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Abstract—Subscriber radio location techniques are investigated
for code-division multiple-access (CDMA) cellular networks. Two
methods are considered for radio location: measured times of
arrival (ToA) and angles of arrival (AoA). The ToA measurements
are obtained from the code tracking loop in the CDMA receiver,
and the AoA measurements at a base station (BS) are assumed
to be made with an antenna array. The performance of the
two methods is evaluated for both ranging and two-dimensional
(2-D) location, while varying the propagation conditions and the
number of BS’s used for the location estimate.

Index Terms—Cellular CDMA, position location.

I. INTRODUCTION

OVER THE past decade, considerable attention has been
given to vehicle location technology, and numerous

applications have been proposed. Recently, in a few testbed
areas, rental cars outfitted with location devices and map
displays have aided visitors in unfamiliar territory [1]. Taxi
and delivery drivers have utilized location technology in Tokyo
to navigate the myriad of streets. Fleet operators use location
technology to improve product delivery times and to improve
the efficiency of the fleet management process. Emergency and
police dispatchers have also utilized location technology to lo-
cate dispatch vehicles and emergencies for improved response
times. In cellular telephone networks, location technology
could be used for radio resource and mobility management [2],
[3]. For example, a service provider who may have multiple
agreements with personal communication services (PCS’s),
cellular, or satellite carriers, could offer its customers the
ability to choose a carrier that best suits their needs at a
given time and location [4]. Also, the Federal Communication
Commission has recently released an order, to be implemented
in two phases, requiring cellular service providers to provide
a mechanism for generating subscriber location estimates for
Enhanced-911 (E-911) services [5]. A further application of lo-
cation technology is in the rapidly emerging field of intelligent
transportation systems (ITS’s), which are designed to enhance
highway safety, system operating efficiency, environmental
quality, and energy utilization in transportation [6], [7]. Each
of the above applications requires a method for determining
and relaying the location of vehicular and pedestrian mobile
stations (MS’s).
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Automatic vehicle location (AVL) techniques have been
studied thoroughly in the literature for the purpose of vehicle
location. AVL systems entail the acquisition of information
about the location of MS’s operating in an area, and all require
the processing of that information to form location estimates.
There are three basic AVL methods:dead reckoning, proximity
systems, andradio location[8]. Dead reckoning computes the
direction and distance of travel from a known starting position
[8]. In proximity systems, the nearness of an MS to fixed
detection devices is used to determine its position. The devices
can be anything from magnetic sensors to conventional radio
transmitters and receivers.

Radio location systems attempt to locate an MS by mea-
suring the radio signals traveling between the MS and a set
of fixed stations (FS’s). The signal measurements are first
used to determine the length or direction of the radio path,
and then the MS position is derived from known geometric
relationships [8]. Radio location can be implemented in one
of two ways—either the MS transmits a signal which the FS’s
use to determine its location or the FS’s transmit signals that
the MS’s use to calculate their own positions [e.g., the global
positioning system (GPS)]. There are several fundamental
approaches for implementing a radio location system including
those based on signal-strength [9]–[12], angle of arrival (AoA)
[13], and time of arrival (ToA) [3], [14], [15]. It is important
to note that line-of-sight (LOS) propagation is necessary for
accurate location estimates.

Many of the existing location technologies use dead reck-
oning, radio location with GPS, or hybrids which require
specialized subscriber equipment, the cost of which can se-
verely limit their availability to the average consumer. With
these technologies, the MS formulates the location estimate
which may be relayed to a central site. Another approach for
providing location services is to use the cellular telephone net-
works. A method has been proposed in [1] which incorporates
the cellular network into the location process. However, this
service requires a GPS receiver in the MS to determine the
location, and the cellular network is only used to relay the
location information to a central site. Only one previous work
has examined a subscriber location technique that relies solely
on the cellular network, that is based on signal attenuation
measurements [12].

