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SUBSAMPLING INTERVALS IN AUTOREGRESSIVE MODELS
WITH LINEAR TIME TREND

BY JOSEPH P. ROMANO AND MICHAEL WOLF1

A new method is proposed for constructing confidence intervals in autoregressive
models with linear time trend. Interest focuses on the sum of the autoregressive coeffi-
cients because this parameter provides a useful scalar measure of the long-run persistence
properties of an economic time series. Since the type of the limiting distribution of the
corresponding OLS estimator, as well as the rate of its convergence, depend in a
discontinuous fashion upon whether the true parameter is less than one or equal to one
Ž .that is, trend-stationary case or unit root case , the construction of confidence intervals is
notoriously difficult. The crux of our method is to recompute the OLS estimator on
smaller blocks of the observed data, according to the general subsampling idea of Politis

Ž .and Romano 1994a , although some extensions of the standard theory are needed. The
method is more general than previous approaches in that it works for arbitrary parameter
values, but also because it allows the innovations to be a martingale difference sequence
rather than i.i.d. Some simulation studies examine the finite sample performance.

KEYWORDS: Autoregressive time series, local-to-unity asymptotics, subsampling, trend-
stationarity, unit roots.

1. INTRODUCTION

MUCH WORK IN THE RECENT LITERATURE has been devoted to the question of
whether a macroeconomic time series is trend-stationary or whether it possesses

Ž .a unit root. When the time series is modeled by an AR p sequence with linear
Ž .time trend, the answer depends on whether the sum of the AR p coefficients, a

parameter usually denoted by � , is less than one or equal to one. This
parameter can be consistently estimated by applying ordinary least squares
Ž .OLS to the usual Dickey-Fuller form regression model. Unfortunately, the
construction of confidence intervals is nontrivial, since the type of the asymp-
totic distribution of the OLS estimator, as well as its rate of convergence, are
different in the trend-stationary case as compared to the unit root case. When
��1, the limiting distribution is normal and the rate of convergence is the
square root of the sample size. On the other hand, when ��1, the limiting
distribution is nonstandard and the rate of convergence equals the sample size.
This difficulty explains the emphasis in the unit root literature placed on
hypothesis testing. However, confidence intervals provide much more informa-
tion than knowing whether the null hypothesis of a unit root can be rejected or
not, namely they serve as a measure of sampling uncertainty and describe the

1 We thank Graham Elliot, Guido Imbens, and Halbert White for helpful discussions. The final
version of this paper has substantially benefited from comments of three anonymous referees and
the co-editor. Research of the second author was partly funded by the Spanish ‘‘Direccion General´

Ž .de Ensenanza Superior’’ DGES , reference number PB98-0025.˜
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range of models that are consistent with the observed data. This point was made
Ž . Ž .in Stock 1991 and Andrews and Chen 1994 , among others.

In this paper, we propose a novel approach for constructing confidence
intervals for the parameter � , based on the subsampling method of Politis and

Ž .Romano 1994a . The crux of the new approach is to recompute the OLS
estimator on smaller blocks, or ‘‘subsamples,’’ of the observed data sequence.
Then, the empirical distribution of these subsample estimates, after an appropri-
ate normalization, is used to approximate the sampling distribution of the
estimator based on the entire data. Unlike the conventional bootstrap, the
subsampling method can handle the discontinuity of the limiting distribution of

Ž .the OLS estimator as a function of � , since the subsamples are all generated
by the true model rather than an approximating bootstrap distribution. While
we will focus on the parameter � , the proposed method can equally well be
applied to construct confidence intervals for alternative parameters of interest,

Ž .such as the largest root of the AR p model, a particular AR coefficient, or the
coefficient on the time trend.

In Section 2, the model and the parameter of principal interest are presented.
Also, some previous methods for confidence interval construction are briefly
described. The basic subsampling methodology and some necessary extensions
are discussed in Section 3. The general approaches are applied to the problem
at hand in Section 4, while Section 5 deals with issues concerning the practical
implementation. Two simulation studies are presented in Section 6. Some
conclusions are stated in Section 7. The proofs appear in an Appendix.

2. DEFINITIONS AND BACKGROUND

2.1. Definition of the Model

Ž .The model under consideration is an AR p model with intercept and linear
time trend. The exposition of the model and the notation closely follow Andrews

Ž .and Chen 1994 with the exception that we do not require the innovations to be
i.i.d. and normal. The model can be written in an unobserved-components form
and in a regression form. In the former, it is given by

Ž . �1 Y ��*�� *t�Y for t�1, . . . , n ,t t

Y � �� Y � �� �Y � � ��� �� �Y � �� ,t t�1 1 t�1 p�1 t�1 t

� 4where � , t�p�1, . . . , n is a strictly stationary, martingale difference innova-t
� 4 �tion sequence and Y , t�1, . . . , n is the observed series. The variable �Yt t

� � Ž �denotes Y �Y . The parameter � satisfies �� �1, 1 ; when ��1, thet t�1
Ž .model is nonstationary. The parameters � , . . . , � are such that the AR1 p�1

� Ž . �model for Y is stationary when �� �1, 1 and the AR model for �Y ist t
� Ž � � .stationary when ��1. The starting values of Y 	that is, Y , . . . , Y 	aret 1 p

� �4 Ž . � �4taken such that Y is stationary when �� �1, 1 and �Y is stationaryt t
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� Žwhen ��1. The level of the �Y series is arbitrary when ��1 that is, whent
��1, the initial random variable Y � can be fixed or can have any distribution1

� � .provided the subsequent Y values are such that �Y is stationary .t t
Ž .The regression form of Model 1 is given by

Ž .2 Y ���� t�� Y �� �Y ��� �� �Y ��t t�1 1 t�1 p�1 t�p�1 t

for t�1, . . . , n ,
Ž . Ž . Ž .���* 1�� � ��� � ��� �� � * and ��� * 1�� ,1 p�1

Ž . � 4 Ž . Ž .where Y , . . . , Y and � , t�p�1, . . . , T are defined as in 1 . Model 2 is the1 p t
Ž .well-known augmented Dickey-Fuller regression form of the AR p model. The

Ž .corresponding standard AR p regression form is given by

Ž .3 Y ���� t�
 Y � ��� �
 Y �� .t 1 t�1 p t�p t

As is easy to see, the parameter � in the augmented Dickey-Fuller form equals
the sum of the AR coefficients in the standard form, that is, ��
 � ��� �
 .1 p

Ž .Moreover, it follows that � �� 
 � ��� �
 for j�1, . . . , p�1.j j�1 p
It should be pointed out that the time trend parameter � is necessarily equal

Ž . Ž .to 0 when ��1 in both models 2 and 3 . This desirable feature ensures that
Ž . Ž �E Y is a linear function of t for all �� �1, 1 . If ��0 were allowed whent

Ž .��1, E Y would be a quadratic function of t when ��1, so this discontinuityt
is naturally avoided.

2.2. The Parameter of Interest and its Inference Problems

The remainder of this paper will mainly focus on constructing confidence
intervals for the parameter � . The motivation is that it provides a useful scalar

� 4measure for the long-run persistence properties of the time series Y . Indeed,t
Ž . Ž .in AR p models, 1� 1�� equals the sum of the impulse response functions

over all time horizons, that is, the cumulative impulse response; see Andrews
Ž .and Chen 1994 . An alternative scalar measure that has been considered in the

Ž .literature is the largest root of the Ar p model, usually denoted by �. For
Ž .example, Stock 1991 derived asymptotic confidence intervals for � based on a

Ž .local-to-unity model and DeJong and Whiteman 1991a, b discussed Bayes
Ž .estimators of �. But, as was demonstrated in Andrews and Chen 1994 , the

persistence of two time series with the same value of � can be very different
depending on the values of the other roots. Therefore, we have decided to focus
on the parameter � instead. Note, however, that the methodology developed in
this paper to construct confidence intervals for � can equally well be employed
to construct confidence intervals for �.

As usual when inference for an unknown scalar parameter is desired, there
exist two main avenues, namely hypothesis tests and confidence intervals. In
accordance with many other authors, we feel that a confidence interval is much
more informative than a test, since it not only states whether a specific
parameter value is rejected or not by the observed data, but because it also
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provides the range of all parameter values consistent with the data. In particu-
lar, this allows judgment of the degree of uncertainty about point estimates of
the unknown parameter. So why is it that the main part of the unit root
literature has been concerned with hypothesis tests for � , with the null hypothe-
sis typically given by ��1? The reason for this preoccupation with the ‘wrong’
method is that hypothesis tests for � are by an order of magnitude easier to
construct than confidence intervals. While � can be consistently estimated by

Ž .applying OLS to the Dickey-Fuller form regression model 2 , the form of the
limiting distribution of the OLS estimator, as well as its rate of convergence
depend in a discontinuous way on whether or not � equals 1; see the proof of
Theorem 4.1 for details. Exactly this fact makes the construction of confidence
intervals difficult. Clearly, the standard asymptotic approach	using the quan-

Ž .tiles of the estimated limiting distribution	is rendered useless, since one has
to know whether � is equal to 1 or not in order to know the quantiles of which
distribution one should use. Moreover, the discontinuity of the form of the
limiting distribution, as a function of � , causes the standard, residual-based

Ž .bootstrap confidence intervals to fail; see Basawa et al. 1991 . On the other
hand, this dilemma does not affect hypothesis tests, since they only require
specification of the limiting distribution of the test statistic under the null
hypothesis. Despite the inherent difficulties in constructing confidence intervals
for the parameter � , some notable progress has been made recently.

