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Recent experimental results on spike avalanches measured in the urethane-anesthetized

rat cortex have revealed scaling relations that indicate a phase transition at a specific level

of cortical firing rate variability. The scaling relations point to critical exponents whose

values differ from those of a branching process, which has been the canonical model

employed to understand brain criticality. This suggested that a different model, with a

different phase transition, might be required to explain the data. Here we show that

this is not necessarily the case. By employing two different models belonging to the

same universality class as the branching process (mean-field directed percolation) and

treating the simulation data exactly like experimental data, we reproduce most of the

experimental results. We find that subsampling the model and adjusting the time bin

used to define avalanches (as done with experimental data) are sufficient ingredients to

change the apparent exponents of the critical point. Moreover, experimental data is only

reproduced within a very narrow range in parameter space around the phase transition.

Keywords: subsampling, neuronal avalanches, brain criticality, scaling relations, cortex, urethane

1. INTRODUCTION

In the first results that fueled the critical brain hypothesis, Beggs and Plenz (2003) observed
intermittent bursts of local field potentials (LFPs) in in vitro multielectrode recordings of cultured
and acute slices of the rat brain. Events occurred with a clear separation of time scales, and were
named neuronal avalanches.

A neuronal avalanche can be characterized by its size S, which is the total number of significant
voltage deflections recorded by electrodes between periods of silence, and by its duration T, which
is the number of consecutive time bins spanned by an avalanche. Beggs and Plenz found power-law
distributions for the sizes of avalanches,

P(S) ∼ S−τ , (1)

with τ ≃ 3/2, and suggested, based on their data, a power-law distribution of avalanche duration,

P(T) ∼ T−τt , (2)
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with τt = 2. These scale-invariant distributions were interpreted
as a signature that the brain could be operating at criticality—
a second-order phase transition (Beggs and Plenz, 2003; Beggs,
2007; Chialvo, 2010; Shew and Plenz, 2013; Plenz and Niebur,
2014; Tomen et al., 2019).

In particular, these two critical exponents together are
compatible with a branching process at its critical point (Harris,
1963), a conclusion that was further strengthened by the
experimentally established critical branching parameter of 1 for
neuronal avalanches (Beggs and Plenz, 2003). This points to
a phase transition between a so-called absorbing phase (zero
population firing rate) and an active phase (non-zero stationary
population firing rate).

Due to its appeal, simplicity, and familiarity within the
statistical physics community, the critical branching process has
become a canonical model for understanding criticality in the
brain. In fact, these exponents are compatible with a larger
class of models, namely, any model belonging to the mean-
field directed percolation (MF-DP) universality class (Muñoz
et al., 1999). In the theory of critical phenomena, two models
which can be different in their details are said to belong
to the same universality class when the critical exponents
which characterize their phase transition coincide (Binney
et al., 1992). In general, probabilistic contagion-like models
which have a unique absorbing state (all sites “susceptible” or
in the neuroscience context, all neurons quiescent) and no
further symmetries tend to belong to the directed-percolation
universality class (Janssen, 1981; Grassberger, 1982; Marro and
Dickman, 1999). If the network has topological dimension above
4 (such as random or complete graphs), the model usually
belongs to the MF-DP universality class.

More recently, these ideas were tested with more advanced
experimental techniques, highlighting the prospect of criticality
in the awake brain. Two studies have shown that different
types of anesthesia strongly affect avalanche statistics. In voltage
imaging recordings of the mouse cortex, size distributions were
more closely compatible with τ = 1.5 for awake animals than
for animals anesthetized with pentobarbital (Scott et al., 2014).
A similar trend was observed in two-photon imaging of the
rat cortex, where avalanche distributions become increasingly
compatible with τ = 1.5 and τt = 2 as the animals recover from
isoflurane anesthesia (Bellay et al., 2015).

Other experimental results, however, challenged the MF-DP
scenario originally proposed by Beggs and Plenz (2003). For
instance, avalanche exponents in ex-vivo recordings of the turtle
visual cortex deviated significantly from τ = 3/2 and τt = 2
(Shew et al., 2015). Discrepancies in exponent values were also
observed in spike avalanches of rats under ketamine-xylazine
anesthesia (Ribeiro et al., 2010) and M/EEG avalanches in resting
or behaving humans (Palva et al., 2013; Zhigalov et al., 2015),
among others.

Furthermore, Touboul and Destexhe (2017) argued that
the power-law signature alone in the distributions of size
(Equation 1) and duration (Equation 2) of avalanches is
insufficient to claim criticality, since power laws can be observed
in non-critical models as well. They suggested that another
scaling relation should be tested as a stronger criterion. This was

based on the result that at criticality the average avalanche size 〈S〉
for a given duration T must obey

〈S〉 ∼ T
1

σνz , (3)

where 1/(σνz) is a combination of critical exponents that
at criticality satisfy the so-called crackling noise scaling
relation (Muñoz et al., 1999; Sethna et al., 2001; Friedman et al.,
2012)

1

σνz
=

τt − 1

τ − 1
. (4)

Equation (4) is a stronger criterion for criticality because it is
expected not to be satisfied by non-critical models (Touboul
and Destexhe, 2017). In the MF-DP case, the avalanche
exponents obey (τt − 1)/(τ − 1) = 2 and 1/(σνz) = 2,
independently. The absolute difference between the two sides
of Equation (4) can even be employed as a metric for the
distance to criticality (Ma et al., 2019), or to identify criticality
in more general phase transitions of neuronal networks (Girardi-
Schappo and Tragtenberg, 2018). Indeed, Ponce-Alvarez et al.
(2018) have investigated the crackling noise relation in zebrafish
whole-brain activity, obtaining 1/(σνz) ≃ 2 but values of τ

and τt incompatible with MF-DP. Miller et al. (2019) have also
found 1/(σνz) ≃ 2 in LFP avalanches from awake non-human
primates, when the impact of ongoing gamma-oscillations was
accurately taken into account.