This paper examines the feasibility and performance of radio
location techniques in code-division multiple-access (CDMA)
cellular networks. CDMA is the chosen access scheme, since it
appears to be the leading candidate for third generation cellular
networks. The cellular network is used as the sole means to
locate the MS’s, and the location estimates are determined
through reception of signals that are transmitted by the MS at
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a set of base stations (BS’s). This approach has the advantage
of requiring no modifications to the subscriber equipment.
Specifically, radio location methods based on AoA and ToA
are studied. We concern ourselves with performance in terms
of absolute accuracy with no concern given to the rate of
location updates that can be achieved.

The remainder of this paper is organized as follows. Section
II outlines the methods employed for the AoA and ToA
techniques that will be used for the performance evaluation.
The propagation models for macrocellular and microcellular
systems are discussed in Section III, followed by simulation
results in Section IV. A discussion of some practical issues for
subscriber location is given in Section V, followed by some
concluding remarks in Section VI.

II. RADIO LOCATION SYSTEM

A. Angle of Arrival

AoA techniques estimate the location of an MS by using
directive antennas or antenna arrays to measure the AoA at
several BS’s of a signal that is transmitted by the MS [13],
[16]. Simple geometric relationships are then used to form the
location estimate, based on the AoA measurements and the
known positions of the BS’s. With the AoA method, a position
fix requires a minimum of two BS’s in a 2-D plane. In this
paper, we consider the error due to multipath propagation, but
do not consider angle estimation errors. Multipath propagation,
in the form of scattering near and around the MS and BS, will
affect the measured AoA. For macrocells, scattering objects
are primarily within a small distance of the MS since the
BS’s are usually located well above surrounding objects [17],
[18]. This results in reception of signals from all directions at
an MS while the BS receives signals from a small azimuthal
spread. For microcells, it has been suggested that the BS’s
be placed below rooftop level (lamppost height) in order to
confine the signal coverage to a small area [18]. As a result,
the BS becomes surrounded by local scatterers and signals
can arrive at the BS from a much broader range of angles.
Consequently, the AoA approach, which may be used for
macrocells, is impractical for microcells.

Gans [14] and Jakes [17] have modeled the macrocellular
propagation environment as a ring of scatterers about the
MS, with the BS well outside the ring. Fig. 1 illustrates this
geometry, where the primary scatterers are assumed to be on
a ring of radius about the MS. The distance between the BS
and MS, , is assumed to be much greater than. We assume
that the MS uses an omnidirectional antenna, so that

(1)

The distribution of the AoA at the BS,, is given by

(2)

From the geometry of Fig. 1, we find that [14]

(3)

Fig. 1. MS–BS geometry assuming a ring of scatterers for macrocells.

Fig. 2. The DLL used for time-based subscriber location.

Therefore, is

otherwise
(4)

where

Note that for , a small angle approximation can be
invoked, with the result that and .

The model provides the AoA distribution for signals
arriving at a BS. Our model goes one step further by assuming
that ameasuredAoA at a BS also has the distribution .
Since the measured angles are not equal to the true angles
to the MS, the lines of position from the BS’s will not
intersect at the same point. This problem is resolved by
deriving the location estimate from the centroid of the set
of points defined by the intersecting lines of position. With
three BS’s, for example, the lines of position intersect at
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three points: , , and . The location
estimate is obtained by averaging the coordinates of
the points of intersection, i.e., and

.

B. Time of Arrival

Many popular radio location techniques are based upon the
measurement of the arrival times of a signal transmitted by
an MS at several BS’s. These methods determine the distance
between an MS and BS by measuring the time a signal takes to
travel from the BS, to the MS, and back again. Geometrically,
this provides a circle, centered at the BS, on which the MS
must lie. Using at least three BS’s to resolve ambiguities in
two dimensions, the intersection of circles provides the MS’s
position.1 This method is often called the ToA method and has
the disadvantage that it requires the MS to act as a transponder
in which processing delays and non-LOS propagation can
introduce error. To overcome these limitations, timedifference
measurements rather than absolute time measurements can
be used. Since the hyperbola is a curve corresponding to
a constant time difference of arrival (TDoA) for two BS’s,
the time differences define hyperbolas, with foci at the BS’s,
on which the MS must lie. The intersection of hyperbolas
provides the location of the MS. This method is often called
the TDoA method. Methods for obtaining the ToA or TDoA
estimates include phase ranging [19], pulse ranging [3], [19],
and spread-spectrum techniques [20], [21].