Ž . Ž .Stock 1991 , focusing on the largest root � of the AR p model rather than
Ž .on the sum of the AR p parameters, made use of local-to-unity asymptotics. To

be more specific, he assumed that � shrinks towards one as the sample size
tends to infinity in the linear fashion ��1�c�n, for some constant c�0; note
that the theory also works when c�0. This model allows testing of the null
hypothesis c�c for any value c and thereby finding a confidence interval for0 0
c as the collection of c values that are not rejected by the test. Using0
the relation ��1�c�n, a confidence interval for � immediately ensues. The
downside of this approach may be considered its ‘breakdown’ problem. The
confidence intervals work well when � is ‘close’ to one, where ‘close’ depends on

Ž .the sample size. Judging from the simulation studies in Stock 1991 , the actual
Ž .coverage is nearly equal to the nominal one when ��1, that is, when c�0

but deteriorates as � moves away from 1, that is, as c and�or n decrease.
Ž .Andrews and Chen 1994 based confidence intervals on approximately me-

Ž .dian-unbiased estimation in AR p models. This is an extension of previous
Ž . Ž .work of Andrews 1993 , where exactly median-unbiased estimation in AR 1

Žmodels was developed. The idea is to compute or to simulate with arbitrary
. Ž .precision the sampling distribution of the OLS estimator � using model 2ˆn

Ž 2 . Ž .but with i.i.d. innovations from a N 0, � distribution. In the AR 1 case, this
distribution can be shown to depend on � only, but not on �, � , and � 2; see

Ž . Ž .Andrews 1993 . In the general AR p case, the distribution also depends on
Ž . Ž� , . . . , � , so it can only be approximated. Given that one can approxi-1 p�1

.mately compute�simulate the sampling distribution of � for any value of � ,ˆn 0
a confidence interval for � is obtained as the collection of all � values whose0
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sampling distribution is ‘‘consistent’’ with the observed value of � ; see Andrewsˆn
Ž .and Chen 1994 for details. The obvious criticism of this method is that one has

Ž .to specify the distribution of the innovations such as normal in order to
calculate�simulate the sampling distribution of � . However, the method seemsˆn
fairly robust against misspecification of this distribution, as appears from some

Ž .simulations in Andrews and Chen 1994 , as long as the innovations remain i.i.d.
It will be clear from the proof of Theorem 4.1 that the method in general does
not work when the innovations are dependent; specifically, see Remark 4.3.

As mentioned before, even when the innovations are assumed i.i.d., the
conventional, residual-based bootstrap confidence intervals fail when ��1; see

Ž . Ž .Basawa et al. 1991 . On the other hand, it was shown by Hansen 1999 that one
can construct ‘indirect’ bootstrap confidence intervals that are guaranteed to

Ž �work for any �� �1, 1 . The trick is to invert bootstrap tests, that is, to obtain
a confidence interval for � as the collection of all � values that are not0
rejected by a bootstrap test of the null hypothesis ��� . Hansen coined his0
method the ‘‘grid bootstrap’’ but it should be pointed out that the idea of
inverting bootstrap tests to construct confidence intervals is time honored; for

Ž .example, see DiCiccio and Romano 1988 . A shortcoming of this approach is
that it, too, is restricted to i.i.d. innovations.

The aim of this paper is to provide a new way for constructing confidence
Ž �intervals for � that works for any �� �1, 1 and allows for stationary, depen-

dent rather than i.i.d. innovations, though even the assumption of stationarity
could be relaxed; see Remark 3.2. The new approach is based on the subsam-

Ž .pling method of Politis and Romano 1994a . To make the paper self-contained,
the general method pertaining to univariate parameters will be briefly described;
broader methods, pertaining to multivariate or function-valued parameters can

Ž .be found in Politis, Romano, and Wolf 1999 . Then, some extensions of the
standard theory that are necessary for the case ��1 will be presented.

3. THE SUBSAMPLING METHOD

3.1. The Basic Method

Subsampling is a general tool that allows one to construct asymptotically valid
confidence intervals for unknown parameters under very weak assumptions.

� 4Suppose X , X , . . . is a sequence of vector-valued random variables defined1 2
on a common probability space. Denote the joint probability law governing the
infinite sequence by P. The goal is to construct a confidence interval for some

Ž . � 4real-valued parameter � P , on the basis of observing X , . . . , X . We1 n
ˆ ˆ Ž .assume the existence of a sensible estimator  � X , . . . , X .n n 1 n

For time series data, the gist of the subsampling method is to recompute the
� 4statistic of interest on smaller blocks of the observed sequence X , . . . , X .1 n

ˆ ˆ Ž .Define  � X , . . . , X , the estimator of  based on the subsampleb, t b t t�b�1
� 4X , . . . , X . In this notation, b is the block size and t is the starting indext t�b�1

ˆ ˆ Ž .of the block; note that  � . Let J P be the sampling distribution ofn, 1 n b
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ˆŽ .�  � , assuming that this distribution is independent of t. Here, � is anb b, t b
appropriate normalizing constant. Also, define the corresponding cumulative
distribution function:

ˆŽ .J x , P �Prob �  � �x .Ž .½ 5b P b b , t

ˆŽ . Ž .Note that with this notation J P is the sampling distribution of �  � , thatn n n
Ž .is, the sampling distribution of the properly normalized estimator based on the

entire sample. A major assumption that is needed to construct asymptotically
valid confidence intervals for  is the following.

Ž . Ž .ASSUMPTION 3.1: There exists a nondegenerate limiting law J P such that J Pn
Ž .con�erges weakly to J P .

This assumption states that the estimator, properly normalized, has a limiting
distribution. It is hard to conceive of any asymptotic theory free of such a
requirement. Also, it follows that the proper normalizing constant � is the onen
ensuring a limiting distribution. In regular cases, the limiting distribution is
normal and � �n1�2.n

Ž .The subsampling approximation to J x, P is defined byn

n�b�11 ˆ ˆŽ . Ž .4 L x � 1 �  � �x .Ý ½ 5ž /n , b b b , t nn�b�1 t�1

� 4The motivation behind the method is the following. For any t, X , . . . , Xt t�b�1
ˆŽ .is a ‘true’ subsample of size b. Hence, the exact distribution of �  � isb b, t

Ž .J P . If both b and n are large, then the empirical distribution of the n�b�1b
ˆŽ . Ž .values of �  � should serve as a good approximation to J P . Replacingb b, t n

ˆ ˆŽ . by  is permissible because �  � is of order � �� in probability and wen b n b n
will assume that � �� �0.b n

Ž . Ž .For J x, P to be approximated consistently by L x , both should have then n, b
Ž . Ž . Ž .same limit, namely J x, P . To ensure that L x converges to J x, P inn, b

probability, it is necessary that the information in the n�b�1 subsample
ˆ ˆŽ .statistics �  � tend to infinity with the sample size n. In previous theoryb b, t n

Ž Ž . Ž ..Politis and Romano 1994a ; Politis, Romano, and Wolf 1997 , this followed
� 4from a weak dependence condition on the underlying sequence Y , namely ant

Ž Ž ..�-mixing condition Rosenblatt 1956 .

� 4 sDEFINITION 3.1: Given a stationary random sequence X , let FF be thet t
� 4�-algebra generated by the segment X , X , . . . , X and define the corre-t t�1 s

sponding �-mixing sequence by

Ž . � Ž . Ž . Ž . �� h � sup P A	B �P A P B ,X
A , B

where A and B vary over the �-fields FF t and FF� , respectively. The sequence�� t�h
� 4 Ž .X is called �-mixing or strong mixing if � h �0 as h��.t X
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For our applications, it will be convenient to have a more general theory that
imposes a mixing condition on the subsample statistics only rather than on the

ˆŽ . Ž .underlying sequence. To this end, let Z ��  � and denote by � �n, b, t b b, t a, b
�the mixing coefficients corresponding to the sequence Z , t�1, . . . , n�n, b, t

4b�1 .
The following theorem shows how subsampling can be used to construct

asymptotically valid confidence intervals for  .

THEOREM 3.1: Assume Assumption 3.1 and that � �� �0, b�n�0 andb n
�1 n Ž .b�� as n��. Also assume that n Ý � h �0 as n��.h�1 n, b

Ž . Ž . Ž . Ž .i If x is a continuity point of J �, P , then L x �J x, P in probability.n, b
Ž . Ž . � Ž . Ž . �ii If J �, P is continuous, then sup L x �J x, P �0 in probability.x n, b
Ž . Ž . Ž . � Ž . 4iii For �� 0, 1 , let c 1�� � inf x : L x 
1�� . In other words,n, b n, b
Ž . Ž . Ž .c 1�� ser�es as an 1�� quantile of the subsampling distribution L � .n, b n, b

Ž . � Ž . 4 Ž .Correspondingly, define c 1��, P � inf x : J x, P 
1�� . If J �, P is continu-
Ž .ous at c 1��, P , then

ˆ Ž .Prob �  � �c 1�� �1�� as n��.Ž .½ 5P n n n , b

Thus, the asymptotic co�erage probability under P of the inter�al
�1ˆ Ž .I �  �� c 1�� , �.1 n n n , b

is the nominal le�el 1��.

REMARK 3.1: The sufficient conditions on the block size b are very weak. In
most applications, � �n�, for some constant ��0 and the conditions reduce ton

Ž .b�� and b�n�0 as n��. As shown in Politis and Romano 1994a , the
latter two conditions are in general not only sufficient but also necessary.

REMARK 3.2: The general theory presented here assumes that the subsample
ˆ� 4statistics are stationary, i.e., that the sequence  , t�1, . . . , n�b�1 isb, t

stationary. Note that this assumption could be relaxed to accommodate local
heteroskedasticity and�or changing distributions of the subsample statistics

Ž .along the lines of Politis, Romano, and Wolf 1997 .

Ž .The interval I in iii corresponds to a one-sided hybrid percentile interval in1
Ž Ž ..the bootstrap literature e.g., Hall 1992 . A two-sided equal-tailed confidence

interval can be obtained by forming the intersection of two one-sided intervals.
The two-sided analogue of I is1

�1 �1ˆ ˆŽ . Ž .I �  �� c 1���2 ,  �� c ��2 .2 n n n , b n n n , b

I is called equal-tailed because it has approximately equal probability in each2
tail:

ˆ �1 Ž .Prob � �� c 1���2� 4P n n n , b

ˆ �1 Ž .�Prob � �� c ��2 ���2,� 4P n n n , b
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Ž .where � denotes equality up to an additive o 1 term. As an alternative
approach, two-sided symmetric confidence intervals can be constructed. A

ˆ ˆ� �two-sided symmetric confidence interval is given by  �c,  �c , where c isˆ ˆ ˆn n
ˆ� � � 4 Ž .chosen so that Prob  � �c �� . Hall 1988 showed that symmetricˆP n

bootstrap confidence intervals enjoy enhanced coverage and, even in asymmetric
circumstances, can be shorter than equal-tailed confidence intervals. An ana-
logue for symmetric subsample confidence intervals, for the application of the

Ž .sample mean, was provided by Politis, Romano, and Wolf 1999, Chapter 10 . To
construct two-sided symmetric subsampling intervals in practice, one estimates
the two-sided distribution function

ˆŽ . � �J x , P �Prob �  � �x .� 4n , �� � P n n

Ž .The subsampling approximation to J x, P is defined byn, �� �

n�b�11 ˆ ˆŽ . Ž . � �5 L x � 1 �  � �x .½ 5Ýn , b , �� � b b , t nn�b�1 t�1

The asymptotic validity of two-sided symmetric subsampling intervals immedi-
ately follows from Theorem 3.1 and the continuous mapping theorem.

