(p)[ <_ b6v/( logn)/n.  To establish (A.11), let 

G ~ l ( p )  - b 6 v / ( l o g n ) / n  <<_ x < y < G ~ l ( p )  + b6v / ( l ogr t ) / n ,  

ti = P ( x  < Xi  <_ y) and u ,  = bTn -3/4 log n. 

Markov inequality gives that for any t > 0 

(A.12) E(PH(Fs(s )  - Fs(x) - F~(y) + F~(x) > un I X 1 , . . .  ,X,~)) 
1 

< e-tk~'" E E[exp(tk(Fs(y)  - F~(x) + F~(x) - Yn(y)))]. 
sEH 

The expectation term on the right side of (A.12) is 

= I-I[1 + ti(e t(l-k/~) - 1)] 1-I[1 + ti(e - tk/n - 1)]. 
iCs i~s 

By (A.13) it follows that (A.12) is not more than 

e -tk''~ 1- [{2 -  2ti + t ie- tk/~(et  + 1)} 
i = l  
--1 n 

_(2~(k  ) e - t k ~ l - I { 1 - t i + t i e - t k / ' ~ ( l + e t ) 2 - I  } 
i=1 

<_ bsx/~e -ktu~ exp 8-1t ~ E t i ( 1  + o(t)) . 
i=1 

The last inequality is arrived at using Stirling's formula. The result (A.11) now 
follows by choosing t = b9n-1/4v/i-dgn for some b9 > 0. This completes the proof 
of Theorem 4.1. 
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