Since the cellular system being considered is CDMA, meth-
ods for determining the ToA’s from the spread-spectrum signal
are of interest. The two methods for determining time delays
in spread-spectrum communications systems are coarse timing
acquisition with a sliding correlator or matched filter and fine
timing acquisition with a delay-locked loop (DLL) or tau-
dither loop (TDL) [22]. Previous subscriber location studies
have used coarse timing acquisition to obtain the ToA esti-
mates [20], [21]. Since the DLL finely tracks the time delay,
it is better suited for a location system. The DLL is an essential
part of time estimation used for GPS and provides reasonable
accuracy over the satellite-earth propagation channel. Here,
the DLL-based location system will be investigated for its
performance in cellular propagation environments.

The DLL shown in Fig. 2 allows fine synchronization of the
local spreading code with the incoming code. It operates by
correlating the received signal with the early and late spreading
codes and , respectively, where

is an estimate of the delay between the local and incom-
ing codes. The code phase error signal is obtained by
squaring and differencing the correlator outputs. The squaring
operations serve to remove the effects of data modulation and
carrier phase shift. The loop is closed by applying to
a low-pass filter, whose output is used to drive the voltage-
controlled clock (VCC) and correct the code phase error of
the locally generated code. The parameter, ,
is called theearly–late discriminator offset. The output of the
VCC provides the ToA estimate.

1In general, locating an MS inn dimensions requiresn+1 measurements.

C. Time-Based Location Algorithm

Two approaches are generally used to calculate the location
of an MS from ToA or TDoA estimates. One approach uses a
geometric interpretation to calculate the intersection of circles
or hyperbolas, depending on whether ToA or TDoA is used.
This approach becomes difficult if the hyperbolas or circles
do not intersect at a point due to time measurement errors.
A second approach calculates the position using a nonlinear
least-squares (NL-LS) solution [3], [19], [23], which is a
more statistically justifiable approach. The algorithm assumes
that the MS, located at ( , ), transmits its sequence at
time . The BS receivers located at coordinates ( ),
( ), , and ( ) receive the sequence at times

. As a performance measure, we consider the
function [19]

(5)

where is the speed of light, and . This
function is formed for each BS receiver, , and
all the could be made zero with the proper choice of

and . However, the measured values of the arrival
times are generally in error due to multipath and other
impairments, and non-LOS propagation introduces errors into
the range estimates that are derived from the arrival times.

1) Unconstrained NL-LS Approach:To obtain the location
estimate from the raw ToA data, the following function is
formed:

(6)

where the ’s are weights reflecting the reliability of the
signal received at BS. The location estimate is determined
by minimizing the function .

A simple approach for solving the nonlinear least squares
problem in (6) is the steepest descent method, where succes-
sive location estimates are updated according to the recursion

(7)

where is a constant (scalar or diagonal matrix),
, , and

(8)

(9)
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Since is small (microseconds) compared toand (meters),
the scalar step size should be small enough to allow to
converge to a solution. Consequently,is chosen to be the
diagonal matrix

(10)

where . The recursion in (7) continues until
is smaller than some prescribed tolerance.

One drawback of the steepest descent method is its slow
convergence. Other algorithms have been investigated [19],
[23], which form the solution to (6) by linearizing with
a Taylor series expansion about and keeping only the first
order terms, i.e.,

(11)

where . Substituting (11) into (6)
and solving

(12)

for , the vector is updated by

(13)

This new estimate is substituted back into (11) and the process
is reiterated until , where is a prescribed
tolerance.