COROLLARY 3.1: Make the same assumptions as in Theorem 3.1. Denote by
Ž . � � Ž .J P the distribution of Q , where Q is a random �ariable with distribution J P .�� �

Ž . Ž . Ž . Ž .i If x is a continuity point of J �, P , then L x �J x, P in probabil-�� � n, b, �� � �� �

ity.
Ž . Ž . � Ž . Ž . �ii If J �, P is continuous, then sup L x �J x, P �0 in probabil-�� � x n, b, �� � �� �

ity.
Ž . Ž . Ž . � Ž . 4iii For �� 0, 1 , let c 1�� � inf x : L x 
1�� . Correspond-n, b, �� � n, b, �� �

Ž . � Ž . 4 Ž .ingly, define c 1��, P � inf x : J x, P 
1�� . If J �, P is continuous at�� � �� � �� �

Ž .c 1��, P , then�� �

ˆ� � Ž .Prob �  � �c 1�� �1�� as n��.½ 5P n n n , b , �� �

ˆ�Thus, the asymptotic co�erage probability under P of the inter�al I �  �S Y M n
�1 ˆ �1Ž . Ž .�� c 1�� ,  �� c 1�� is the nominal le�el 1��.n n, b, �� � n n n, b, �� �

The application of Theorem 3.1 or Corollary 3.1 requires knowledge of the
rate of convergence � . In standard cases, this is simply n1�2. In nonstandardn
cases, it may be another power of n; for example, see Subsection 4.3. As long as
the rate is known, nonstandard cases do not pose a problem.

On the other hand, for the parameter � it is well-known that the rate of
convergence of the OLS estimator � is given by n1�2 when ��1 and by nˆn
when ��1, respectively. Hence, the application of the basic subsampling
method would require the knowledge of whether the time series is trend-sta-
tionary or has a unit root! Fortunately, there is a way around this dilemma by
considering a studentized statistic, namely the usual t-statistic for � . Indeed,ˆn
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this statistic has a proper limiting distribution no matter what the value of � .
The next subsection will provide the necessary theory to apply the subsampling
idea in a studentized setting.

3.2. Subsampling Studentized Statistics
� ˆŽ .The focus is now on a studentized statistic �  � �� , where � �ˆ ˆn n n n

Ž .� Y , . . . , Y is some positive estimate of scale. Note that the appropriaten̂ 1 n
normalizing constant � � may be different from its analogue � in the nonstu-n n

� � ˆŽ . Ž .dentized case. Define J P to be the sampling distribution of �  � ��̂b b b, t b, t
based on the subsample Y , . . . , Y , assuming that this distribution is inde-t t�b�1
pendent of t. Also, define the corresponding cumulative distribution function

� � ˆŽ .J x , P �Prob �  � �� �x .ˆŽ .½ 5b P b b , t b , t

The subsampling method is modified to the studentized case in the obvious
Ž .way. Analogous to 4 , define

n�b�11
� � ˆ ˆŽ . Ž .6 L x � 1 �  � �� �x .ˆÝ ½ 5ž /n , b b b , t n b , tn�b�1 t�1

� Ž . �Ž .L x then represents the subsampling approximation to J x, P .n, b n
The essential assumption needed to construct asymptotically valid confidence

regions for  now becomes more involved than for the nonstudentized case.

�Ž . �Ž .ASSUMPTION 3.2: J P con�erges weakly to a nondegenerate limit law J P . Inn
� ˆ� 4 � 4 Žaddition, there exist positi�e sequences a and d such that � �a �d , a  �n n n n n n n

. Ž . con�erges weakly to a limit law V P , and d � con�erges weakly to a limit lawˆn n
Ž .W P without positi�e mass at zero.

THEOREM 3.2: Assume Assumption 3.2, a �a �0, � ��� � �0, b�n�0, andb n b n
� 4b�� as n��. Also assume that X is near epoch dependent of size �q, fort

� 4some q � 2, on a basis process V whose �-mixing coefficients satisfyt
�1 n Ž .1�2� rlim n Ý � h �� for some r�0.n�� h�1 V

Ž . �Ž . � Ž . �Ž .i If x is a continuity point of J �, P , then L x �J x, P in probability.n, b
Ž . �Ž . � � �Ž . �ii If J �, P is continuous, then sup L �J x, P �0 in probability.x n, b
Ž . Ž . � Ž . � � Ž . 4iii For �� 0, 1 , let c 1�� � inf x : L x 
1�� . Correspondingly,n, b n, b

�Ž . � �Ž . 4 �Ž . �Ždefine c 1��, P � inf x : J x, P 
1�� . If J �, P is continuous at c 1�
.�, P then

� ˆ � Ž .Prob �  � �� �c 1�� �1�� as n��.ˆŽ .½ 5P n n n n , b

� ˆ�Thus, the asymptotic co�erage probability under P of the inter�al I �  �1 n
Ž �.�1 � Ž . .� � c 1�� , � is the nominal le�el 1��.n̂ n n, b
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The issue of symmetric confidence intervals applies as well to studentized
� � ˆŽ . � �statistics. Let J P be the sampling distribution of �  � �� . Defineˆn, �� � n n n

n�b�11
� � ˆ ˆŽ . Ž . � �7 L x � 1 �  � �� �x .ˆÝ ½ 5n , b , �� � b b , t n b , tn�b�1 t�1

� Ž . � Ž .L x then represents the subsampling approximation to J x .n, b, �� � n, �� �

Theorem 3.2 and the continuous mapping theorem immediately imply the
following corollary.

COROLLARY 3.2: Make the same assumptions as in Theorem 3.2. Denote by
� Ž . � � �Ž .J P the distribution of U , where U is a random �ariable with distribution J P .�� �

Ž . � Ž . � Ž . � Ž .i If x is a continuity point of J �, P , then L x �J x, P in probabil-�� � n, b, �� � �� �

ity.
Ž . � Ž . � � � Ž . �ii If J �, P is continuous, then sup L �J x, P �0 in probability.�� � x n, b, �� � �� �

Ž . Ž . � Ž . � � Ž . 4iii For �� 0, 1 , let c 1�� � inf x : L x 
1�� . Correspond-n, b, �� � n, b, �� �
� Ž . � � Ž . 4 � Ž .ingly, define c 1��, P � inf x : J x, P 
1�� . If J �, P is continuous at�� � �� � �� �

� Ž .c 1��, P , then�� �

� ˆ �� � Ž .Prob �  � �� �c 1�� �1�� as n��.ˆ½ 5P n n n n , b , �� �

Thus, the asymptotic co�erage probability under P of the inter�al
�1 �1

� � � � �ˆ ˆŽ . Ž . Ž . Ž .I �  �� � c 1�� ,  �� � c 1��ˆ ˆS Y M n n n n , b , �� � n n n n , b , �� �

is the nominal le�el 1��.

4. SUBSAMPLING INFERENCE

4.1. Confidence Inter�als for � in the Full Model

We will now demonstrate that the subsampling approach of Subsection 3.2
can be applied to construct asymptotically valid confidence intervals for the
parameter � . Hence, � will play the role of the general parameter  of the
previous section.

The estimator � is the OLS estimator for � based on the Dickey-Fullerˆn
Ž .regression form 2 ; note that it would be numerically equivalent to compute �̂n

p Ž .as Ý 
 where the 
 are the OLS estimators of model 3 . Consequently,ˆ ˆi�1 i, n i, n
� 4� is the OLS estimator for � based on the block of data Y , . . . , Y .ˆb, t t t�b�1

Ž . Ž .Denote the corresponding OLS standard errors by SE � and SE � .ˆ ˆO LS n O LS b, t
1�2 Ž .For reasons to become apparent shortly, define � �n SE � and � �ˆ ˆ ˆn O LS n b, t

1�2 Ž .b SE � . To apply the methodology of Subsection 3.2, it is left to specifyˆO LS b, t
the appropriate normalizing constant � �. With the definition of � above, thisˆn n
turns out to be n1�2 no matter what the value of � ; see the proof of the
following theorem.

� �4Denote the mixing coefficients corresponding to sequence Y , which ist
stationary when ��1, by � and the mixing coefficients corresponding toY *

� �4sequence �Y , which is stationary when ��1, by � .t �Y *
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THEOREM 4.1: Assume that b�� and b�n�0 as n�� and that the station-
� 4 � � 4��ary sequence � is a martingale difference sequence with E � �� for somet t

��0.
�

� 2 � �Ž4�� .Ž . Ž .When ��1 assume Ý h�1 � h ��.h�1 Y *
�

�When ��1 assume that �Y is strong mixing.t
ˆ 1�2 � 1�2Ž . Ž . Ž .Let �� ,  �� , � �n SE � , and � �n . Then, conclusions i � iiiˆ ˆ ˆn n n O LS n n

of Theorem 3.2 and Corollary 3.2 hold.

Ž .REMARK 4.1: Note that unlike the conventional bootstrap, the subsampling
method can handle discontinuities of the limiting distribution of estimators as a
function of the underlying model parameters. The intuition is that the subsam-
pling approximation of the sampling distribution of an estimator is based on
subsample statistics computed from smaller blocks of the observed data. The
subsample statistics are therefore always generated from the true model. The
bootstrap, on the other hand, bases its approximation on pseudo statistics
computed from pseudo data according to a bootstrap distribution, which was
estimated from the observed time series. The bootstrap data come from a model
close to the truth, but not exactly the truth and this can cause the bootstrap to

Ž . Žfail. A case in point is the parameter � in AR p models, where the conven-
. Ž .tional bootstrap is inconsistent; see Basawa et al. 1991 . However, if one is

willing to assume i.i.d. residuals, it is possible to invert bootstrap tests for � to
Ž .construct asymptotically valid confidence intervals; see Hansen 1999 .

REMARK 4.2: We have presented a result that allows construction of asymp-
Ž �totically valid confidence intervals for any fixed �� �1, 1 . Strictly speaking,

this problem is already solved by a pretest method, at least when the residuals
Žare assumed i.i.d. we would like to thank an anonymous referee for pointing

.this out . The idea is to test for a unit root	using a significance level tending to
zero with the sample size	and to base the confidence interval on the normal
approximation, when the test rejects the null, or to set it equal to the singleton
unity, otherwise. However, it is well-known that this method has terrible finite
sample properties; this is one of the reasons for considering local-to-unity

Ž .asymptotics such as in Stock 1991 . The problem with the pretest method is
seen by the fact that it applies one of two inherently different types of
confidence intervals	normal interval or singleton unity	depending on the
outcome of a test with low power in finite samples. Hence, quite often the
‘‘false’’ interval will be used, resulting in poor coverage. On the other hand, the
subsampling method avoids this pitfall, since it employs one unique construction
that works both when ��1 and when ��1. The intuition that subsampling
should therefore lead to good finite sample properties is confirmed by some
simulation studies in Section 6.