Recently, cortical spike avalanches of urethane-anesthetized
rats were investigated under this methodological lens by
Fontenele et al. (2019). This experimental setup is known to
yield spiking activity which is highly variable, ranging from very
asynchronous to very synchronous population activity (Clement
et al., 2008). These regimes can be characterized by different
ranges of the coefficient of variation (CV) of the population firing
rate (de Vasconcelos et al., 2017), which is thought of as a simple
marker of cortical states (Harris and Thiele, 2011). By parsing
the data according to levels of spiking variability, Fontenele
et al. (2019) found that the scaling relation Equation (4) was
satisfied at an intermediate value of CV , suggesting a phase
transition away from both the synchronized and desynchronized
ends of the spiking variability spectrum. In particular, the
values of the avalanche exponents where the scaling relation
was satisfied were not all compatible (within error bars) with
MF-DP values: 〈τ 〉 ≃ 1.52 ± 0.09, 〈τt〉 ≃ 1.7 ± 0.1 and
〈1/(σνz)〉 ≃ 1.28 ± 0.03 (Fontenele et al., 2019). This was
interpreted as an incompatibility with the theoretical MF-DP
scenario (Fontenele et al., 2019), thus requiring the formulation
of models belonging to other universality classes and undergoing
other phase transitions.

One hypothesis to explain this controversy is that the study
of spike activity is strongly affected by subsampling effects, that
is, the measured activity is based on a tiny fraction of the
total number of neurons in a given area of the brain. Different
groups have shown that subsampling indeed affects the apparent
distribution of avalanches (Priesemann et al., 2009, 2014; Ribeiro
et al., 2010, 2014; Girardi-Schappo et al., 2013; Levina and
Priesemann, 2017; Wilting and Priesemann, 2019). For example,
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an avalanche evaluated on all elements (full sampling) can be
broken into smaller avalanches when recorded in a subset of
the network (subsampling). In addition, we highlight that this
effect is different from the well-studied phenomenon of finite-size
scaling, which is the study of how statistical properties change as
the size of the system increases and activity recorded in all sites is
analyzed (see e.g., Levina and Priesemann, 2017).

Here, we revisit this issue by studying the data produced by
two theoretical models in the MF-DP universality class. We start
by showing that the models reproduce well-known analytical
results, which however fail to reproduce the experimental data.
Then we proceed to treat the model results under the same
conditions as those of experimental data. Despite the large
number of simulated neurons (∼ 105), we intentionally restrict
the theoretical analysis to a small subset of cells (∼ 102),
mimicking the fact that one can only record a few hundred
neurons among the millions that comprise the rat’s brain (the
subsampling issue). Here we show that by combining the
subsampling of the model with the analysis pipeline that has been
applied to the experimental data (Fontenele et al., 2019), we can
reconcile the empirical power-law avalanches with the theoretical
MF-DP universality class.

2. METHODS

2.1. A Spiking Neuronal Network With
Excitation and Inhibition
We used the excitatory/inhibitory network of Girardi-Schappo
et al. (2020), where each neuron is a stochastic leaky integrate-
and-fire unit with discrete time step equal to 1 ms, connected in
an all-to-all graph. A binary variable indicates if the neuron fired
[X(t) = 1] or not [X(t) = 0]. The membrane potential of each
cell i in either the excitatory (E) or inhibitory (I) population is
given by

V
E/I
i (t + 1) =

[

µV
E/I
i (t)+ Ie +

J

N

NE
∑

j=1

XE
j (t)

−
gJ

N

NI
∑

j=1

XI
j (t)

]

(

1− X
E/I
i (t)

)

, (5)

where J is the synaptic coupling strength, g is the inhibition
to excitation (E/I) coupling strength ratio, µ is the leak time
constant, and Ie is an external current. The total number of
neurons in the network is N = NE + NI = 105, where the
fractions of excitatory and inhibitory neurons are kept fixed at
p = NE/N = 0.8 and q = NI/N = 0.2, respectively, as reported
for cortical data (Somogyi et al., 1998). Note that the membrane
potential is reset to zero in the time step following a spike.

At any time step, a neuron fires according to a piecewise linear
sigmoidal probability 8(V),

8(V) ≡ P (X = 1|V) = Ŵ (V−θ)2(V−θ)2(VS−V)+2(V−VS),
(6)

where θ = 1 is the firing threshold, Ŵ is the firing gain constant,
VS = 1/Ŵ+θ is the saturation potential, and2(x > 0) = 1 (zero

otherwise) is the step function. For simplicity, the parameter
µ = 0 is chosen without lack of generality, since it does not
change the phase transition of the model (Girardi-Schappo et al.,
2020). The external current Ie > VS is used only to spark a new
avalanche in a single excitatory neuron when the network activity
dies off (it is kept as Ie = θ otherwise).

This model is known to present a directed percolation critical
point (Girardi-Schappo et al., 2020) at gc = p/q− 1/(qŴJ) = 1.5
(forŴ = 0.2 and J = 10), such that g < gc is the active excitation-
dominated (supercritical) phase and g > gc corresponds to the
inhibition-dominated absorbing state (subcritical). The synapses
in the critical point gc are dynamically balanced: fluctuations in
excitation are immediately followed by counter fluctuations in
inhibition (Girardi-Schappo et al., 2020). The initial condition
of the simulations has all neurons quiescent except for a seed
neuron to spark activity. This procedure was repeated whenever
the system went back to the absorbing state.

2.2. Probabilistic Cellular Automaton Model
The spiking model described in section 2.1 is certainly not
the simplest model to present a phase transition in the
MF-DP universality class. Therefore, to probe the robustness
of our findings, we also simulated a much simpler model:
a network of probabilistic excitable cellular automata in a
random graph (Kinouchi and Copelli, 2006). This model closely
resembles a standard branching process and is known to mimic
the changing inhibition-excitation levels of cortical cultures
(Shew et al., 2009).