When the MS is either close to the BS’s or near the
perimeter of the area defined by the polygon with the BS’s
as its vertices, then the linear approximation approach has
convergence problems [3], [19]. For microcells, the MS is
always within a short distance of the serving BS, so this
method is not appropriate. The convergence problem arises
from the approximation of with the linear terms of the
Taylor series expansion. Other objective functions can be
formed replacing, for example, with . However,
these methods usually do not perform as well as minimizing
the sum of squares [3].

2) Constrained NL-LS Approach:It may be possible to im-
prove the time-based location algorithm due to the fact that
the range error is always positive [24]. This is because the
ToA estimates are always greater than the true ToA values
due to multipath propagation and other impairments. Also, the
range estimates derived from the ToA estimates are greater
than the true ranges due to non-LOS propagation. Therefore,
the true location of the MS must lie inside the circles of radius

, , about the BS’s, since the
MS cannot lie farther from a BS than its corresponding range
estimate (Fig. 3). Mathematically, this implies

(14)

where ( ) is the position of the MS. Since the unconstrained
NL-LS algorithm does not take this restriction into account, a
constrained NL-LS approach can be used to force the estimate
at each iteration to satisfy (14). However, the LS solution is
complicated by the nonlinear functionals as well as the

Fig. 3. The location of the MS is constrained to the intersection area (shaded
region) of circles of radiusc(�i � �) centered at each BS.

nonlinear inequality constraints of (14). Note that (14) implies
that

(15)

We recognize from (5) that the left side of the inequality in (15)
is simply . Hence, the restrictions
are formed, where the area within the constraint boundaries is
known as thefeasible region.

There are many approaches to forming numerical solutions
for NL-LS problems with nonlinear inequality constraints of
the form [25]. One simple, yet effective, method
uses penalty functions to modify the objective function
and form a solution using an unconstrained approach as in the
previous section. The penalty functions provide a large penalty
to the objective function when one or more of the constraints
are violated. The objective function in (6) is modified to
include the penalty functions as follows [25]:

(16)

where is positive for minimization. As any constraint is
approached during the search, the penalty term forces
toward infinity, thus forming a natural optimum within the
feasible region. This approach requires that the initial guess
be placed within the feasible region. A method for doing this
is described in [25].

The search procedure can be viewed as the optimization
of a sequence of surfaces which tend toward the true value
of the objective function. Initially, an unconstrained search
method is used to provide an artificial optimum with a
large value of . The next stage is initialized with
the previous estimate and uses a smaller to
provide a better approximation to the true optimum. In this
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TABLE I
COST207 SIX-TAP REDUCED TYPICAL URBAN

POWER DELAY PROFILE

way, the solution approaches the constraints more closely, if
the optimum happens to lie close to one of the constraints.
The penalty constraints become smaller at each stage, forming
a monotonic-decreasing sequence , and the
sequence of artificial optima tends toward the true
optimum. The search continues until several iterations fail to
produce a change in the objective function. This formulation
essentially replaces a constrained optimization by a sequence
of unconstrained optimizations.

III. PROPAGATION MODELS

A three-stage model is used for the radio propagation
environment, that includes multipath-fading, shadowing, and
path loss. The particular models used in this paper for macro-
cellular and microcellular propagation environments are now
described.

A. Macrocells

For wideband spread-spectrum systems, the channel can be
modeled by the -tap tapped delay line

(17)

where the are the tap delays and the are the
tap gains, assumed here to be complex Gaussian random
processes. For numerical convenience, the tap delays can be
chosen to be an integer multiple of some small delay,
i.e., . The first tap delay is
determined from the MS–BS geometry of Fig. 1 by calculating
the distance traveled by a signal transmitted from the MS in
a random direction according to and reflected from the
ring of scatterers to the BS. The remaining delays are chosen
according to the six-tap reduced typical urban delay profile
defined in COST207 [26] (see Table I). The model deviates
slightly from the COST207 model by assuming a classical
Doppler spectrum for all taps, i.e., in the simulations the taps
gains are all generated by using Jakes’ method [17].