REMARK 4.3: An important ‘‘byproduct’’ of the proof of Theorem 4.1 is the
fact that, when ��1, the t-statistic for � has a limiting normal distributionˆn
with mean 0 but with variance that can be arbitrarily different from 1 if the
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Ž .innovations are allowed to be a martingale difference sequence m.d.s. rather
than i.i.d.; note that m.d.s.-type innovations cannot be transformed to i.i.d.

Ž .innovations by increasing the order of the AR p model. This is an important
result, since inference for �	at least when it is known that ��1	is often
based on standard OLS output. However, this inference can be arbitrarily
misleading, unless the innovations are known to be i.i.d. In the same way, any
other inference method for � that assumes i.i.d. innovations	such as Andrews

Ž . Ž .and Chen 1994 or Hansen 1999 	is equally affected in the trend-stationary
case ��1. Subsampling, on the other hand, offers a safety net against innova-
tions that are a m.d.s. Note that when attention is restricted to the case ��1
the assumption of a m.d.s. could be relaxed to an uncorrelated innovation
sequence.

� 4REMARK 4.4: The assumption of stationarity of the innovation process � ist
�made to ensure the stationarity of the subsample statistics � , t�1, . . . , n�ˆb, t

4b�1 . However, by extending the general theory along the lines of Politis,
Ž .Romano, and Wolf 1997 , this assumption could be relaxed to allow for

heteroskedasticity and�or changing distributions of the � ; see Remark 3.2.t

4.2. Confidence Inter�als for � in Models without Time Trend

Ž .Sometimes it may be known a priori that � *�0 in model 1 . It is then
desirable to incorporate this knowledge in making inference on � . But, the

Ž .above restriction implies ��0 in model 2 . Therefore, the knowledge can be
incorporated through computing the restricted version of � by applying OLS toˆn

Ž .model 2 excluding the time trend. Denote the restricted version of � byˆn
��0 Ž ��0.� . Also, denote the corresponding OLS standard error by SE � .ˆ ˆn O LS n
The application of the subsampling method is analogous to the general model

and is based on computing the restricted version � ��0 on all the subsamples ofˆb
size b. The following corollary shows that the ensuing confidence intervals also
have asymptotically correct coverage probability.

COROLLARY 4.1: Make the same assumptions as in Theorem 4.1. In addition,
ˆ ��0 1�2 ��0Ž . Ž .assume that � *�0 in model 1 . Let �� ,  �� , � �n SE � ,ˆ ˆ ˆn n n O LS n

� 1�2 Ž . Ž .and � �n . Then, conclusions i � iii of Theorem 3.2 and Corollary 3.2 hold.n

REMARK 4.5: Consider the case where a restricted model holds, that is, where
the time trend is equal to zero. One can then base the estimation of � on the
restricted model or on the full model. The proof of the above corollary shows
that when ��1 the asymptotic distribution of � ��0 is equal to that of � .ˆ ˆn n
Therefore, there is no asymptotic efficiency loss for unnecessarily including the
time trend in the estimation process; it stands to reason, though, that finite
sample performance will be affected. On the other hand, when ��1 the
asymptotic distribution of � ��0 does differ from that of � . Therefore, evenˆ ˆn n
asymptotically it is beneficial to exclude the time trend from the estimation
procedure if it is equal to zero indeed.
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4.3. Confidence Inter�als for Other Parameters

The general results of Section 3 also allow for the construction of confidence
intervals for parameters of interest other than � and the details are straightfor-
ward and left to the reader.

To give only one example, consider confidence intervals for any regression
Ž .coefficient of model 3 in the trend-stationary case ��1. The common infer-

ence is based on the limiting standard normality of the t-statistic of the
corresponding OLS estimator. However, as the proof of Proposition A.1 in the
Appendix shows, if the innovations are a m.d.s., this inference is again mislead-
ing because the limiting variance of the t-statistic is then in general not equal to
1. On the other hand, subsampling is robust in this respect. Since the rate of
convergence is well-known for all parameters	given by n1�2 for the 
 and �i
and by n3�2 for � , respectively	the basic subsampling approach of Subsection
3.1 can be employed. Alternatively, the studentized approach of Subsection 3.2
is available as well.

5. CHOICE OF THE BLOCK SIZE

A practical issue in constructing subsampling intervals is the choice of the
block size b and it can be compared to the problem of choosing the bandwidth
for kernel methods. In this section, we propose two methods to select b in
practice. The first one is very general and can be used whenever subsampling
applies. The second one tries to exploit the semi-parametric structure of the

Ž .AR p model with linear time trend.

5.1. Minimizing Confidence Inter�al Volatility

This general approach is of a heuristic nature and we do not claim any
optimality properties. It is based on the fact that, in order for the subsampling
method to be consistent, the block size b needs to tend to infinity with the
sample size n, but at a smaller rate satisfying b�n�0. Indeed, for b too close

ˆ ˆto n all subsample statistics  will almost equal to  , resulting in theb, t n
subsampling distribution being too tight and in undercoverage of subsampling
confidence intervals. If b is too small, the intervals can undercover or overcover

Ž Ž ..depending on the state of nature e.g., Politis, Romano, and Wolf 1997 . This
leaves a number of b values in the ‘‘right range’’ where we would expect almost
correct results, at least for big sample sizes. This idea is exploited by computing
subsampling intervals for a number of block sizes b and then looking for a
region where the intervals do not change very much. Within this region, an
interval is then picked according to some arbitrary criterion.

This idea is illustrated in Figure 1. For two data sets, symmetric subsampling
intervals are computed for a wide range of block sizes b. The ‘‘right ranges’’
extend from b�10 to about b�130 for the first data set and from b�10 to
about b�80 for the second data set. The fact that for very large block sizes the
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confidence intervals will shrink towards the singleton � is a consequence of theˆn
1�2Žfact that the subsampling approximation of the sampling distribution of n �̂n

.�� �� collapses to a point mass at zero as the block size b tends to n.n̂
While this method can be carried out by ‘‘visual inspection,’’ it is desirable to

also have some automatic selection procedure, especially when simulation
studies are to be carried out. The procedure we propose is based on minimizing
a running standard deviation. Assume we compute subsampling intervals for
block sizes b in the range of b to b . The endpoints of the confidencesm al l b i g
intervals will change in a smooth fashion as b changes. A running standard
deviation applied to the endpoints then determines the volatility around a
specific b value. We choose the value of b with the smallest volatility. Here is a
more formal description of the algorithm.

Ž .FIGURE 1.	Confidence intervals as function of the block size b for two AR 1 data sets; the
x-axis shows the block size b while the y-axis shows the upper and lower confidence interval

Ž .endpoints. The data were generated according to model 1 with �*�� *�0, ��0.99, n�200, and
i.i.d. standard normal innovations. The intervals are nominal 95% two-sided symmetric intervals
based on the studentized approach of Subsection 3.2 and the block size ranges from b�10 to
b�180.
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Ž .ALGORITHM 5.1 Minimizing Confidence Inter�al Volatility :
1. For b�b to b�b compute a subsampling interval for  at thesm al l b i g

desired confidence level, resulting in endpoints I and I .b, l ow b, u p
2. For each b compute a volatility index VI as the standard deviation of theb

interval endpoints in a neighborhood of b. More specifically, for a small integer
� 4k, let VI be equal to the standard deviation of I , . . . , I plus theb b�k , l ow b�k , l ow

� 4standard deviation of I , . . . , I .b�k , u p b�k , u p
� �3. Pick the value b* with the smallest volatility index and report I , Ib*, l ow b*, u p

as the final confidence interval.

Some remarks concerning the implementation of this algorithm are in order.

REMARK 5.1: The range of b values, determined by b and b , which issm al l b i g
included in the minimization algorithm, is not of crucial importance. On the
other hand, to keep the computational cost down as well as to ‘‘enforce’’ the
requirements b�� and b�n�0 as n��, it is sensible to choose b �c n�

sm al l 1
and b �c n� for constants 0�c �c and 0���1. We recommend c �b i g 2 1 2 1
� � � �0.5, 1 , c � 2, 3 , and ��0.5.2

REMARK 5.2: The algorithm contains a model parameter k. Simulation stud-
ies have shown that the algorithm is very insensitive to its choice. We recom-
mend k�2 or k�3.

We now illustrate how the algorithm works with the help of two simulated
Ž .data sets. First, we generated a time series of size according to model 1 with

�*�� *�0, ��0.95, n�200, and i.i.d. standard normal innovations. The
range of b values was chosen as b �10 and b �40. The minimization ofsm al l b i g
the volatility in Step 2 was done using k�2. The results are shown at the top of
Figure 2. The left plot corresponds to equal-tailed confidence intervals while the
right plot corresponds to symmetric confidence intervals. The block sizes b
chosen by the algorithm are highlighted by a star. The resulting final confidence
intervals are included in the plots together with the point estimate � .ˆn

Ž .This exercise was repeated for another data set according to model 1 with
�*�� *�0, ��1, n�500, and i.i.d. standard normal innovations. The range
of b there was chosen as b �15 and b �60. The results are shown at thesm al l b i g
bottom of Figure 2.

The plots show that symmetric intervals are somewhat more stable, that is, the
endpoints change less as b is varied. This behavior is typical and was observed
for many other simulations as well.

5.2. Choosing b according to an Estimated Model

The idea underlying the second approach is that the optimal finite sample
block size for a specific nominal coverage probability 1�� could be calculated,
or at least simulated, if the true data generating mechanism was known. Using
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FIGURE 2.	Illustration of the Minimizing Confidence Interval Volatility Algorithm for two data
sets. The plots on the left correspond to equal-tailed confidence intervals, while the plots on the
right correspond to symmetric confidence intervals; both interval types are based on the studentized
approach of Subsection 3.2. The block sizes selected by the algorithm are highlighted by a star. The
final confidence intervals appear within the plots together with the point estimates.

the simulation method, one would generate a large number K , say, of time
Žseries according to the true mechanism with the same sample size as the

.observed series , construct subsampling intervals using a number of different
block sizes for each generate series, and compute the estimated coverage
probability for each block size as the fraction of the corresponding B intervals
that contain the true parameter. One then would use the block size whose
estimated coverage probability is closest to 1��. Of course, this method is not
feasible, since the true data generating process is generally unknown.