Each site i (i = 1, . . . ,N) has five states: the silent state,
si = 0, the active state, si = 1, corresponding to a spike, and
the remaining three states, si = 2, 3, 4, in which the site will not
respond to incoming stimuli (absolute refractory states). Each site
receives input from K presynaptic neighbors which are randomly
selected at the start and kept fixed throughout the simulations. A
quiescent site i becomes excited [si(t) = 0 → si(t + 1) = 1] with
probability pij if a presynaptic neighbor j is active at time t. All
presynaptic neighbors are swept and independently considered
at each time step, so that

P
(

si(t + 1) = 1|si(t) = 0
)

= 1− (1− hi)
K

∏

j∈N (i)

[

1− pijsj(t)
]

,

(7)
where hi is the probability of unit i spiking due to an external
stimulus and N (i) is the set of presynaptic neighbors of i. The
remaining transitions happen with probability 1, including the
transition 4 → 0 that returns the site to its initial quiescent state.
The time step of the model corresponds to 1 ms.

We initially chose the random variables {pij} from a uniform
distribution in the interval [0, 2λ/K]. The so-called branching
ratio λ = K〈pij〉 is the control parameter of the model.
This model undergoes a MF-DP phase transition at λ = λc = 1
(Kinouchi and Copelli, 2006). For λ < 1, the system is in
the subcritical phase and eventually reaches the absorbing state
(si = 0,∀i). For λ > 1, the system presents self-sustained
activity, i.e., a non-zero stationary density of population firings
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(the supercritical phase). The critical point is not affected by the
number of refractory states (Kinouchi and Copelli, 2006).

In our simulations we used K = 10 neighbors for each of the
N = 105 sites. Similarly to the spiking neuronal network model,
a single random neuron was stimulated (hi = 1) only when the
system reached the absorbing state, sparking the network activity
and subsequently being set back to hi = 0. The initial condition
was set with a single randomly chosen site active and the others
in the silent state.

2.3. Experimental Data Acquisition
Urethane is a well-established drug that provides
spontaneous changes of brain states that resemble sleep
state alternations (Clement et al., 2008). In the last decade,
experimental preparations using urethane have helped elucidate
questions concerning mechanisms and the functional relevance
of state-dependent patterns of brain activity (Curto et al., 2009;
Renart et al., 2010; Mochol et al., 2015; de Vasconcelos et al.,
2017). The property to promote spontaneous change in the levels
of spiking variability cannot be achieved in other anesthesia
approaches, such as pentobarbital and isoflurane.

The data used in this paper is original and corroborates
the results of Fontenele et al. (2019). We used five rats Long-
Evans (Rattus norvegicus) (male, 280–360 g, 2–4 months old).
They were obtained from the animal house of the Laboratory
of Computational and Systems Neuroscience, Department of
Physics, Federal University of Pernambuco (UFPE). The animals
were anesthetized with urethane (1.55 g/kg), diluted at 20%
in saline, in three intraperitoneal (i.p.) injections, 15 min
apart (Sakata and Harris, 2009). Some animals demanded
supplement (max 5%) of urethane to reach the proper level of
analgesia. In order to ensure that the animals are maintained
at the correct depth of anesthesia, responses to painful stimuli
(pinching the animal’s toes, ears and tail) were always checked
throughout the experiment. Once the anesthesia reached its
proper level, the rats were placed in a stereotaxic frame and
the coordinates to access the primary visual cortex (V1) were
marked (Bregma: AP = −7.2, ML = 3.5) (Paxinos and Watson,
2007). A cranial window in the scalp was opened using this
coordinate as center, with an area of ∼3 mm2. We performed
recordings of extra-cellular voltage of neuronal populations by
using a 64-channel multielectrode silicon probe (Neuronexus
technologies, Buzsaki64spL-A64). This probe has 60 electrodes
disposed in six shanks separated by 200 µm, 10 electrodes per
shank with impedance of 1–3 MOhm at 1 kHz. Each electrode
has 160 µm2 and they are in staggered positions 20 µm apart.
We recorded from deeper layers of the rat cortex, similarly to
what was previously done in Ribeiro et al. (2010) under ketamine-
xylazine and Fontenele et al. (2019) under a setup similar to the
one presented here.

Data was sampled at 30 KHz, amplified and digitized in a
single head-stage (Intan RHD2164) (Siegle et al., 2017). We
recorded spontaneous activity, during long periods (≥3 h). We
used the open-source software Klusta to perform the automatic
spike sorting on raw electrophysiological data (Rossant et al.,
2016). The automatic part is divided in two major steps,
spike detection and automatic clustering. The first step detects

action potentials and the second one arrange those spikes
into clusters according to their similarities (waveforms, PCA,
refractory period). After the automatic part, all formed clusters
are reanalyzed using the graphic interface phy kwikGUI1. Manual
spike sorting allows the identification of each cluster of neuronal
activity as single-unit activity (SUA) or multi-unit activity
(MUA). We used both SUA and MUA clusters for our study.

2.4. Avalanche Analysis With CV Parsing
To study neuronal avalanches at different levels of spiking
variability (Shadlen and Newsome, 1998), we segmented both
the neurophysiological and simulated data in non-overlapping
windows of width w = 10 s (unless otherwise stated) (Gervasoni
et al., 2004). Each of these 10 s epochs was subdivided in non-
overlapping intervals {ζj} of duration 1T = 50 ms (unless
otherwise stated) in which we estimated the population spike-
count rate Rj. We then calculated the coefficient of variation (CV)
for the i-th 10 s window:

CVi =
σi

µi
, (8)

where CV is dimensionless, and σi and µi correspond to the
standard deviation and the mean of {Rj}, respectively.