Shadow fades have been described from measurements
as being lognormally distributed with a standard deviation
that depends on the frequency and the environment [18].
Gudmundson [27] has suggested a simple Markovian model
to describe variations in the local mean envelope (or squared
envelope) level due to shadow variations. With this model

(18)

where is the local mean envelope (or square envelope)
level (in decibels) that is experienced at location, is
a parameter that controls the spatial decorrelation of the
shadowing, and is a zero-mean discrete-time Gaussian
random process with autocorrelation . The
autocorrelation of is given by

(19)

where is called the shadow standard deviation. Typical
values of the shadow standard deviation range from 5 to 12
dB in macrocells [17], [18], [28]. If we assume that the local
mean is sampled every s, then the autocorrelation can be
expressed as

(20)

where determines the correlation between two points
separated by a spatial distance and is the velocity of
the MS. The simulations in the sequel assume a shadow
decorrelation of 0.1 at a distance of 30 m.

Several empirical path loss models have been presented in
the literature, one of the most useful being Hata’s model [28],
which expresses the path loss in terms of the carrier frequency,
BS height, MS antenna height, and the type of environment
(urban, suburban, or rural). Hata’s model for medium or small
city urban areas is used in the sequel with a carrier frequency
of MHz, BS antenna height of 100 m, and an MS
antenna height of 2.5 m.

B. Microcells

The wideband channel and shadowing models discussed
above can also be used to model microcellular propagation.
However, the power delay profiles are different, and the
standard deviation of shadowing in microcells typically ranges
from 4 to 13 dB. Further differences in the propagation models
for microcells and macrocells are discussed in the following.

Microcellular path loss is often described by a two-slope
characteristic, where the area mean is given by [29]

dBm (21)

where is a constant, is the radio path length, is the break
point (that ranges from 150 to 300 m), andand determine
the slopes before and after the break point. In the simulations,
we assume m and .

An important consideration for microcells is thecorner
effect, which occurs in microcellular scenarios when an MS
rounds a street corner. To account for this effect, LOS prop-
agation is assumed to the MS until it rounds the corner. The
non-LOS propagation after rounding a street corner is modeled
by assuming LOS propagation from an imaginary transmitter
that is located at the street corner having a transmit power
equal to the received power at the street corner from the
serving BS. The area mean (in dBm) is given by (22), at the
bottom of the next page, where is the distance between the
serving BS and the corner.
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Fig. 4. Manhattan street microcell deployment.

Due to the site-specific nature of the microcellular propaga-
tion environment, techniques such as ray tracing have been
developed. In this study, ray tracing concepts are used to
calculate the propagation delays for the wideband channel
model. A Manhattan street microcell BS deployment is as-
sumed as shown in Fig. 4. When the MS is LOS with a BS,
a four-path model is used, consisting of a direct path, a road-
reflected path, and two wall-reflected paths. The taps of the
wideband channel model are generated using Jakes’ method,
appropriately modified for Rician fading. When the MS is non
LOS with a BS, i.e., around the corner, a different approach is
taken to determine the propagation delays. Since the literature
provides no results that describe the power delay profile for
an MS that is around a corner from a BS, a simplistic model
is chosen. A four-path non-LOS propagation model is used
that includes two paths that arrive from diffractions at the
building corners in the street intersection and two remaining
paths whose delays are generated by adding random delays to
the first two paths. All paths are assumed to be Rayleigh faded.
The model chosen here is inconsequential, because the extra
time delay for non-LOS BS’s introduces a large amount of
error into the location algorithm. Hence, accurate modeling of
multipath propagation on non-LOS streets is not necessary;
only a means of introducing the excess propagation delay
around the street corner is needed.

IV. SIMULATIONS

The location techniques described in Section II were sim-
ulated in the macrocellular and microcellular environments
described in Section III to determine their performance. The
spreading code used was an sequence of length 127 and
chip rate Mcps. In the DLL, an all-pass filter

was used for the loop filter [i.e., ]. For the VCC, the
output time delay estimate and input waveform are related by

(23)

where is the gain of the VCC, is the chip period,
is the output of the loop filter, and the VCC is assumed to

begin operating at time . A simple accumulator models
the operation of the VCC in the computer simulations with the
constant . Note that there is a limitation in
the accuracy that can be achieved when simulating the DLL
on a computer. As a result, we limit the resolution of the DLL
to 1/120 of a chip to limit the simulation time. Consequently,
the ranging resolution is limited to approximately 2 m, which
causes all range estimates to be in error even in the absence
of propagation impairments. However, with such a fine resolu-
tion, propagation impairments will be the predominant source
of location error.