However, it is reasonable to hope that a feasible variant of this method will
still yield useful results in case the true data generating mechanism can be
consistently estimated. In that case one would use the above algorithm with the
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estimated process in place of the true process. For a completely nonparametric
application, it is in general not clear how to consistently estimate the underlying
mechanism. Our application, on the other hand, is of semi-parametric nature
depending on p�2 real-valued parameters, each of which can be consistently
estimated by OLS, say, and the probability mechanism of the white noise
innovation sequence, which can be consistently estimated by applying a time
series bootstrap to the estimated innovations, say the moving blocks bootstrap
Ž Ž . Ž .. ŽKunsch 1989 , Liu and Singh 1992 or the stationary bootstrap Politis and¨

Ž ..Romano 1994b . While it is well-known that this residual based bootstrap
yields inconsistent results when used directly, that is, to approximate the

Ž Ž ..sampling distribution of � e.g. Basawa et al. 1991 , it yields consistent resultsˆn
when used indirectly, that is, to estimate the optimal block size of the subsam-
pling method. This is a simple consequence of the fact that any method of
picking one of several ‘‘competing’’ block sizes, even coin-tossing, would yield
consistent results as long as the block sizes included in the ‘contest’ satisfy the
regularity conditions b�� and b�n�0 as n��. The point is that when using
an estimated model in picking the block size, one should expect better finite
sample properties as compared to coin tossing.

To provide a somewhat more formal description, introduce the notion of a
calibration function h: b��� that expresses the true coverage probability of a
nominal 1�� confidence interval as a function of the block size b that is used

Ž .in constructing the interval. If h � was known, one could construct an interval
Ž . Žwith perfect coverage by employing a block size b with h b �1�� provided

. Ž .that such a solution exists . While the true h � is unknown, we can approximate
it as previously suggested. The estimated data generating mechanism is based on

ˆŽ .OLS estimation of model 3 and the resulting estimates �, � , 
 , . . . , 
 ,ˆ ˆ ˆ1 p
� , . . . , � where the subscript n corresponding to estimation based on n dataˆ ˆp�1 n
points has been suppressed. To generate a corresponding ‘‘estimated’’ or pseudo
sequence, we start by applying a time series bootstrap to the estimated innova-
tions to obtain pseudo innovations �� , . . . , ��. The pseudo sequence is thenp�1 n
defined by the recursive relation

Ž . � Ž .8 Y �Y t�1, . . . , p ,t t

� ˆ � � � Ž .Y ���� t�
 Y � ��� 
 Y �� t�p�1, . . . , n .ˆ ˆ ˆt 1 t�1 p t�p t

The following then is the algorithm corresponding to the above calibration idea.
ˆIt is stated for a general parameter  and its corresponding estimate  . Ofn

course, we are mainly interested in � and � , but the algorithm equally appliesˆn
to any other parameters of interest; see Subsection 4.3.

Ž .ALGORITHM 5.2 Block Size Calibration :
� � Ž .1. Generate K pseudo sequences Y , . . . , Y , according to 8 . For each1, k n, k

sequence k�1, . . . , K :
1a. Compute a 1�� level confidence interval CI k , for a grid of block sizesbj

b �b �b .min j m a x



J. P. ROMANO AND M. WOLF1300

ˆ ˆ kŽ . � 42. For each b compute h b ��  �CI �K.j j n b jˆŽ .3. Find the value of b with h b closest to 1��.j j
4. Construct a confidence interval using the block size b .j

REMARK 5.3: Algorithm 5.2 is related to adjusting the nominal level of a
confidence interval so that its actual level better matches the desired level in

Ž .finite samples, an idea that dates back to Loh 1987 . However, to this end the
ˆŽ .standardized sampling distribution of  under the estimated mechanism mustn

ˆŽ .be a consistent approximation of the standardized sampling distribution of n
under the true distribution for the resulting confidence intervals to have
asymptotically correct coverage probability. As mentioned before, this condition
is violated in our application.

Ž .REMARK 5.4: It is clear that the grid of subsampling block sizes to be used in
Algorithm 5.2 should be as fine as possible within the limitations b �� andmin
b �n�0 as n��. Moreover, b and b play roles analogous to bm a x min m a x sm al l
and b in Algorithm 5.1 and can be picked in a similar fashion. However, atbi g
least for simulation studies, including every integer number between b andmin
b might be computationally too expensive, in which case an appropriatem a x
subset can be selected.

REMARK 5.5: As far as the choice of the time series bootstrap is concerned,
we prefer the stationary bootstrap, since it is well-known to be less sensitive to

Ž .the choice of the bootstrap block size than the moving blocks bootstrap and
also because it does not suffer from the ‘‘end effects’’ of the latter; see Politis

Ž .and Romano 1994b .

6. SMALL SAMPLE PERFORMANCE

The purpose of this section is to examine the small sample performance of the
subsampling confidence intervals via some simulation studies. Performance is
mainly measured by coverage probability of two-sided nominal 95% intervals for
the parameter � . We also look at median length. The approach of Subsection
3.2, subsampling a studentized statistic, is employed, using both equal-tailed and

Ž .symmetric intervals denoted by indices ET and SYM . Moreover, the two
Žmethods of Section 5 for choosing the block size are employed denoted by

.indices MV and CA standing for Minimum Volatility and CAlibration . The
four resulting interval types are labeled Sub , Sub , Sub , andM V , ET M V , S Y M C A, ET
Sub . For comparison, the normal method, which bases the confidenceC A, S Y M
interval on asymptotic standard normality of the t-statistic for � , and theˆn

Ž .method of Stock 1991 are also included. These two intervals are labeled CLT
and Stock, respectively.

Some brief remarks concerning Stock’s intervals are in order. First, his
Ž .intervals are for the largest root � instead of the sum of the AR p coefficients

� . These two parameters only coincide when p�1. Hence, Stock’s intervals are
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Ž .only included in the simulations for the AR 1 case. Next, Table A.1 of Stock
Ž .1991 allows one, up to some minor interpolation, to check whether a particular
value of � is contained in the confidence intervals in a way that can be
automated for simulations. However, the computation of the actual

Žintervals	and thus their length	requires a graphical device Figures 1 and 2
Ž ..of Stock 1991 the automization of which seems very cumbersome. For this

reason, only coverage, but not median length, is reported.

Ž .6.1. AR 1 Model

Ž .We start with the most simple model, namely AR 1 . The data are generated
Ž .according to model 1 with �*�� *�0 and � one of the following: 1, 0.99,

0.95, 0.9, or 0.6; note that the value ��0.6 is too far away from 1 to be handled
by Stock’s intervals. The statistic � is the OLS estimator 
 based on modelˆ ˆn 1, n
Ž .3 . The innovations � are either i.i.d. standard normal or of the form � �t t
Z Z with the Z i.i.d. standard normal. In the latter case, the innovations aret t�1 t
a martingale difference sequence but dependent. The sample sizes considered
are n�120 and n�240. The range of b values used for Algorithm 5.1 is
determined by b �5 and b �25 when n�120 and by b �10 andsm al l b i g sm al l
b �40 when n�240, respectively. The grid of block sizes b for Algorithm 5.2bi g j
is 5, 8, 12, 18, 26, 40 when n�120 and 10, 15, 20, 30, 40, 60 when n�240. The
reason for not employing an equally spaced grid is that some prior simulations

ˆŽ . Ž .with finer grids showed that the estimated calibration function h � changes
more rapidly for smaller block sizes.

The results are presented in Table I. It is seen that equal-tailed subsampling
intervals perform worse than symmetric intervals in general. The two methods
for choosing the block size are comparable. Next, one notes the well-known fact
that the CLT approach does not work when ��1 and that it works poorly when
� is close to 1. Stock’s intervals, on the other hand, have rather accurate
coverage when they apply. If dependent innovations of the form � �Z Z aret t t�1
employed, the CLT breaks down. For ��0.6, the coverage drops to about 80%.
In fact it can be shown that, for innovations of the form � �Z Z ��� Z , thet t t�1 t�k
coverage of CLT intervals will tend to 0 as k tends to infinity; see Romano

Ž .and Thombs 1996 . Also, it appears that Stock’s intervals are somewhat less
Žrobust against dependence as compared to subsampling intervals especially for

.n�120 .
The difference in empirical coverage between equal-tailed and symmetric

subsampling intervals is noteworthy. A possible explanation is that the equal-
tailed interval is based on estimating a 2.5% and a 97.5% quantile while the

Ž .symmetric interval is based on estimating a single 95% quantile, and it is
conceivable that the latter can be estimated with higher precision. One way to
examine this issue would be to redo the above table for a number of different
confidence levels, such as 90% and 80%. Instead, we opt for considering all
levels ‘‘simultaneously’’ by exploiting the duality between confidence intervals
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TABLE I

ESTIMATED COVERAGE PROBABILITIES OF VARIOUS NOMINAL 95% CONFIDENCE INTERVALS

BASED ON 1000 REPLICATIONS FOR EACH SCENARIO

Ž .AR 1 Model, n � 120, � � Zt t
� Sub Sub Sub Sub CLT StockM V , ET M V , S Y M C A , ET C A , S Y M

1 0.90 0.91 0.95 0.90 0.38 0.96
0.99 0.90 0.93 0.95 0.92 0.51 0.95
0.95 0.83 0.95 0.84 0.94 0.78 0.94
0.9 0.82 0.96 0.71 0.95 0.84 0.94
0.6 0.77 0.95 0.66 0.95 0.93 NA

Ž .AR 1 Model, n � 240, � � Zt t
� Sub Sub Sub Sub CLT StockM V , ET M V , S Y M C A , ET C A , S Y M

1 0.91 0.92 0.88 0.91 0.37 0.96
0.99 0.91 0.94 0.85 0.93 0.62 0.94
0.95 0.80 0.96 0.78 0.95 0.83 0.95
0.9 0.75 0.96 0.73 0.96 0.88 0.97
0.6 0.84 0.96 0.79 0.95 0.95 NA

Ž .AR 1 Model, n � 120, � � Z Zt t t�1
� Sub Sub Sub Sub CLT StockM V , ET M V , S Y M C A , ET C A , S Y M

1 0.95 0.94 0.96 0.94 0.36 0.92
0.99 0.95 0.96 0.97 0.96 0.51 0.93
0.95 0.89 0.95 0.94 0.97 0.75 0.91
0.9 0.82 0.96 0.87 0.96 0.81 0.91
0.6 0.75 0.94 0.78 0.95 0.81 NA