For each 10 s window with a particular CV level, we
proceeded with the standard avalanche analysis of Beggs and
Plenz (2003). The summed population activity was sliced in non-
overlapping temporal bins of width 1t = 〈ISI〉 (the average
inter-spike interval). Ribeiro et al. (2010) and Yu et al. (2017) have
shown that an adaptive bin, evaluated according to the current
dynamical state, renders signatures of scale-free dynamics more
robust. Following this strategy, we have separately computed
1t = 〈ISI〉 for each 10 s window. Population spikes preceded
and followed by silence define a spike avalanche. The number of
spikes correspond to the avalanche size S, whereas the number of
time bins spanned by the avalanche is its duration T. Following
this methodology, we associated each 10 s CVi window with its
corresponding set of ni avalanche sizes Si ≡

{

Si1, Si2, . . . , Sini
}

and durations Ti ≡
{

Ti1,Ti2, . . . ,Tini

}

.
To estimate the avalanche exponents τ and τt , we first ranked

the sets {Si} and {Ti} according to their CV values. Next, in order
to increase the number of samples while preserving the level of
spiking variability, we pooled NB consecutive ranked blocks of
similar CV values (NB = 50 unless otherwise stated). For each
set of NB blocks we calculated the average coefficient of variation
〈CV〉. The exponents of the size and duration distributions
were obtained via a Maximum Likelihood Estimator (MLE)
procedure (Deluca and Corral, 2013; Yu et al., 2014; Marshall
et al., 2016) on a discrete power-law distribution

f (x) =
1

∑xmax
x=xmin

( 1x )
α

(

1

x

)α

. (9)

The standard choice of fitting parameters, for both experimental
and subsampled simulated data, was Smin = 2 and Smax = 100
for size distributions and Tmin = 2 and Tmax = 30 for duration

1https://github.com/cortex-lab/phy

Frontiers in Neural Circuits | www.frontiersin.org 4 January 2021 | Volume 14 | Article 576727

https://github.com/cortex-lab/phy
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Carvalho et al. Subsampled Model Explains Scaling Relations

TABLE 1 | Limits chosen for the calculation of the α exponent (Equation 9) via

Maximum Likelihood Estimator (MLE) only for the model data shown in

Figures 4C,D (1t = 1 ms).

n Size distribution Duration distribution

Smin Smax Tmin Tmax

100 2 30 2 15

200 2 100 2 50

500 2 200 2 70

1,000 2 200 2 70

2,000 2 300 3 100

5,000 2 500 4 100

10,000 5 3,000 5 150

20,000 5 5,000 5 200

30,000 10 10,000 10 200

40,000 10 10,000 10 250

50,000 10 10,000 10 300

100,000 10 20,000 10 300

See text for details.

distributions. The exceptions to this choice were for the data
shown in Figures 4C,D, due to a change of orders of magnitude
in the number of neurons sampled. The specific parameters for
these cases are shown in Table 1.

After the MLE fit we used the Akaike Information Criterion
(AIC) as a measure of the relative quality of a given statistical
model for a data set:

AIC = 2k− 2 ln(L̂)+
2k2 + 2k

N − k− 1
, (10)

where L̂ is the likelihood at its maximum, k is number of
parameters and N the sample size (Akaike, 1975). Starting from
the principle that lower AIC indicates a more parsimonious
model, we defined 1 ≡ AICln − AICpl, where AICln and AICpl

correspond to the AIC of a log-normal and a power-law model,
respectively. Therefore, 1 > 0 implies that a power-law model
is a better fit to the data than a log-normal. Our scaling relation
analyses were restricted to distributions that satisfied 1 > 0.

2.5. Pairwise Correlations
Pairwise spiking correlations were estimated using only the SUA
or the simulated data in the following way: first, for each cell
k we obtained a spike count time series R(k)(t) at millisecond
resolution (1T = 1 ms), then each spike count time series R(k)

was convolved with a kernel ht1 ,t2 (t) to estimate the k-th mean
firing rate n(k)(t):

n(k)(t) = ht1 ,t2 (t) ∗ R
(k)(t) , (11)

where ht1 ,t2 (t) is a Mexican-hat kernel obtained by the difference
between zero-mean Gaussians with standard deviations
t1 = 100ms and t2 = 400 ms (Renart et al., 2010). The nk(t)

were employed to calculate the spiking correlation coefficient
between two units k and l:

r(k,l) =
Cov

(

n(k), n(l)
)

√

Var
(

n(k)
)

Var
(

n(l)
)

, (12)

where Var and Cov are the variance and covariance over
t, respectively.

3. RESULTS

3.1. Avalanches in the Fully Sampled Model
We start by illustrating the second order phase transition that the
model undergoes at a critical value gc = 1.5 of the inhibition
parameter (Girardi-Schappo et al., 2020). As shown in Figure 1A,
the stationary density of active sites ρ̄ is positive for g < gc (the
supercritical regime) and null for g > gc (the subcritical regime).

At the critical point g = gc, the distribution of avalanche
sizes and duration obey the expected power laws (Equations 1
and 2) with exponents τ = 3/2 and τt = 2 (Girardi-Schappo
et al., 2020). Subcritical avalanches are exponentially distributed,
whereas the supercritical distribution has a trend to display larger
and longer avalanches (Figures 1B,C). Both sides of the scaling
law in Equation (4) independently agree, since the fit to 〈S〉(T)
yields 1/(σνz) = 2 on the critical point (Figure 1D). Figure 1E
shows typical time series of firing events for the three regimes.
These exponents and dynamic behavior of the model are typical
of a system undergoing a MF-DP phase transition.

