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In this study, subseasonal precipitation forecast skills over MaritimeContinent in

boreal summer are investigated for the ECMWF and CMAmodels involved in the

S2S Project. Results indicate that the ECMWF model shows generally superior

forecast performances than CMA, which is characterized by lower errors and

higher correlations compared with the observations. Meanwhile, ECMWF tends

to produce wet biases with increasing lead times, while the mean errors of CMA

are revealed to be approximately constant throughout lead times of 2–4 weeks

over most areas. Besides, the temporal correlations between model outputs

and observations obviously decrease with growing lead times, with a high-low

distribution presented from north to south. In addition, the roles of large-scale

drivers like ENSO and BSISO in modulating subseasonal precipitation forecast

skills are also assessed in the models. Both ECMWF and CMA can reasonably

capture the ENSO related precipitation anomalies for all lead times, while their

capabilities of capturing BSISO related precipitation anomalies decrease with

growing lead times, which is more obvious in CMA. The enhanced subseasonal

precipitation forecast skills mainly respond to the BSISO associated

precipitation variability. For most MC areas such as southern Indochina,

western Indonesia, Philippines and the eastern ocean, the forecast skills of

both ECMWF and CMA can be improved to a great extent by enhancing the

capture of BSISO related precipitation anomalies, with the temporal

correlations for both ECMWF and CMA increased by about 0.15 for lead

times of 3–4 weeks. It provides an opportunity window for the models to

improve precipitation forecasts on the subseasonal timescale.
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Introduction

In the context of global warming, extreme weather events

such as floods and droughts are revealed to be increasingly

frequent, which emerge serious threats to both economic

society and human health (Zhang et al., 2015; Zhu et al.,

2020a; 2020b). Recently, there has been a surge of interest to

develop the precise seamless forecasts, playing a crucial role in

disaster reduction (WMO, 2015; Yuan et al., 2016; Rauser et al.,

2017). Although the weather forecasts and seasonal forecasts,

which are mainly influenced by atmospheric initial conditions

and boundary conditions, respectively, have been improved

significantly during the past decades, the subseasonal forecasts

are still lacking in development and remain as a great challenge

for operational forecasting centers (Johnson et al., 2014;

Robertson et al., 2015; Vigaud et al., 2017).

The World Weather Research Programme (WWRP) and

World Climate Research Programme (WCRP) have jointly

implemented the Subseasonal to Seasonal (S2S) Prediction

project to improve the forecast skills and physical

understanding on the S2S processes (Vitart et al., 2012; Vitart

et al., 2017). The S2S Project database have been broadly used to

investigate different scientific issues on the subseasonal timescale,

including forecasts of temperature (Zhu et al., 2021) and

precipitation (L’Heureux et al., 2021; Vigaud et al., 2018), as

well as simulations of Asian summer monsoon (Jie et al., 2017;

Wang X. et al., 2022; Fan et al., 2022). Generally, the S2S models

retain certain skills in predicting instance temperature (Tian

et al., 2017; Mastrangelo and Malguzzi 2019) and the large-scale

climate conditions, such as the Madden-Julian Oscillation (MJO;

Vitart, 2017; Kim et al., 2018; Marshall and Hendon, 2019), the

Boreal Summer Intraseasonal Oscillation (BSISO; Wang et al.,

2019; Shibuya et al., 2021), and the North Atlantic Oscillation

(NAO; Vitart, 2014) even for lead times of week 3 and 4, while

their forecast skills after week 2 are always quite limited for

precipitation. Such phenomena have been demonstrated for a

wide range of geographical areas, including the contiguous

United States (Tian et al., 2017), East Asia (Liang and Lin

2018), and more generally at a global scale (de Andrade et al.,

2019; Mastrangelo and Malguzzi 2019).

In order to achieve a better understanding on subseasonal

forecast of precipitation and to improve the corresponding

forecast skills, recent studies have devoted to finding the

sources of subseasonal predictability and their roles in

modulating precipitations (Koster et al., 2010; Liu et al., 2015;

Pan et al., 2019). So far, El Niño-Southern Oscillation (ENSO)

and Intraseasonal Oscillation (ISO) are considered as two of the

main predictability sources (Neena et al., 2014; Li and

Robertson., 2015; Liang and Lin, 2018), whose different

phases have various impacts on the subseasonal precipitation

forecast skills (de Andrade et al., 2019). On the other hand, the

ENSO and ISO have also been utilized to improve subseasonal

precipitation forecasts based on the Bayesian framework,

multiple linear regression, and many other advanced statistical

approaches (Cohen et al., 2019; Vigaud et al., 2019; Specq and

Batté et al., 2020). To be noted, ISO mainly include the eastward

propagating MJO in boreal winter and the northward and

eastward propagating BSISO, which play different roles in

different seasons (Lee et al., 2013; Wang et al., 2018; Wang S.

et al., 2022). Previous studies have well indicated that MJO plays

an important role in modulating precipitation forecast skills (de

Andrade et al., 2019; de Andrade et al., 2021), while the role of

BSISO has been relatively less explored.