Ž .AR 1 Model, n � 240, � � Z Zt t t�1

� Sub Sub Sub Sub CLT StockM V , ET M V , S Y M C A , ET C A , S Y M

1 0.94 0.93 0.97 0.94 0.36 0.93
0.99 0.94 0.97 0.95 0.96 0.63 0.94
0.95 0.81 0.97 0.84 0.97 0.83 0.93
0.9 0.78 0.96 0.78 0.96 0.85 0.95
0.6 0.74 0.93 0.72 0.94 0.80 NA

Ž .The data were generated according to model 1 with �* � � * � 0 and p � 1. The innovations are either i.i.d.
Ž .standard normal � � Z or of the form � � Z Z . All intervals were obtained by including a time trend int t t t t�1

the fitted model.

and hypothesis tests to calculate corresponding P-values. Hence, the P-value is
given by 1 minus the confidence level of the interval that ‘‘barely excludes’’ a
hypothesized value � . Fortunately, this number can be directly computed. For0
example, the symmetric studentized P-value is given by

� 1�2 Ž . 1�2 Ž . 4� b � �� �� 
n � �� ��ˆ ˆ ˆ ˆ ˆb , t n b , t n 0 n
� Ž .P-value � �n , b 0 n�b�1

and the remaining P-values are computed analogously. It is well known that if
� is equal to the true parameter � , then the distribution of a P-value0

Žcorresponding to an exact hypothesis test or, equivalently, to an exact confi-
. � �dence interval is given by Uniform 0, 1 , provided that this distribution is

Žcontinuous. Hence, one can judge the accuracy of hypothesis test or the
.corresponding confidence intervals by a Q-Q-plot of a large number of simu-
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Ž . � �lated P-values for the true parameter against the Uniform 0, 1 distribution.
We do this in Figure 3 for the two subsampling interval types and the CLT

Ž .interval; Stock’s method is excluded, since the tables in Stock 1991 do not
allow computation of P-values. To generate the data, we use i.i.d. standard
normal innovations, n�240, and the three values ��1, 0.95, and 0.6. A fixed
block size of b�25 is used for all subsampling intervals; this is somewhat
suboptimal, since the best fixed block size in general depends on the approach

Žused as well as on the true underlying parameter and possibly even on the
.nominal level of the interval .

The plots show that the two subsampling interval types are qualitatively rather
different. The equal-tailed studentized intervals work well when ��1 but
generally undercover when ��1. On the other hand, symmetric studentized
intervals are relatively accurate at large confidence levels throughout, but at

Ž .smaller confidence level 70%, say undercover when ��1 and overcover when
��1. In addition, once more we observe the well-known fact that the CLT
intervals work well for � far away from 1, but undercover increasingly as � gets
closer to one.

As discussed in Subsection 4.2, when it is known a priori that � *�0 in model
Ž .1 this knowledge should and can be incorporated in constructing confidence
intervals for � . It is of interest to compare the gain in efficiency, that is, in
interval length in those instances. We do this by computing median length of the
1000 confidence intervals in each scenario for the two methods of using the full

Žmodel and of using the restricted model without time trend the latter is
.appropriate, since we employ �*�� *�0 when generating the data . Of course,

it is also of interest to compare the median length of the various interval types.
The results are presented in Table II. The gain from excluding the time trend
when it is indeed not needed is substantial when � is equal to or close to 1, but
it generally decreases as � gets further away from 1. This is not surprising
because asymptotically there is a gain in rightfully omitting the time trend from
the model when ��1 but there is none when ��1; see Remark 4.5. Moreover,
symmetric studentized subsampling intervals are about as good as the CLT
intervals when both have approximately correct coverage, that is, when ��0.6.
Note that we also computed empirical coverage for confidence intervals con-
structed without time trend. The results were similar to those of Table I and
thus are not reported.

Ž .6.2. AR 2 Model

Ž .The data generating mechanism is now model 1 , with p�2, � one of the
values 1, 0.99, 0.95, 0.9, and 0.6, and � equal to either 0.4 or to �0.4. The1
statistic � is computed as 
 �
 where the OLS estimation is based onˆ ˆ ˆn 1, n 2, n

Ž .model 3 again. Everything else is as in Subsection 6.1. Tables III and IV
provide empirical coverage for nominal 95% confidence intervals. The results

Ž .are qualitatively comparable to the AR 1 case.
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� �FIGURE 3.	Q-Q-plots of 1000 empirical P-values against Uniform 0, 1 . The data were generated
Ž .according to model 1 with �*�� *�0, n�240, and i.i.d. standard normal innovations. The three

values for � , from top to bottom, are 1, 0.95, and 0.6. A straight line through the origin with slope 1
is included in all plots.
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TABLE II

MEDIAN LENGTH OF VARIOUS NOMINAL 95% CONFIDENCE INTERVALS

BASED ON 1000 REPLICATIONS FOR EACH SCENARIO

Ž .AR 1 Model including Time Trend, n � 120, � � Zt t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.12 0.24 0.24 0.24 0.14
0.99 0.13 0.23 0.24 0.23 0.14
0.95 0.14 0.26 0.22 0.25 0.17
0.9 0.17 0.29 0.13 0.28 0.20
0.6 0.26 0.36 0.18 0.37 0.31

Ž .AR 1 Model excluding Time Trend, n � 120, � � Zt t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.09 0.13 0.20 0.21 0.09
0.99 0.10 0.15 0.21 0.22 0.11
0.95 0.13 0.19 0.28 0.23 0.14
0.9 0.16 0.22 0.34 0.30 0.18
0.6 0.25 0.31 0.28 0.35 0.30

Ž .AR 1 Model including Time Trend, n � 240, � � Zt t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.06 0.11 0.05 0.12 0.07
0.99 0.06 0.12 0.06 0.12 0.07
0.95 0.08 0.15 0.07 0.15 0.10
0.9 0.10 0.18 0.09 0.17 0.12
0.6 0.18 0.23 0.15 0.24 0.21

Ž .AR 1 Model excluding Time Trend, n � 240, � � Zt t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.04 0.06 0.04 0.07 0.05
0.99 0.05 0.08 0.05 0.09 0.06
0.95 0.08 0.11 0.07 0.12 0.09
0.9 0.10 0.14 0.09 0.15 0.12
0.6 0.18 0.21 0.17 0.23 0.21

Ž .The data were generated according to model 1 with �* � � * � 0 and p � 1. The innovations
are i.i.d. standard normal.

7. SUMMARY

In this paper, we proposed a new way of constructing confidence intervals in
Ž .AR p models with linear time trend. While the focus was on the parameter � ,

Ž .the sum of the AR p coefficients, the method is general enough to cover
essentially any other parameter of interest as well. The crux of the new
approach is to recompute an estimator on smaller blocks of the observed data to
approximate the sampling distribution of the estimator computed from the
entire sequence. This is the general idea of the subsampling method of Politis

Ž .and Romano 1994a .
The subsampling method overcomes the notorious difficulty in the construc-

tion of confidence intervals for � , namely that the limiting distribution, as well
as the rate of convergence, of the OLS estimator � depend in a discontinuousˆn
way upon whether or not ��1. Some extensions of previous theory were
necessary to handle the unknown convergence rate. The approach suggested is
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TABLE III

ESTIMATED COVERAGE PROBABILITIES OF VARIOUS NOMINAL 95% CONFIDENCE

INTERVALS BASED ON 1000 REPLICATIONS FOR EACH SCENARIO

Ž .AR 2 Model, � � 0.4, n � 120, � � Z1 t t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.93 0.92 0.97 0.91 0.37
0.99 0.92 0.95 0.96 0.93 0.58
0.95 0.89 0.96 0.90 0.94 0.85
0.9 0.82 0.97 0.85 0.95 0.89
0.6 0.80 0.96 0.82 0.96 0.94

Ž .AR 2 Model, � � 0.4, n � 240, � � Z1 t t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.91 0.92 0.94 0.91 0.37
0.99 0.90 0.94 0.89 0.93 0.57
0.95 0.81 0.96 0.80 0.95 0.80
0.9 0.78 0.96 0.80 0.95 0.87
0.6 0.79 0.97 0.78 0.96 0.94

Ž .AR 2 Model, � � 0.4, n � 120, � � Z Z1 t t t�1
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.95 0.92 0.97 0.95 0.37
0.99 0.94 0.95 0.97 0.95 0.60
0.95 0.89 0.97 0.93 0.96 0.84
0.9 0.86 0.97 0.87 0.96 0.89
0.6 0.80 0.96 0.79 0.95 0.91

Ž .AR 2 Model, � � 0.4, n � 240, � � Z Z1 t t t�1
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.94 0.93 0.96 0.94 0.39
0.99 0.93 0.96 0.90 0.95 0.68
0.95 0.87 0.96 0.84 0.96 0.88
0.9 0.85 0.95 0.78 0.95 0.89
0.6 0.82 0.94 0.70 0.96 0.91

Ž .The data were generated according to model 1 with �* � � * � 0 and p � 2. The innovations
Ž .are either i.i.d. standard normal � � Z or of the form � � Z Z . All intervals were obtainedt t t t t�1

by including a time trend in the fitted model.

based on subsampling the t-statistic for � , which has a nondegenerate limitingˆn
distribution no matter what the value of � . The theory is flexible enough to

Ž .allow innovations of the AR p series to be a stationary martingale difference
Žsequence rather than an i.i.d. sequence but even the assumption of stationarity

.could be relaxed . This flexibility was seen to be of practical relevance, since in
the trend-stationary case ��1, the standard inference on �	but as well on
other parameters of interest	can be arbitrarily misleading when the innova-
tions are not independent.

Finite sample performance was examined through some simulation studies
and was seen to be satisfactory, at least when symmetric subsampling intervals
are used. The results were most favorable in the case of dependent innovations,

Ž .since in this case the CLT intervals break down even for � far away from 1
Ž .and Stock’s 1991 intervals, which are asymptotically valid as well, seem some-

what more affected than subsampling intervals in small samples.
Finally, it should be pointed out that subsampling is a very general and

Ž .powerful technique and not restricted to inference in AR p models. Basically,
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TABLE IV

ESTIMATED COVERAGE PROBABILITIES OF VARIOUS NOMINAL 95% CONFIDENCE

INTERVALS BASED ON 1000 REPLICATIONS FOR EACH SCENARIO.