3.2. Comparison of Subsampled Model and
Experiments Stratified by CV
We now revisit the model by subjecting it to the same constraints
that apply to experimental datasets (Fontenele et al., 2019) and
compare the results between the two. More specifically: (1)
data analysis necessarily uses only a tiny fraction of the total
neurons in the system and (2) in urethane-anesthetized rats,
cortical spiking variability is a proxy for cortical states (Harris
and Thiele, 2011) and changes a lot during the hours-long
recordings (Clement et al., 2008; de Vasconcelos et al., 2017).

Starting with the experimental results, Figure 2A shows
the time series of the coefficient of variation (CV) of the
population spiking activity. The lowest CV values correspond
to asynchronous spiking activity, whereas the highest values
correspond to more synchronized activity (both shown in
Figure 2B). When we parsed the data by CV percentiles and
evaluated neuronal avalanches for different percentiles, the
distributions varied accordingly, with exponents τ , τt , and
1/(σνz) varying continuously across the CV range (Figure 2C)
as expected (Fontenele et al., 2019).

Can the MF-DP spiking network model reproduce these
experimental results? We found that by sampling only a few
neurons out of the entire network, indeed it can. Out of N = 105

simulated neurons, we sampled only n = 100, a number that
is of the same order as the amount of neurons captured in our
empirical data (Fontenele et al., 2019). Then, we applied to the
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FIGURE 1 | Spiking model results with full sampling. Behavior of the spiking model (N = 105) for different values of the control parameter g. (A) Stationary density of

firings ρ̄ as a function of the inhibition strength g (critical point is the red circle at gc = 1.5). Solid line is the mean-field solution (Girardi-Schappo et al., 2020), points

are simulation results. Distribution of avalanche sizes (B) and duration (C) for the subcritical (g > gc), critical (g = gc) and supercritical (g < gc) regimes. (D) Average

avalanche size 〈S〉 of a given duration (T ). (E) Time series of the density of active sites for the three regimes.

FIGURE 2 | Comparison between empirical data and subsampled spiking model. CV time series and distribution for (A) experimental data (single animal) and

(D) model with n = 100. Raster plots and population firing rate in cases of low (▼) and high (▲) values of CV for (B) experimental data and (E) model. Scaling

exponents τ , τt, and 1/(σνz) for three different values of CV (denoted by different symbols): (C) experimental data and (F) model. For both experimental data and

model, w = 10 s.
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FIGURE 3 | Scaling relation and parametric plot of avalanche exponents. Right- and left-sides of Equation (4) (line and shade are average and standard deviation

across the group) as a function of the average CV for (A) experimental data and (C) subsampled model (n = 100; note that color code and values of g are the same

as in Figures 2D,F). Scatter plot in the (τ , τt ) plane for (B) experimental data and (D) subsampled model. In both cases, 1t = 〈ISI〉 and w = 10 s. The star points in

(B,D) indicate the values of τ and τt that satisfied Equation (4) in (A,C). In Supplementary Figure 2, we show the same result in (A) for each rat separately.

subsampled simulation data exactly the same analysis pipeline
used for experiments (section 2.4).

In the model, we changed the E/I level g to control for the
spiking variability level CV . For a fixed value of parameter g, CV
is a bell-shaped distribution with finite variance. The CV(t) time
series of the model for a single g does not present the dynamical
complexity observed experimentally (compare Figures 2A,D).
By varying g within a narrow interval around the critical point
gc, the CV distribution of the model covers the values observed
experimentally (Figure 2D), with less synchronous behavior for
low CV and more synchronous activity for high CV (Figure 2E;
the full behavior of theCV distribution as a function of parameter
g is shown in Supplementary Figure 1A). Parsing the data by
CV and running the avalanche statistics for the subsampled
model, we obtained scaling exponents that vary continuously,
in remarkable similarity to what is observed in the experimental
data (Figure 2F).

A critical system with an absorbing-active phase transition
which satisfies Equations (1)–(3) is also expected to satisfy the so-
called crackling noise scaling relation of Equation (4). Figure 3A
shows the independent experimental fits for the left- and right-
hand sides of Equation (4) as a function of CV . The crossing at
CV∗ ≃ 1.46±0.08 is consistent with the phase transition reported
by Fontenele et al. (2019). In the crossing CV∗, we obtain
τ∗ = 1.54± 0.12, τt∗ = 1.73±0.18, and 1/(σνz)∗ = 1.30± 0.02.
Plotting τ vs. τt , the experimental data scatter along the line with
slope given by 1/(σνz)∗ for different values of CV (Figure 3B).
These results are in agreement with those of Fontenele et al.

(2019), again suggesting an incompatibility with the MF-DP
universality class.

The results for the subsampled spiking model, however,
suggest otherwise. We did exactly the same procedure with the
subsampled model and found a similar CV for the crossing of the
critical exponents, CVmodel

∗ ≃ 1.41± 0.05, when controlling for
the E/I ratio g very close to the critical point gc = 1.5 (Figure 3C).
On the crossing CVmodel

∗ , we obtained τ∗ = 1.65± 0.02,
τt∗ = 1.87± 0.03, and 1/(σνz)∗ = 1.34± 0.02. Note that these
critical exponents are not the true exponents of the model. In
fact, they are apparent exponents generated by subsampling the
network activity. The true critical exponents are τ = 3/2, τt = 2
and 1/(σνz) = 2 (as shown in Figure 1).

To reproduce the experimental results, the control interval
of g was slightly biased toward the supercritical range:
gmin ≃ 1.47 ≤ g ≤ gmax ≃ 1.50. Our model predicts,
then, that the whole range of experimental results is produced
by fluctuations of only about 2% around the critical point
(Figure 3D). For instance, for g = 1.55 (3% above the critical
point in the subcritical regime), the scaling relation is no longer
satisfied and the measured exponents fall far away from the linear
relation observed experimentally in the (τ , τt) plane (Figure 3D).