Meanwhile, comprehensive assessments for different models

over different areas are still necessary, which would provide an

“opportunity window” for enhancements of subseasonal

precipitation forecast skills for specific areas (Coelho et al.,

2018; Mariotti et al., 2020). The current paper investigates the

weekly forecasts skills on precipitation in boreal summer over

Maritime Continent (MC), which is an area featured by complex

topography, warmest oceans, and characterized by great

vulnerabilities to high-impact precipitation events (Neale and

Slingo, 2003; Qian et al., 2010), for the models of European

Centre for Medium-Range Weather Forecasts (ECMWF) and

China Meteorological Administration (CMA) derived from the

S2S Project. In addition, the roles of ENSO and BSISO in

modulating the subseasonal forecast skills of local

precipitation are also explored.

The rest of the paper is organized as follows. Section 2 provides a

brief description of the used datasets and methods. Section 3 firstly

evaluates the model performances of subseasonal precipitation

forecasts. And the relationships between the local precipitation

and drivers of ENSO and BISO are assessed in detail for both

observations and model forecasts, with the contributions of these

climate drivers on prediction enhancements of precipitation over

MC also captured for the subseasonal timescale. Finally, a summary

and discussion are given in Section 4.

Data and methods

Data

The precipitation reforecast datasets from the ECMWF and

CMA models are extracted from the S2S Project (Vitart et al.,

2017). They are both air-sea coupled systems and are

characterized by consistent initialized day. The main features

of these two models are summarized in Table 1. The data are

derived from the ECMWF archive with a common resolution of

1.5° × 1.5° over MC (10°S-20°N, 90°E-150°E). The study period is

boreal summer seasons (June, July and August) from 2006 to

2020, composing a total of 360 samples (24 initialization days per

year × 15 years) for the forecast evaluation. Besides, the

precipitation from the Global Precipitation Climatology

Project (GPCP) Version 3.2 Daily Precipitation Data Set

covering the same period is used for verification.
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In order to obtain the ENSO and BSISO indices, the daily sea

surface temperature (SST) and outgoing longwave radiation

(OLR) at the top of atmosphere from ECMWF and CMA

reforecasts are also required. Besides, the daily optimum

interpolation SST (OISST) version 2 and daily interpolated

OLR from the National Oceanic and Atmospheric

Administration (NOAA; Reynolds et al., 2007) are used to

calculate the observed indices. The ENSO index is calculated

by averaging SST anomalies in the Niño-3.4 region (5°S–5°N,

120°W–170°W; Bamston et al., 1997). The OLR-basedMJO index

(OMI), which has been demonstrated capable of effectively

tracking BSISO (Wang et al., 2018), is calculated as in Kiladis

et al. (2014), and the OMI1 and OMI2 indices correspond to the

first two leading principal components of the equatorial-averaged

OLR derived from the empirical orthogonal function analysis

(Tseng et al., 2020; Hoffmann et al., 2021).

Forecast verification framework

Aiming at making a comprehensive assessment for

subseasonal precipitation forecasts of ECMWF and CMA

models over MC in boreal summer, two verification metrics

are employed including mean error (ME) and correlation

coefficient (R):

ME � 1
N

∑N
i�1
(Fi − Oi) (1)

R � ∑N

i�1(Fi − �F)(Oi − �O)������������∑N

i�1(Fi − �F)2√ ������������∑N

i�1(Oi − �O)2√ (2)

where N refers to the total number of samples. The terms of Fi

and Oi represent the forecast and observation of sample i,

respectively, while the terms of �F and �O denote the averaged

forecast and observation. The ME describes the mean difference

between forecasts and observations, indicating the

overestimation (ME>0) or underestimation (ME<0)
conditions of the model forecast results. R denotes the linear

relationship between forecasts and observations. Notably,

statistical significance of the linear correlation between two

autocorrelated time series is accessed via a two-tailed

Student’s t-test using the effective degrees of freedom (EDOF),

which is given by the following approximation (Bretherton et al.,

1999):

NEDOF � N
(1 − r1r2)
(1 + r1r2) (3)

where N is the sample size. r1 and r2 are the lag1 autocorrelations

for two respective time series.