A. Range Estimation

Ranging measures the 1-D distance between an MS and
BS. Only the time-based method is employed for ranging
since AoA ranging does not make sense. For macrocells, our
ranging results assume that the first path to arrive from the
COST 207 model is a LOS path. Consequently, the ranging
results for macrocells are very optimistic by disregarding the
extra propagation caused by non-LOS propagation when a
direct path does not exist. For microcells, the Manhattan street
microcell deployment in Fig. 4 is assumed.

1) Effect of Standard Deviation of Shadowing,: Fig. 5(a)
shows the effect of the shadow standard deviation on the mean
and standard deviation of the range estimation error with an
early–late discriminator offset and a chip-energy-to-
noise ratio dB. The mean ranging error increases
by approximately 10 m as increases from 4 to 12 dB. The
standard deviation of the ranging error also increases due to
the increased variability of the shadowing process.

2) Effect of : Fig. 5(b) shows the effect of
on the ranging error with and dB. The
increase in ranging error for decreasing is expected in
any system. The effect is not as pronounced in the microcel-
lular environment due to the smaller delay spreads.

3) Effect of : The effect of multipath on the tracking
ability of the DLL can be explained by observing the dis-
tortion that multipath causes on the correlation function of the
spreading code, which has a triangular shape for a rectangular
chip-shaping pulse. Fig. 6 shows an example of a distorted
loop S curve for the case of two multipath components, the
second having half the power of the first and delayed by

. Observe that the tracking error introduced by multipath
propagation is reduced by using smaller. However, the

(22)
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(a) (b)

Fig. 5. Effect of (a) shadow standard deviation (Ec=No = 10 dB) and (b)Ec=No (�s = 6 dB) on the mean (solid lines) and standard deviation
(dashed lines) of the ranging error.

Fig. 6. Distortion of the S curve due to multipath for different values of�.

minimum size of is limited by hardware considerations
(such as the clock rate) and the precorrelation bandwidth in
the DLL. Band limiting tends to round the autocorrelation
peak which limits the discrimination between the early and
late correlation when using small [30].

Simulation results for various are presented in Table II
with dB and dB. The results show that the
ranging error mean and standard deviation can be significantly
reduced by using a smaller .

B. Two-Dimensional Location

Two-dimensional (2-D) location estimates the MS location
by using several BS’s. Here, we focus on the accuracy of the
location estimates as a function of the number of BS’s. This is
an important consideration, since using more BS’s means more
processing and an increased load on the network. Assuming
a transmit power of 1 dBW (the maximum for Class III IS-
95 MS’s), a noise power of 100 dBm was added to each
BS receiver for the time-based method. The macrocell and
microcell deployment scenarios are as follows.

TABLE II
MEAN RANGING ERROR AND STANDARD DEVIATION

FOR VARIOUS VALUES OF �. VALUES ARE IN METERS

1) Macrocells: We assume a distance of 6000 m between
BS’s, i.e., the cell radius is 3000 m. Assuming known BS
positions, the MS is randomly placed among the BS’s and the
nearest BS’s are used for the location process. For macrocells,
ToA and AoA approaches are compared when using two–five
BS’s in the location process as a function of the scattering
radius about the MS.

The simulations examined both the unconstrained and con-
strained location algorithms of Section II-C, which almost
always converged with for each BS. The mean
and standard deviation of the location error for the ToA
method using the unconstrained NL-LS algorithm are shown in
Fig. 7(a). For a given scattering radius, the mean and standard
deviation decreases when more BS’s are used. As expected, a
larger scattering radius increases the location error due to non-
LOS propagation. Recall that LOS propagation is necessary for
accurate ranging and location estimates.