This result shows that the MF-DP phase transition under
subsampling conditions is capable of reproducing a whole range
of experimentally observed avalanches across a range of CV
values. To test the robustness of our findings, we employed
exactly the same procedure to a simpler model, a probabilistic
cellular automaton (section 2.2). This model is also knowingly
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FIGURE 4 | Dependence of the apparent critical exponents on the sampling parameters at criticality. In (A,C), we show both sides of the scaling relation (Equation 4)

for all values of CV observed in the simulations. For each value of n/N, one has the equivalent of the projection of Figure 3C onto its vertical axis. For 1t = 〈ISI〉,

(A) the scaling relation is satisfied for increasing number of sampled neurons (B) with exponents that agree with experimental data. Since 〈ISI〉 decreases with n [inset

of (B)], this analysis breaks down when n is so large that 〈ISI〉 becomes smaller than 1 ms [gray region in (A)], which is the time step of the simulations. For 1t = 1 ms,

(C) the scaling relation is satisfied for small n/N, within a relatively wide range of CV values [inset of (C)]. For n/N → 1, results converge to MF-DP values (C,D), as

expected. Simulations with N = 105 and gc = 1.5.

of the MF-DP type (Kinouchi and Copelli, 2006), but has a
random network topology. All the results were similar (see
Supplementary Figure 3), showing that the apparent exponents
are a direct consequence of subsampling.

3.3. Dependence on Sampling Fraction and
Time Bin Width
How robust are the results of the model at criticality against
variation in the sampling size (n) and time bin width (1t)?
First, we considered the time bin width as the population
interspike interval 1t = 〈ISI〉. The minimum sampling size
we employed was n = 30 so that power laws still satisfied
Akaike’s Information Criterion. The agreement of both sides
of the scaling law enhances with growing sampling fraction
(Figures 4A,B). However, 〈ISI〉 decreases with the number of
neurons sampled (inset of Figure 4B). When the natural bin
decreases below 1 ms (the time step of the model), the analysis
no longer makes sense. As n increases, the relation between τ and

τt converges to the apparent critical scaling that fits experimental
results (Figure 4B).

To check whether we could recover theMF-DP real exponents
from their apparent values as n increases, we chose the smallest
time bin possible, 1t = 1 ms. We observed that for a small
fraction of sampled units [n/N ∼ O(10−2)] the scaling relation
(Equation 4) is satisfied (Figure 4C) with apparent critical
exponents that match the experimental results (Figure 4D). In
fact, the scaling relation in Equation 4 is satisfied for a range of
CV values (inset of Figure 4C). Increasing the sampling further
[n/N ∼ O(10−1)], the scaling relation ceases to be satisfied
(Figure 4C) and the avalanche exponents get separated from the
experimental scaling relation (Figure 4D). But as n → N, the
MF-DP scaling relation is recovered (as it should).

We have further tested the robustness of these
findings by varying the time bin width used to defined
avalanches (0.75 ≤ 1t/〈ISI〉 ≤ 2). We observed
that experiments and model have very similar behavior
(Supplementary Figures 4A,B). Furthermore, both model
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FIGURE 5 | Correlation structure. The experimental pairwise correlation of firing rates is shown as a function of 〈CV〉 (black line is the average r̄, while gray shading is

the standard deviation of the distribution). It is compared with theoretical results for (A) the spiking neuronal network with n = 100 sampled neurons, and (B) the

cellular automaton model with n = 500 sampled sites.

and experiments are virtually insensitive to the width of the
CV window w (Supplementary Figures 4C,D). Finally, we
also tested whether allowing for small changes of g around
gc with n = N would lead to apparent exponents compatible
with experimental data. We observed in this case that the
exponents and the scaling relation cluster around MF-DP
values (Supplementary Figure 5), reinforcing the idea that
subsampling is a necessary ingredient for the model to reproduce
the experimental results.

3.4. Pairwise Correlation Structure
We also tested the correlation structure of the model and
compared it to experimental results. In the literature on cortical
states, asynchronous states are associated with pairwise spiking
correlations r(k,l) which are distributed around an average r̄ close
to zero, whereas synchronous states have positive average (Harris
and Thiele, 2011). This was quantified in Figure 5A, where r̄ is
shown to increase monotonically with CV . For the experimental
data, r̄ reaches zero within the standard deviation of the
distribution for sufficiently small CV .

Compared with the experimental results, the spiking
model with inhibition generally overestimates r̄ (Figure 5A).
This could be due to its all-to-all connectivity. The cellular
automaton model on a random graph yields quantitatively
better results (Figure 5B). In either case, we observed
again that, just like for the scaling relation (Figure 3), the
correlation structure of the experimental data was relatively
well-reproduced by very small deviations around critical
parameter values.

4. DISCUSSION AND CONCLUSIONS

We revisited the results recently published by Fontenele et al.
(2019) by repeating their analyses on new experimental data
and two different models. To test the idea that the urethanized
cortex hovers around a critical point, we stratified the avalanche
analyses across cortical states. For the new experimental data, we

verified that the scaling relation combining the three exponents
(Equation 4) was indeed satisfied at an intermediate value CV∗,
away from the synchronous and asynchronous extremes. At
this critical value, the three exponents differ from those of the
MF-DP universality class, thus confirming previous findings
(Fontenele et al., 2019).

We addressed whether the exponents of the MF-DP
universality class and those observed experimentally could be
reconciled, despite their disagreement. In other words, we
returned to the question: if the brain is critical, what is the
phase transition? Do the experimental results presented here and
in Fontenele et al. (2019) refute branching-process-like models
as explanations?

To answer these questions, we relied on two models: an
E/I spiking neuronal network in an all-to-all graph; and a
probabilistic excitable cellular automaton in a random graph.
Despite the simplicity and limitations of these models (which
we discuss below), they have a fundamental strength that led
us to choose them: they are very well-understood analytically.
In both cases, mean-field calculations agree extremely well
with simulations, so that we are safe in locating the critical
points of these models (Kinouchi and Copelli, 2006; Girardi-
Schappo et al., 2020). This is very important for our purposes,
because it allows us to test whether the models can reproduce
the data, and if so, how close to the critical point they
have to be. Besides, their universality class is also well-
determined: the exponents shown in Figures 1B–D are those of
with MF-DP.