Results

Forecast performance assessments

For assessments of the subseasonal precipitation forecasts

over MC in the ECMWF and CMA models, Figure 1 presents

spatial distributions of the MEs between weekly mean

precipitations in the model forecasts and observations for lead

times of 1–4 weeks in boreal summer ranging from 2006 to 2020.

Generally, ECMWF shows lower MEs than CMA for almost all

the lead times. At the first lead week, the MEs of ECMWF are

mostly lower than 2 mm, with the largest of around 4 mm over

specific areas, while CMA overall shows MEs of greater than

2 mm, reaching up to 6 mm to the southeast of Philippines.

Besides, the two models are characterized by different ME

features with the increasing lead times. ECMWF shows a

wetting trend, and the largest overestimation exhibits a

banded distribution from the north of Indonesia to the east of

Thailand, while CMA MEs are approximately constant

throughout lead times of 2–4 weeks over most areas. The

CMA model displays obvious overestimations from west

central Indonesia to Philippines, and prominent

underestimations over around eastern Indonesia and its

surrounding oceans.

Figure 2 describes the temporal correlation coefficients

between the weekly mean precipitation anomalies in the

observations and model forecasts for lead times of 1–4 weeks

in boreal summer. Generally, the ECMWF results are

characterized by higher correlations than CMA over most

regions. Specifically, at the lead time of 1 week, the

correlations of ECMWF are greater than 0.6 for most areas,

which is higher than those of CMA, especially over areas around

western Indonesia and the ocean to the east of Indonesia. In

addition, the correlations of both ECMWF and CMA decrease

obviously with growing lead times and present a high-low

distribution from north to south. The correlations over

around Indochina and Philippines are still above 0.4 even for

lead times of 3–4 weeks in the ECMWF forecasts, whereas they

TABLE 1 Information on the S2S models of ECMWF and CMA.

S2S models Spatial resolution Hindcast frequency Hindcast period Model version

ECMWF Tco639/Tco319, L91 2/week Past 20 years On the flying

CMA T106, L40 2/week Past 15 years On the flying
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are generally lower than 0.3 over the southern MC. On the other

hand, in the CMA results, it reaches roughly 0.3 over the

northern MC for the lead time of 3 weeks, while only no

greater than 0.1 over the southern MC.

To summarize, the ECMWF model shows generally superior

performances than CMA in the precipitation forecast over MC

on the subseasonal timescale, which are characterized by lower

errors and higher correlations compared with the observations.

Meanwhile, ECMWF tends to produce wet biases with increasing

lead times, while the MEs of CMA are revealed to be

approximately constant throughout the lead times of

2–4 weeks over most areas. In addition, the temporal

correlations between model outputs and observations

obviously decrease with growing lead times, with a high-low

distribution presented from north to south.

Driver modulation on forecast quality

Although previous studies have figured out the fact that

large-scale drivers such as ENSO and ISO play important

roles in modulating precipitation, the capabilities of

subseasonal models in capturing the relationships between

precipitation and these drivers remain to be assessed. Thus,

FIGURE 1
Spatial distributions of the MEs (unit: °C) between weekly mean precipitations in the ECMWF (A–D) as well as CMA (E–H) and observations for
lead times of 1–4 weeks in boreal summer ranging from 2006 to 2020.

FIGURE 2
Spatial distributions of the temporal correlation coefficients betweenweeklymean precipitations in the ECMWF (A–D) as well as CMA (E–H) and
observations for lead times of 1–4 weeks in boreal summer ranging from 2006 to 2020.
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FIGURE 3
Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean ENSO index
(A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted ENSO index in ECMWF
(B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and
forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95%
level.

FIGURE 4
Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean OMI1 index
(A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted OMI1 index in ECMWF
(B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and
forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95%
level.
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Figures 3–5 describe the spatial distributions of temporal

correlation coefficients between the observed weekly mean

precipitation anomalies and weekly mean ENSO, OMI1 and

OMI2 indices, respectively, together with those in the

ECMWF and CMA model outputs for lead times of

1–4 weeks. The pattern correlation coefficients between

observed and predicted correlation distributions are also

provided at the right-top of each plot.

Generally, negative correlations between weekly mean

precipitation anomalies and weekly mean ENSO indices are

observed around Indonesia and its surrounding ocean, along

with positive correlations occurring over the ocean to the north

of New Guinea and the surrounding ocean of Guam (Figure 3A).

The two models of ECMWF and CMA could well reproduce

these ENSO related precipitation variabilities around Indonesia

and the island of New Guinea, with the pattern correlations in

both models being greater than 0.5 for all lead times. However,

deficiencies exist in capturing ENSO related precipitation

variabilities over the Guam surrounding regions for both

ECMWF and CMA, which require further improvements in

the future.