Ž .AR 2 Model, � � �0.4, n � 120, � � Z1 t t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.93 0.91 0.97 0.94 0.40
0.99 0.92 0.93 0.96 0.96 0.50
0.95 0.90 0.95 0.90 0.97 0.71
0.9 0.81 0.95 0.85 0.97 0.82
0.6 0.77 0.96 0.82 0.95 0.91

Ž .AR 2 Model, � � �0.4, n � 240, � � Z1 t t
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.94 0.93 0.97 0.93 0.37
0.99 0.90 0.95 0.93 0.94 0.71
0.95 0.84 0.97 0.81 0.95 0.89
0.9 0.78 0.96 0.79 0.97 0.92
0.6 0.84 0.95 0.82 0.96 0.95

Ž .AR 2 Model, � � � .04, n � 120, � � Z Z1 t t t�1
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.93 0.92 0.97 0.93 0.40
0.99 0.92 0.93 0.93 0.94 0.50
0.95 0.87 0.95 0.87 0.95 0.71
0.9 0.82 0.95 0.83 0.95 0.78
0.6 0.76 0.93 0.78 0.94 0.86

Ž .AR 2 Model, � � �0.4, n � 240, � � Z Z1 t t t�1
� Sub Sub Sub Sub CLTM V , ET M V , S Y M C A , ET C A , S Y M

1 0.93 0.93 0.98 0.94 0.38
0.99 0.91 0.94 0.91 0.95 0.56
0.95 0.80 0.96 0.83 0.96 0.82
0.9 0.75 0.96 0.79 0.96 0.86
0.6 0.76 0.95 0.73 0.95 0.87

Ž .The data were generated according to model 1 with �* � � * � 0 and p � 2. The innovations
Ž .are either i.i.d. standard normal � � Z or of the form � � Z Z . All intervals were obtainedt t t t t�1

by including a time trend in the fitted model.

subsampling can be applied beneficially whenever the limiting distribution of an
estimator depends on underlying model parameters in a complicated and maybe
even discontinuous way; one of many examples is inference in models with

Ž .integrated or nearly integrated regressors as discussed in Elliot and Stock 1994
Ž .and Elliot 1998 . The main condition for subsampling to work is that the

estimator, properly normalized, has a nondegenerate limiting distribution and
that the subsample statistics are weakly dependent in a sufficient way.
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APPENDIX: PROOFS OF TECHNICAL RESULTS

PROOF OF THEOREM 3.1: Without loss of generality, we may think of b as a function of n.
Therefore, the notational burden can be reduced by omitting the b subscripts. For example,

Ž . Ž . Ž . Ž .L � �L � , c � �c � , etc. To simplify the notation further, introduce q�q �n�b�1.n n, b n n, b n
Let

q1
ˆŽ . � Ž . 4U x � 1 �  � �x .Ýn b b , tq t�1

Ž . Ž . Ž .To prove i , it suffices to show that U x converges in probability to J x, P for every continuityn
Ž .point x of J �, P . This can be seen by noting that

q1
ˆ ˆŽ . � Ž . Ž . 4L x � 1 �  � �� � �x ,Ýn b b , t b nq t�1

so that for every ��0,

Ž . � 4 Ž . � 4 Ž .U x�� 1 E �L x 1 E �U x�� ,n n n n n

ˆ� 4 � � � 4where 1 E is the indicator of the event E � � � �� . But, the event E has probabilityn n b n n
tending to one. So, with probability tending to one,

Ž . Ž . Ž .U x�� �L x �U x�� .n n n

Ž . Ž . Ž .Thus, if x�� and x�� are continuity points of J �, P , then U x�� �J x�� , P in probabilityn
implies

Ž . Ž . Ž .J x�� , P ���L x �J x�� , P ��n

Ž .with probability tending to one. Now, let ��0 such that x�� are continuity points of J �, P to
Ž . Ž .conclude that L x �J x, P in probability as well. Therefore, we may restrict our attention ton

Ž .U x .n
Ž Ž .. Ž . Ž . Ž Ž ..Since E U x �J x , the proof of i reduces by Assumption 3.1 to showing that var U xn b n

tends to zero. Define

ˆ� Ž . 4 Ž .I �1 �  � �x t�1, . . . , q ,b , t b b , t

q�h1
Ž .s � cov I , I .Ýq , h b , t b , t�hq t�1

Due to a standard mixing inequality for bounded random variables,

� Ž . � Ž .cov I , I �4� hb , t b , t�h n , b

and therefore,

q�11
Ž Ž ..var U x � s �2 sÝn q , 0 q , hž /q h�1

q�11
Ž .� 1�2 � h �0.Ý n , bž /q h�1

Ž .This completes the proof of i .
Ž . � 4 � 4To prove ii , given any subsequence n , one can extract a further subsequence n such thatk k j

Ž . Ž .L x �J x, P for all x in some countable dense set of the real line, almost surely. It then followsnk j
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Ž . Ž . Ž .that, on a set of probability one, L x tends weakly to J x, P . By the continuity of J �, P thisnk j
convergence is uniform by Polya’s theorem.

Ž . Ž . Ž .The proof of iii is very similar to the proof of Theorem 1 of Beran 1984 given i and is thus
omitted. Q.E.D.

Ž .PROOF OF THEOREM 3.2: Again, let q�n�b�1. To prove i , note that

q1
� � ˆ ˆŽ . Ž . � Ž . 49 L x � 1 �  � �� �xˆÝn , b b b , t n b , tq t�1

q1
� �ˆ ˆ� Ž . Ž . 4� 1 �  � �� �x��  � �� .ˆ ˆÝ b b , t b , t b n b , tq t�1

� ˆŽ .We want to show that the terms �  � �� are negligible in the last equation. To this end, forˆb n b, t
u�0, let

q1
� ˆŽ . � Ž . 4R u � 1 �  � �� �uˆÝn b n b , tq t�1

q1
ˆ� Ž . 4� 1 d � 
a  � �u .ˆÝ b b , t b nq t�1

� 4 � 4Here, we have used the assumption that both the sequences a and d are positive. Byn n
Ž .Assumption 3.2 and a �a �0, we have for any ��0 that a  � �� with probability tendingb n b n

to one. Therefore, with probability tending to one

q1
Ž . � 4R u 
 1 d � 
��u .ˆÝn b b , tq t�1

We need to consider the case u�0 only, as the scale estimates � are positive. Due to the usualˆb, t
Ž . q � 4subsampling argument of Theorem 3.1, 1�q Ý 1 d � 
��u converges in probability toˆt�1 b b t a

Ž . Ž .1�W ��u, P , as long as ��u is a continuity point of W P ; note that we do not require d �d �0b n
Ž .here since the subsample statistics are of the form d � rather than d � �� . Hence, we canˆ ˆ ˆb b, t b b, t n

Ž .make sure that R u is arbitrarily close to one by choosing � small enough; recall that we assumen
Ž . Ž .W P does not have positive mass at zero. In other words, for any u�0, we have R u �1 inn

Ž .probability. Let us now rewrite 9 in the following way:

q1
� � �ˆ ˆŽ . � Ž . Ž . 4L x � 1 �  � �� �x��  � ��ˆ ˆÝn , b b b , t b , t b n b , tq t�1

q1
� ˆ� Ž . 4 Ž Ž ..� 1 �  � �� �x�u � 1�R u ,ˆÝ b b , t b , t nq t�1

Ž .for any positive number u. The last inequality follows because the t th term in 9 is less than or
equal to

� ˆ � ˆ� Ž . 4 � Ž . 41 �  � �� �x�u �1 �  � �� �u ;ˆ ˆb b , t b , t b n b , t

Ž Ž ..then, sum over all t. We have seen that 1�R u �0 in probability and hence by a standardn
� Ž . �Ž .subsampling argument again we get, for any ��0, L x �J x�u, P �� with probabilityn, b

�Ž .tending to one, provided that x�u is a continuity point of J �, P . Letting u tend to zero shows
� Ž . �Ž . � Ž .that L x �J x, P �� with probability tending to one. A similar argument leads to L x 
n, b n, b

�Ž . � �Ž .J x, P �� with probability tending to one. Since � is arbitrary, this implies L �J x, P inn, b
Ž .probability, and thus we have proved i .
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Ž . Ž . Ž . Ž . Ž . Ž .The proofs of ii and iii given i are very similar to the proofs of ii and iii given i in
Theorem 3.1 and thus are omitted. Q.E.D.

PROOF OF THEOREM 4.1: The subsampling theory presented in Section 3 assumes that the
Ž . Ž .distributions of � �� and of � �� �� are independent of t. But this follows immediatelyˆ ˆ ˆb, t b, t b, t

Ž . � 4by Appendix A.1 of Andrews and Chen 1994 given the stationarity of the innovation sequence � .t
Therefore, we are left to show that the conditions of Theorem 3.2 are satisfied, no matter what

the value of � . In the proof, we will distinguish the two cases ��1 and ��1.

Case ��1:

Ž .By the arguments of Appendix A.1 of Andrews and Chen 1994 again, in deriving the asymptotic
Ž .distributions of � and � �� �� , we may assume without loss of generality that �*�� *�0 inˆ ˆ ˆn n n

Ž . �model 1 . Hence, for the trend-stationary case ��1, we may assume that Y �Y and so that Y ist t t
a stationary, mean-zero sequence of random variables.

Ž .Next, note that � �
 �
 � ��� �
 , where 
 is the OLS estimator of 
 in model 3 .ˆ ˆ ˆ ˆ ˆn 1, n 2, n p, n i, n i
Ž .Denote 
� 
 , . . . , 
 �. As will be shown in Proposition A.1, the asymptotics of 
 and the OLSˆ1 p n

estimator of its covariance matrix are given by

LL1�2 �1 �1Ž . Ž . Ž .10 n 
 �
 � N 0, � ��n̂

and

� PP 2 �1Ž . Ž .11 nCov 
 � � � .n̂ �

LL2 2Ž .Here, � and � are two symmetric p�p matrices of full rank, � �E � , � denotes conver-� t
PP Ž .gence in distribution, and � denotes convergence in probability. This implies, letting 1� 1, . . . , 1 �,

LL1�2 �1 �1Ž . Ž . Ž .12 n � �� � N 0, 1� �� 1� ,ˆn

PP2 2 �1Ž .13 � � � 1� 1�,n̂ �

and

1��1���11�LL1�2Ž . Ž .14 n � �� �� � N 0, .ˆ ˆn n 2 �1ž /� 1� 1��

Moreover, as follows from Proposition A.1, in the special case of i.i.d innovations � , we havet
��� 2� and the asymptotics simplify to�

LL1�2 2 �1Ž . Ž .n � �� � N 0, � 1� 1� ,ˆn �

PP2 2 �1� � � 1� 1�,n̂ �

and

LL1�2 Ž . Ž .n � �� �� � N 0, 1 .ˆ ˆn n

It is, however, important to note that the t-statistic for � does in general not have a limitingˆn
standard normal distribution. Indeed, the limiting variance can have any arbitrary value as deter-

Ž .mined by the the dependence structure of the innovations � ; see Romano and Thombs 1996 fort
Žsome explicit examples. Therefore, the standard inference on � in the trend-stationary case even if

.� is close to 0 can be very misleading. On the other hand, subsampling inference on � is not
affected by uncorrelated rather than i.i.d. innovations, as will be demonstrated now.
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Ž . Ž .To check the conditions of Theorem 3.2, first note that, due to 12 � 14 , Assumption 3.2 holds
� 1�2 1�2 Ž .with � �n , a �n , and d �1. Next, both � and � are functions of Y , . . . , Y andˆ ˆn n n b, t b, t t t�b�1

� Ž . � Ž .4 �thus � h �min 1, � h�b ; recall that for the proof we may assume Y �Y . This implies then, b Y * t t
�1 n Ž . Ž .mixing condition n Ý � h �0 as n��, since � h �0 as h�� as well as b�n�0 ash� 1 n, b Y *

n��.