The crucial point is that the results in Figure 1 are based
on avalanches which are measured by taking into account all
simulated units of the model, a methodological privilege that is
not available to an experimentalist measuring spiking activity of
a real brain with current technologies. In fact, a considerable
amount of work has shown that subsampling can have a drastic
effect on the avalanche statistics of models (Priesemann et al.,
2009, 2014; Ribeiro et al., 2010, 2014; Girardi-Schappo et al.,
2013; Levina and Priesemann, 2017; Wilting and Priesemann,
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2019). Therefore, here we set out to test whether MF-DP models
could yield results nominally incompatible with that universality
class if they were analyzed under the same conditions as the data,
i.e., with CV parsing and severe subsampling.

Both subsampled models quantitatively and qualitatively
reproduced the central features of the experimental results. The
scaling relation (Equation 4) was satisfied at an intermediate
value 〈CV〉∗, with the correct qualitative behavior of both sides of
the equation: 1/(σνz) increasing with CV , while (τt − 1)/(τ − 1)
decreasing (see Figures 3A,C and Supplementary Figure 3D).
In fact, the values of 〈CV〉∗, and those of the apparent
exponents of the subsampled MF-DP models, τ∗, τt∗,
and 1/(σνz)∗, agreed with the experiments within error
bars. Moreover, even away from the point 〈CV〉∗ where
Equation (4) was satisfied, the spread of the exponents τ

and τt of the subsampled models followed an almost linear
relation (Figure 3D and Supplementary Figure 3E), in good
agreement with not only our experimental results (Figure 3B),
but also with those of other experimental setups (Fontenele
et al., 2019). When we sampled from the whole network,
we recovered the true critical exponents of the model
(Figures 4C,D), confirming that spatial subsampling and
temporal binning are sufficient ingredients to push its critical
exponents toward apparent values, hiding its true critical
phase transition.

Knowing analytically the critical points of the models, we
checked in which parameter range they successfully reproduced
the experimental results. As it turns out, the scaling relation
and the linear of spread of exponents are reproduced by the
subsampled models only if they are tuned within a narrow
interval around their critical points. The subsampled model still
fits well the urethanized cortex data up to 3% off criticality,
slightly biased toward the supercritical state. Note that if the
model becomes too subcritical, the size and duration exponents
fall very far apart from the experimentally observed linear
relation (Figure 3D). If it is too supercritical, there are not
enough silent windows to distinguish avalanches in the first place.
Whether or not the fluctuations around the critical point of the
model could be compatible with a scenario of self-organized-
quasi-criticality (Buendía et al., 2020; Kinouchi et al., 2020)
remains to be investigated.

Despite the small variation of the model E/I levels
controlled by g, the variation of CV is large enough to
essentially cover the range of experimentally observed values
(Figures 2A,D and Supplementary Figure 3B). This is due in
part to the fact that we evaluated CV within finite windows of
width w = 10 s. In Supplementary Figure 6 we show that, for
the model, the standard deviation of CV is a decreasing function
of the time used to estimate, all the way up to w = 500 s. For
the data, on the other hand, a better resolution for CV can
be obtained by increasing w up to about 20 s, above which
the standard deviation no longer decreases. It is important to
note, however, that in experiments one needs to reach a good
trade-off between a better statistical definition of CV and not
mixing different cortical states due to the non-stationarity
characteristic of the urethane preparation (as depicted
in Figure 2A).

Perhaps even more important than the range of CV values
obtained around the critical point of the models is the richness
of the experimentally observed temporal evolution of CV
(Figure 2A). The model needs to be fine tuned to different
values of E/I levels in order to get different average values of
CV . This is one of the limitations of the models which would
be worth addressing next. One possibility would be to replace
static models (i.e., with fixed control parameters) with ones with
plasticity, in which coupling parameters are themselves dynamic
variables and the critical point is obtained via quasicritical self-
organization (Costa et al., 2015, 2017; Brochini et al., 2016;
Campos et al., 2017; Kinouchi et al., 2019, 2020; Buendía et al.,
2020; Girardi-Schappo et al., 2020).

Moreover, both models failed to capture the steep drop
of (τt − 1)/(τ − 1) as a function of CV that is observed
in the experimental data above CV∗ (compare Figure 3A

with Figure 3C and Supplementary Figure 3D). This region
corresponds to high CV , where the models, which are entering
their subcritical regimes, seem unable to quantitatively account
for the statistics of the increasingly bursty behavior of the data.
Whether different models (or a refinement of the ones presented
here) could reproduce these results more accurately remains to
be studied.

Another limitation of the models is their simple topology,
which in future works could be improved to come closer to
cortical circuitry (Potjans and Diesmann, 2014). This would
likely come at the cost of foregoing analytical results to start
with, thus augmenting the computational efforts involved. But
it would certainly allow to probe the robustness of the results
presented here against more realistic topologies. On the other
hand, there is quantitative agreement between the apparent
exponents of both models (each having a different topology) with
the experimental exponents. This suggests that at the scale of
the present phenomenology, the average topology should play a
minor role.

It is also interesting to compare the performance of the
two models in reproducing the experimental results. The
cellular automaton model has the advantage of simplicity,
corresponding essentially to a minimal model in the MF-DP
universality class. The E/I balanced network, on the other hand,
has the advantage of incorporating inhibition, which is an
important ingredient for modeling cortical circuitry. As shown in
detail in Supplementary Figure 4, the cellular automaton results
generally agreed with experimental results, but those of the E/I
balanced network had a consistently better agreement. The only
exception in this trend was the correlation structure shown in
Figure 5, in which the cellular automatonmodel fared better than
the E/I balanced network. In this sense, the models complement
each other.