Meanwhile, BSISO also plays an important role in

modulating the local precipitation. Negative correlations are

verified between precipitation anomalies and OMI1 over

around the northeast area of MC, while the southwest regions

are mainly featured with positive correlations (Figure 4A). On

the other hand, there are strong positive correlations between

precipitation anomalies and OMI2 over the belt from northwest

to southeast, along with negative correlations over southwest and

northeast areas (Figure 5A). Although the capabilities of

capturing OMI1 and OMI2 related precipitation variabilities

are both decreasing with growing lead times in ECMWF and

CMA products, the reproducibility differs from different models

for different drivers. The ECMWF model could represent the

OMI1 related precipitation variabilities for all lead times, and the

corresponding pattern correlation is greater than 0.7 for even the

lead time of 4 weeks. Nevertheless, CMA tends to show lower

pattern correlations for 3–4-week lead times, with the

corresponding pattern correlation being 0.38 at the lead time

of 4 weeks. On the other hand, both ECMWF and CMA show

lower skills in capturing OMI2 related precipitation variabilities

than those for OMI1 for longer lead times. The phenomenon is

more obvious in the CMA results, showing pattern correlations

of lower than 0.15 for lead times of 3–4 weeks. In general, the

shortage of ECMWF in capturing OMI2 related precipitation

variabilities is associated with the insufficiency in reproducing

the negative correlations over southwest MC, while the CMA

model could hardly reproduce any of them.

Furthermore, in order to quantitatively reveal the large-scale

driver emerging impacts on the model forecast performances,

FIGURE 5
Spatial distribution of correlation coefficients between observed weekly mean precipitation anomalies and observed weekly mean OMI2 index
(A), together with the correlation coefficients maps between forecasted weekly mean precipitation anomalies and forecasted OMI2 index in ECMWF
(B–E) and CMA (F–I) at the lead time of 1–4 weeks. The pattern correlation coefficients between observed correlation coefficients maps and
forecasted correlation coefficients maps are also provided on the right strings. Stipples indicate correlations statistically significant at the 95%
level.
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Figure 6 describes the regionally averaged correlations between

hindcasts and observed precipitation anomalies over MC in the

initial model output and experiments after adding the

corresponding observed regression patterns to hindcasts, that

is, replacing the modeled regression patterns associated with

drivers of ENSO, OMI1, OMI2, and OMI1+OMI2 with the

observed regression patterns for ECMWF and CMA,

respectively. The linear regression approach is used to obtain

ENSO, OMI1 and OMI2 related precipitation variabilities for

both forecasts and observations. To be specific, the predicted

FIGURE 6
The regionally averaged correlations between hindcasts and observed precipitation anomalies over MC in the initial model output and
experiments after replacing the modeled regression patterns associated with drivers of ENSO, OMI1, OMI2, and OMI1+OMI2 with the observed
regression patterns for ECMWF (A) and CMA (B), respectively.

FIGURE 7
Spatial distributions of enhanced correlations between hindcasts and observed precipitation anomalies at lead times of 1–4 weeks after
replacing the modeled regression patterns associated with drivers of OMI1 (A–D), OMI2 (E–H), and OMI1+OMI2 (I–L) with the observed regression
patterns for the ECMWF model.
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large-scale driver associated precipitation anomalies are

computed based on the predicted weekly mean precipitation

anomalies and the predicted weekly mean ENSO, OMI1 and

OMI2 indices, while the observed ones are obtained from the

observed weekly mean precipitation anomalies and the observed

weekly mean ENSO, OMI1 and OMI2 indices. Generally, the

enhanced forecast skills of both ECMWF and CMA are mainly

associated with BSISO related precipitation variability, while

there is no obvious improvement in response to the ENSO

signal, which might be attributed to the better performances

of both ECMWF and CMA to capture the ENSO related

precipitation. Therefore, a multiple linear regression

considering both OMI1 and OMI2 is further applied to obtain

the associated precipitation variability. The obviously enhanced

forecast skills are found at lead times of 2–4 weeks for both

ECMWF and CMA models, showing the greatest correlation

improvement of even up to 0.1 when the OMI1 and OMI2 signals

are considered simultaneously at the lead time of 4 weeks.