Case ��1:

Ž .As shown in Stock 1991 ,

�1
LL 1 12t tŽ . Ž . Ž . Ž . Ž . Ž .15 n � �1 � b 1 W s ds W s dW s ,ˆ H Hn ž /0 0

�1 �2
LL 1 21�2 tŽ . Ž . Ž .16 n � � b 1 W s ds , andˆ Hn ž /0

�1 �2
LL 1 121�2 t tŽ . Ž . Ž . Ž . Ž .17 n � �1 �� � W s ds W s dW s .ˆ ˆ H Hn n ž /0 0

Ž . p�1 Ž .Here, b 1 �1�Ý � , W s is a standard Brownian Motion, andi�1 i

1 1t Ž . Ž . Ž . Ž . Ž . Ž .W s �W s � 4�6 r W r dr�s 12 r�6 W r drH H
0 0

is a ‘‘detrended’’ Brownian Motion.
Again, we may assume without loss of generality that Y �Y � and hence that �Y ��Y �.t t t t

Ž . Ž .To check the conditions of Theorem 3.2, first note that, due to 15 � 17 , Assumption 3.2 holds
� 1�2 1�2 Ž .with � �n , a �n, and d �n . Next, � and � are functions of Y , . . . , Y andˆ ˆn n n b, t b, t t t�b�1

Ž .therefore functions of Y , �Y , . . . , �Y . As noted in Appendix A.1 of Andrews and Chent t�1 t�b�1
Ž .1994 , the value of � does not depend on the initial random variable Y but only on theˆb, t t
differences �Y , . . . , �Y ; the same can be seen true for the value of � . This means that weˆt�1 t�b�1 b, t

Ž .are able to reconstruct the numerical values � and � from �Y , . . . , �Y alone. Thus,ˆ ˆb, t b, t t�1 t�b�1
� Ž . � Ž .4 �1 n � Ž .� h �min 1, � h�b . This implies the mixing condition n Ý � h �0 as n��,n, b �Y * h�1 n, b

Ž .since � h �0 as h�� as well as b�n�0 as n��. Q.E.D.�Y *

PROPOSITION A.1: Assume the assumptions of Theorem 4.1 and that ��1. Let � and � be two
Ž .p�p matrices defined by their i, j th entries

Ž � � 2 .� �E Y Y �i , j p p� � i� j � p�1

and

Ž � � .� �E Y Y .i , j p p� � i� j �

Ž . Ž .Then, the con�ergences 10 and 11 hold. Moreo�er, and immediately clear, if in addition the
2 2 Ž 2 .inno�ations � are i.i.d., then ��� � , where � �E � .t � � t

Ž .PROOF: As before, assume without loss of generality that �*�� *�0 in model 1 and hence
� Ž .that Y �Y is a stationary, mean-zero process. Define � 
 , . . . , 
 , �, � � andt t 1 p

1�2 Yn 0 ��� 0 0 0 t�1
1�2 Y0 n ��� 0 0 0 t�2. . . . . . .. . . . . . .. . . . . . .� � and V � .n t1�20 0 ��� n 0 0 Yt�p

1�20 0 ��� 0 n 0� 0 � 01
3�20 0 ��� 0 0 n t
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ˆThen, for the OLS estimator  , we haven

�1n n
	ˆŽ .18  �� V V V � .Ý Ýn t t t t

t�p�1 t�p�1

Ž .Premultiplying 18 by � yieldsn

�1n n
	�1 �1 �1ˆŽ . Ž .19 �  � � � V V � � V � .Ý Ýn n n t t n n t t

t�p�1 t�p�1

We claim that
n

PP � 0	�1 �1Ž .20 � V V � � and thusÝn t t n ž /0 �
t�p�1

�1n �1PP � 0	�1 �1� V V � � ,Ýn t t n �1ž /0 �t�p�1

where

1 1�2
�� .ž /1�2 1�3

To see why, note that
n

	�1 �1� V V �Ýn t t n
t�p�1

n�1ÝY 2 n�1ÝY Y ��� n�1ÝY Y n�1ÝY n�2ÝtY �t�1 t�1 t�2 t�1 t�p t�1 t�1

�1 �1 2 �1 �1 �2n ÝY Y n ÝY ��� n ÝY Y n ÝY n ÝtYt�2 t�1 t�2 t�2 t�p t�2 t�2

. . . . . .. . . . . .. . . . . .� .�1 �1 �1 2 �1 �2n ÝY Y n ÝY Y ��� n ÝY n ÝY n ÝtYt�p t�1 t�p t�2 t�p t�p t�p

�1 �1 �1 �1 �2n ÝY n ÝY ��� n ÝY n �n n Ýtt�1 t�2 t�p� ��2 �2 �2 �2 �3 2n ÝtY n ÝtY ��� n ÝtY n Ýt n Ýtt�1 t�2 t�p

The convergence part pertaining to � is obvious. Next, to show the convergence part pertaining to
Ž� , focus on element � . First, the sequence Y Y has a bounded 2�� th absolute moment byi, j t� i t� j

. Ž . � Ž �Cauchy-Schwarz . Second, it is strong mixing with mixing coefficients � h �min 1, � h� i�i, j Y *
�.4 Žj . Third, the expectation of the sample mean has limit � as n tends to infinity actually, it isi, j

. �1constantly equal to � . The convergence of n ÝY Y to � now follows with Corollary 3.48i, j t� i t� j i, j
Ž . Ž . �1of White 1984 , n�p �n�1, and Slutzky’s Theorem. Next, the convergence of n ÝY to 0 int� i

probability is analogous. Finally, the convergence of n�2ÝtY to 0 in probability is analogous ast� i
�1 Ž . Ž .well by writing it as n Ý t�n Y . Therefore, 20 is proved.t� i

We claim now that

n
� 
�1Ž .21 cov � V � � as n��,Ýn t t ž /
 � �ž /

t�p�1

where

Ž 2 . Ž . Ž 2 .E Y � 1�2 E Y �p p�1 p p�1
. . 2. .
� and ��� �.�. .

2 2� 0Ž . Ž . Ž .E Y � 1�2 E Y �1 p�1 1 p�1
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To see why, note that

Y �t�1 t

Y �t�2 t
.n n ..�1 �1�2� V � �n � with � � .Ý Ýn t t t t Y �t�p tt�p�1 t�p�1
�t� 0

Ž .t�n �t

Ž .Note that the sequence � is uncorrelated and strong mixing with mixing coefficients � � satisfyingt �

Ž . � Ž .4� h �min 1, � h�p . Moreover, � has expectation zero and covariance matrix� Y * t

Ž 2 . Ž . Ž 2 .� ��� � E Y � t�n E Y �1, 1 1, p t�1 t t�1 t

. . . . .. . . . .. . . . .
2 2Ž . Ž . Ž .Ž . � ��� � E Y � t�n E Y �cov � � .p , 1 p , p t�p t t�p tt

2 2 2 2Ž . Ž . Ž . Ž . Ž .E Y � ��� E Y � E � t�n E �t�1 t t�p t t t� 0
22 2 2 2Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .t�n E Y � ��� t�n E Y � t�n E � t�n E �t�1 t t�p t t t

Since the sequence � is uncorrelated, it therefore follows thatt

n n
� 
�1 �2 �1 Ž .cov n � �n cov � � as n��Ý Ýt t ž /
 � �ž /

t�p�1 t�p�1

Ž .and so 21 is proved.
Ž .The convergences 21 together with the mixing and moment conditions of Theorem 4.1 imply

that

�1 �1LL � 0 � 0� 
ˆŽ . Ž .22 �  � � N 0, .n n �1 �1ž /ž / ž /
 � �0 � 0 �

Ž .Indeed, the convergence 22 follows from the proof of Theorem 3.4 of Politis, Romano, and Wolf
ˆ ˆŽ . Ž .1997 . Only a slight modification is needed, since the last element of  namely � converges atn n

rate n3�2 rather than n1�2, whereas in said theorem all regression coefficients converge at rate n1�2.
However, the necessary changes are minor and straightforward and so the details are omitted.

Ž .Recalling that � 
 , �, � � and that � is a diagonal matrix with the first p diagonal entriesn
equal to n1�2, we immediately have that

LL1�2 �1 �1Ž . Ž .n 
�
 �N 0, � �� ,ˆ

Ž .which demonstrates 10 .
Ž .To show 11 , note that

�1n�
	2 �1 �1Ž .nCov 
 �� � V V � ,ˆ ˆ Ýn � , n n t t n

t�p�1 Ž .1 . . . p , 1 . . . p

2 2 � � � �where � is the OLS estimator of � and � is the p�p ‘‘upper-left’’ submatrix of � .�̂ , n � Ž1 . . . p, 1 . . . p.
2 Ž . Ž .The consistency of � , which is standard, and 20 now imply 11 . Q.E.D.�̂ , n

PROOF OF COROLLARY 4.1: The proof is analogous to the proof of Theorem 4.1 with the major
difference being that Assumption 3.2 has to be rechecked. The results for the case ��1 are

Ž . Ž .identical, given by 12 � 14 , and are derived in a similar fashion as in the proof of Theorem 4.1. The
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Ž . Ž .results for the case ��1 are given by 15 � 17 when the ‘‘detrended’’ Brownian Motion is replaced
Ž .by a ‘‘demeaned’’ Brownian Motion; see Stock 1991 . Q.E.D.
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