Our model predicts that, for a fixed bin size, increasing the
sampling of the data would eventually lead exponents to coincide
with those of MF-DP (Figure 4C). However, below a sufficiently
high sampling [see, e.g. n/N ∼ O(10−1) in Figure 4C], the
scaling relation would not be satisfied for any CV even if
the system were critical (as the model is). An experimental
verification of these predictions would require the recording of
a much larger number of neurons than we have presented here.
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The fact that subsampling seems to be a crucial ingredient for
explaining the data is a double-edged sword. On the one hand,
it allowed us here to reconcile MF-DP models with results for
spiking data in the anesthetized rat cortex. On the other hand,
note that even measurements which should in principle be less
prone to subsampling, such as LFP results in the visual cortex
of the turtle (Shew et al., 2015), still fall on the same scaling
line of τ vs. τt (Figure 3B) as those of spiking data (Fontenele
et al., 2019), both having apparent non-MF-DP critical exponents
(note, however, that better controlled LFP results in Miller et al.,
2019 are in line with MF-DP). This issue is not addressed by
the current model and deserves further investigation. Our results
point only to MF-DP models as sufficient, not as necessary, to
explain the observed phenomenology. So it is at least conceivable
that different models with different phase transitions (di Santo
et al., 2018; Dalla Porta and Copelli, 2019; Pinto and
Copelli, 2019) could also yield non-trivial true or apparent
exponents compatible with the data, even without subsampling
(Fontenele et al., 2019).

Finally, our simulation results underscore the methodological
vulnerabilities of assessing criticality exclusively via avalanche
analysis. Not only areMLE power-law fits sensitive to parameters,
but even a more stringent analysis, requiring the crackling noise
scaling relation, leads to non-trivial apparent exponents which
are an artifact of subsampling, as we have shown. Therefore,
the development of additional figures of merit, such as control
and order parameters, susceptibilities and others (Tagliazucchi
et al., 2012; Yang et al., 2012; Yu et al., 2013; Mora et al.,
2015; Tkačik et al., 2015; Girardi-Schappo et al., 2016; Girardi-
Schappo and Tragtenberg, 2018; Lotfi et al., 2020), remains
a very important line of research to strengthen studies of
brain criticality.
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Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S. E., Berry, M. J., et al.
(2015). Thermodynamics and signatures of criticality in a network of neurons.
Proc. Natl. Acad. Sci. U.S.A. 112, 11508–11513. doi: 10.1073/pnas.15141
88112

Tomen, N., Herrmann, M. J., and Ernst, U. (2019). The Functional Role of Critical
Dynamics in Neural Systems. Cham: Springer.

Touboul, J., and Destexhe, A. (2017). Power-law statistics and universal
scaling in the absence of criticality. Phys. Rev. E 95:012413.
doi: 10.1103/PhysRevE.95.012413

Wilting, J., and Priesemann, V. (2019). Between perfectly critical and
fully irregular: a reverberating model captures and predicts cortical

spike propagation. Cereb. Cortex 29, 2759–2770. doi: 10.1093/cercor/
bhz049

Yang, H., Shew, W. L., Roy, R., and Plenz, D. (2012). Maximal variability of
phase synchrony in cortical networks with neuronal avalanches. J. Neurosci. 32,
1061–1072. doi: 10.1523/JNEUROSCI.2771-11.2012

Yu, S., Klaus, A., Yang, H., and Plenz, D. (2014). Scale-invariant neuronal
avalanche dynamics and the cut-off in size distributions. PLoS ONE 9:e99761.
doi: 10.1371/journal.pone.0099761

Yu, S., Ribeiro, T. L., Meisel, C., Chou, S., Mitz, A., Saunders, R., et al. (2017).
Maintained avalanche dynamics during task-induced changes of neuronal
activity in nonhuman primates. eLife 6:e27119. doi: 10.7554/eLife.27119

Yu, S., Yang, H., Shriki, O., and Plenz, D. (2013). Universal organization of resting
brain activity at the thermodynamic critical point. Front. Syst. Neurosci. 7:42.
doi: 10.3389/fnsys.2013.00042

Zhigalov, A., Arnulfo, G., Nobili, L., Palva, S., and Palva, J. M. (2015).
Relationship of fast- and slow-timescale neuronal dynamics in human
MEG and SEEG. J. Neurosci. 35, 5385–5396. doi: 10.1523/JNEUROSCI.4880-
14.2015

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Carvalho, Fontenele, Girardi-Schappo, Feliciano, Aguiar, Silva, de

Vasconcelos, Carelli and Copelli. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 13 January 2021 | Volume 14 | Article 576727

https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
https://doi.org/10.1038/nphys3370
https://doi.org/10.1177/1073858412445487
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1016/S0165-0173(97)00061-1
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1073/pnas.1514188112
https://doi.org/10.1103/PhysRevE.95.012413
https://doi.org/10.1093/cercor/bhz049
https://doi.org/10.1523/JNEUROSCI.2771-11.2012
https://doi.org/10.1371/journal.pone.0099761
https://doi.org/10.7554/eLife.27119
https://doi.org/10.3389/fnsys.2013.00042
https://doi.org/10.1523/JNEUROSCI.4880-14.2015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles

	Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain
	1. Introduction
	2. Methods
	2.1. A Spiking Neuronal Network With Excitation and Inhibition
	2.2. Probabilistic Cellular Automaton Model
	2.3. Experimental Data Acquisition
	2.4. Avalanche Analysis With CV Parsing
	2.5. Pairwise Correlations

	3. Results
	3.1. Avalanches in the Fully Sampled Model
	3.2. Comparison of Subsampled Model and Experiments Stratified by CV
	3.3. Dependence on Sampling Fraction and Time Bin Width
	3.4. Pairwise Correlation Structure

	4. Discussion and Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