Aiming at investigations on spatial characteristics of the

subseasonal precipitation forecast skills improved by

enhancing precipitation forecasts associated with different

drivers, Figures 7, 8 display the spatial distributions of

differences on temporal correlations before and after the

replacement of large-scale driver associated precipitation

anomalies in the model products. For both ECMWF and

CMA models, the OMI1 signal plays an important role in

enhancing the forecast skills over Philippines, along with the

west Indonesia, and their surrounding ocean, while the

OMI2 signal affects the forecast skills over the belt from

south of Indochina Peninsula to north of New Guinea

Island, where temporal correlations could be improved by

up to 0.1 at lead times of 2–4 weeks. Moreover, for both

replacements of OMI1 and OMI2 associated precipitations,

it indicates more obvious improvement for CMA than

ECMWF, and greater improvements are always found for

longer lead times. In addition, when the OMI1 and

OMI2 signals are “perfectly” captured simultaneously, all

these associated regions exhibit obviously enhanced forecast

skills.

In summary, both ECMWF and CMA can reasonably

capture the ENSO related precipitation anomalies for all

lead times, showing decreasing capabilities with growing

lead times. The ECMWF model generally displays better

performances than CMA. The enhanced subseasonal

precipitation forecast skills mainly respond to the BSISO

associated precipitation variability. For most MC areas such

as southern Indochina, western Indonesia, Philippines and the

eastern ocean, the forecast skills of both ECMWF and CMA

can be improved to a great extent by enhancing the capture of

BSISO related precipitation anomalies. It provides an

opportunity window for the models to further improve the

subseasonal precipitation forecasts.

FIGURE 8
Spatial distributions of enhanced correlations between hindcasts and observed precipitation anomalies at lead times of 1–4 weeks after
replacing the modeled regression patterns associated with drivers of OMI1 (A–D), OMI2 (E–H), and OMI1+OMI2 (I–L) with the observed regression
patterns for the CMA model.
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Conclusion and discussion

In this study, the subseasonal precipitation forecast skills

over Maritime Continent in boreal summer are investigated

for the ECMWF and CMA models involved in the S2S Project

for the period of 2006–2020. The roles of large-scale drivers

like ENSO and BSISO in modulating the subseasonal

precipitation forecast skills are also assessed. Associated

results are obtained as follows.

Generally, the ECMWF model outperforms CMA in the

subseasonal precipitation forecast over Maritime Continent in

boreal summer, which are featured with lower errors and higher

correlations compared with the observations. ECMWF tends to

generate wet biases with increasing lead times, while the mean

errors of CMA are approximately constant throughout the lead

times of 2–4 weeks. In addition, the temporal correlations

between model outputs and observations decrease obviously

with growing lead times, along with a high-low distribution

presented from north to south.

Both ECMWF and CMA can reasonably capture the ENSO

related precipitation anomalies for all lead times, with the pattern

correlations in both models being greater than 0.5 for all lead

times. In contrast, their capabilities of capturing BSISO related

precipitation anomalies decrease with growing lead times, which

is more obvious in CMA, with the pattern correlations lower than

0.15 at lead times of 3–4 weeks. The enhanced subseasonal

precipitation forecast skills mainly respond to the BSISO

associated precipitation variability, while there is no obvious

improvement in response to the ENSO signal. For most MC areas

such as southern Indochina, western Indonesia, Philippines and

the eastern ocean, the forecast skills of both ECMWF and CMA

could be improved to a great extent by enhancing the capture of

BSISO related precipitation anomalies, with the temporal

correlations for both ECMWF and CMA increased by about

0.15 for lead times of 3–4 weeks. It provides an opportunity

window for the models to improve precipitation forecasts on the

subseasonal timescale.

As analyzed in the current study, the prediction of large-

scale drivers in the subseasonal models do have crucial

impacts on forecasts of local precipitation. Besides, for lead

times of within 4 weeks on the subseasonal timescale, there is

generally little changes in ENSO while the BSISO forecasts

would vary a lot (Jie et al., 2017; Wang et al., 2019; Shibuya

et al., 2021), which corresponds to the non-significant

(significant) response of the forecast skill of adding ENSO

(BSISO) signals to the hindcasts in this study. On the other

hand, the models always have different capabilities of

predicting the large-scale drivers such as ENSO and BSISO,

which tends to result in different subseasonal forecast skills of

precipitation for different cases. Classified experiments are to

be further investigated to reveal the different roles of these

predictors in the subseasonal model forecasts and to make full

use of the predictors in the operational forecasts on the

subseasonal timescale. In addition, on the basis of the

model outputs and the historical observations, the

prediction skills could also be strengthened via sort of

statistical postprocessing methods such as the single-model

calibrations (Lyu et al., 2021; Pan et al., 2022) and the

multimodel ensembles (Ji et al., 2019; Ji et al., 2020; Peng

et al., 2020). Associated investigations would be further

carried out in the future.
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