The mean and standard deviation of the location error for
the ToA method with the constrained NL-LS algorithm are
shown in Fig. 7(b). Unlike the unconstrained NL-LS case, the
performance is not improved significantly when more BS’s are
used. Table III compares the performance of the unconstrained
and constrained NL-LS methods, where both algorithms are
initialized with the same location estimate. The mean location
error is reduced up to 30% by using the constrained NL-LS
algorithm. The constrained NL-LS with three BS’s performs
nearly as well as the unconstrained NL-LS with five BS’s.
This implies that the constrained NL-LS algorithm can result
in less network loading.
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(a) (b)

Fig. 7. Two-dimensional location in macrocells for the ToA method using the (a)unconstrainedand (b)constrainedNL-LS algorithms. Solid lines denote
the mean error, and dashed lines denote the standard deviation:�s = 6 dB.

TABLE III
REDUCTION IN THE MEAN LOCATION ERROR OF THECONSTRAINED NL-LS

ALGORITHM COMPARED TO THE UNCONSTRAINED NL-LS ALGORITHM

FOR THE TOA METHOD IN MACROCELLS. VALUES ARE IN METERS

Results for the AoA method are shown in Fig. 8. Once
again, a larger number of BS’s decreases the mean and
standard deviation of the location error. However, diminishing
returns are obtained by increasing the number of BS’s. For

m and m, the unconstrained ToA method
outperforms the AoA method for the same number of BS’s. For
larger scattering radii, the AoA method steadily improves and
performs slightly better than the unconstrained ToA method at
a radius of m for the same number of BS’s. In all
cases, the constrained ToA method performs the best.

2) Microcells: As the MS rounds the corner from BS0 to
BS1 in Fig. 4, its location is estimated using a combination of
BS’s. For this particular deployment, we assume LOS propa-
gation between the MS and two BS’s (four at an intersection)
and non-LOS propagation to the other two BS’s. Only the
ToA method is used since the AoA method is unreliable due
to the relatively large AoA spreads in microcells. The number
of BS’s used to derive the location estimate ranges from two to
four. With 2-BS location, BS0 and BS2 are used until the MS
rounds the corner after which BS1 and BS3 are used. With 3-
BS location, BS0, BS1, and BS2 are used until the MS rounds
the corner after which BS0, BS1, and BS3 are used.

Fig. 9 plots the results for the microcell deployment in
Fig. 4, and indicates that the location accuracy is improved
with more BS’s. Fig. 9 shows the effect of the NL-LS weight-
ing factors on the location performance. The LOS BS’s
weights are , whereas the non-LOS BS weights were var-
ied from 0.2 to 1.0. Fig. 9(a) shows that a smallercan signif-
icantly reduce the mean and standard deviation of the location

Fig. 8. Two-dimensional location in macrocells using the AoA method. Solid
lines denote the mean error, and dashed lines denote the standard deviation.

error with the unconstrained NL-LS algorithm, especially for
3-BS location. For the constrained NL-LS algorithm, there is
no significant improvement for , as shown in Fig. 9(b).
It is interesting to note that 4-BS location is much better than
3-BS location, even though an additional non-LOS BS is used.
This is because the two non-LOS BS’s tend to “cancel” one
another’s effects as a result of the symmetry of the BS layout.

Two-BS location was also considered, using the two LOS
BS’s with for both BS. The mean location error was 6.9
m with a standard deviation of 2.0 m for both the unconstrained
and constrained NL-LS algorithms. Although three BS’s are
required for 2-D location, the constraint that the MS must lie
on a line between the two LOS BS’s provides the additional
information needed for 2-BS location. This topographical
constraint provides more accurate location information than
the additional information from a non-LOS ToA measurement
and, therefore, 2-BS location performs better than 3- or 4-BS
location. Note that the feasibility of this approach depends on
the BS topography.
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(a) (b)

Fig. 9. Two-dimensional location in microcells using the (a)unconstrainedand (b)constrainedNL-LS algorithms for various values of the non-LOS BS
weights,�. Solid lines denote the mean error, and dashed lines denote the standard deviation.

Fig. 10. CDMA multiuser interference scenario.

V. DISCUSSION

The implementation of an effective cellular radio location
system, requires a method for identifying the set of BS’s to
be used for deriving the location estimate. This is especially
important for microcells since the use of non-LOS BS’s can
introduce large errors in the location estimates as it does in
macrocells. The link quality measurements used for handoff
initiation may be used to determine the appropriate set of
BS’s. The appropriate BS’s can be determined, for example,
by received signal strength measurements.

In order to achieve high accuracy, LOS propagation is
necessary between the MS and BS’s used in the location

process. This may be impossible to achieve in macrocells, but
may be attainable in microcells. The additional propagation
time to a non-LOS BS leads to a positive range estimate
error. Recently, a statistical method has been suggested to
compensate for non-LOS induced errors by biasing the range
estimates [31].

This paper has not addressed the effect of CDMA multiuser
interference caused by the nonorthogonality of the user spread-
ing codes. Multiuser interference along with unequal received
power levels from different users leads to the near-far effect,
which is mitigated in CDMA systems by using power control
techniques. This paper has only considered the case of a single



CAFFERY AND STÜBER: SUBSCRIBER LOCATION IN CDMA CELLULAR NETWORKS 415

MS with no interferers. Since the location system requires the
use of several BS’s, multiuser interference may pose severe
problems. For example, consider the microcell deployment
in Fig. 10, where the target MS whose location is desired
(solid black oval) is being served by BS0. To determine its
location, BS0, BS1, and BS2 are used. If power control is
used, then the signals from all MS’s served by BS0 (black
and light grey) will arrive at BS0 with approximately the
same power. The same is true for the MS’s being served
by BS1 (medium grey) and BS2 (not shown). To derive
the location estimate, BS1 and BS2 must detect the signal
being transmitted by the target MS (black oval). However,
the signal from the target MS may experience severe mul-
tiuser interference from MS’s being served by BS1 and BS2,
since the target MS is not power controlled by those BS’s.
This multiuser interference will affect the tracking capability
of the code tracking loop that is used to obtain the ToA
information.

VI. CONCLUDING REMARKS

Subscriber location in CDMA cellular networks has been
investigated for both macrocellular and microcellular deploy-
ments. For range estimation, it was seen that location error and
standard deviation increases with increasing shadow standard
deviation and decreasing . Under the condition of
moderate delay spread, the tracking performance of the DLL
can be improved by using a smaller early–late discriminator
offset . For 2-D location, the location error is reduced by
increasing the number of BS’s used in the location process.
For macrocells, the unconstrained NL-LS ToA method outper-
forms the AoA method for a small scattering radius, while the
AoA method performs slightly better for a large scattering
radius. In all cases, the constrained NL-LS ToA method
performed best.

It should be noted that our AoA-based location results
depend on the method chosen for generating the AoA’s,
namely, reflection from a ring of scatterers about the MS.
A different method for generating the AoA distribution

may produce different results. For microcells, the
AoA method is inappropriate so only the ToA method was
used. Again, using more BS’s decreases the error and using
small weights for the non-LOS BS’s provides good error
reduction.

The ToA method relies on an NL-LS solution. This was
obtained here by using the steepest descent method, chosen
for its simplicity. Better methods for locating the minimum
of a least squares surface could be employed, such as the
Levenberg–Marquardt method, to improve the convergence
time and possibly the accuracy of the location estimates.
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Dr. Stüber served as the Technical Program Chair for the 1996 IEEE
Vehicular Technology Conference, Atlanta, GA, April 28–May 1, 1996. He is
currently serving as the Technical Program Chair for the 1998 IEEE Interna-
tional Conference on Communications to be colocated with SUPERCOMM,
Atlanta, GA, June 7–11, 1998. He served as an Editor forSpread Spectrum
with the IEEE TRANSACTIONS ON COMMUNICATIONS from January 1993 to
December 1997.


