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ABSTRACT

Probabilistic tropical cyclone (TC) occurrence, at lead times of week 1–4, in the Subseasonal to Seasonal

(S2S) dataset are examined here. Forecasts are defined over 158 in latitude3 208 in longitude regions, and the

prediction skill is measured using the Brier skill score with reference to climatological reference forecasts.

Two types of reference forecasts are used: a seasonally constant one and a seasonally varying one, with

the latter used for forecasts of anomalies from the seasonal climatology. Models from the European Centre for

Medium-Range Weather Forecasts (ECMWF), Australian Bureau of Meteorology, and Météo-France/Centre

National deRechercheMétéorologiques have skill in predicting TC occurrence four weeks in advance. In contrast,

only the ECMWFmodel is skillful in predicting the anomaly of TC occurrence beyond oneweek. Errors in genesis

prediction largely limit models’ skill in predicting TC occurrence. Three calibration techniques, removing the

mean genesis and occurrence forecast biases, and a linear regression method, are explored here. The linear

regression method performs the best and guarantees a higher skill score when applied to the in-sample

dataset. However, when applied to the out-of-sample data, especially in areas where the TC sample size is

small, it may reduce the models’ prediction skill. Generally speaking, the S2S models are more skillful in

predicting TC occurrence during favorable Madden–Julian oscillation phases. Last, we also report accumu-

lated cyclone energy predictions skill using the ranked probability skill score.

1. Introduction

Tropical cyclone (TC) predictions are evaluated dif-

ferently at different time scales. Short-term (weather

prediction time scale) track and intensity forecasts are

usually verified against best track records at the same

time via mean absolute error (e.g., DeMaria et al. 2014).

Seasonal storm predictions, on the other hand, are often

verified over a basin using correlations of observed and

forecast TC counts or accumulated cyclone energy (ACE;

e.g., Chen and Lin 2013). Only recently have global
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weather prediction systems started to generate fore-

casts at subseasonal time scales (Vitart et al. 2010).

Therefore, there are no widely accepted standards for

verifying and evaluating subseasonal TC predictions

(Camargo et al. 2019). Similarly to short-term weather

predictions, Elsberry et al. (2011) and Tsai et al. (2013)

verified subseasonal predictions from theEuropeanCentre

for Medium-Range Weather Forecasts (ECMWF) by

comparing the forecast and observed TCs at times and

locations at which the storms were very close to each

other. Yamaguchi et al. (2015) defined forecasts of

weekly storm occurrences over 0.58 3 0.58 grids. Vitart

et al. (2010), Camp et al. (2018), and Gregory et al.

(2019) examined weekly storm occurrence over 158 in

latitude3 208 in longitude boxes with 7.58 and 108 buffer

ranges. Others, such as Li et al. (2016), Lee et al. (2018)

and Gao et al. (2019) considered basinwide TC activity.

Verification methods are, on one hand, limited by the

skill of the forecasts, and on the other hand, they reflect,

implicitly, what information is expected from the fore-

casts. One guiding principle in designing verifications

is to consider the desired socioeconomic value of the

forecasts. For example, which kind of informationwould

be useful for disaster preparedness with two to three

weeks lead time? This information could be used, for

example, to plan the distribution and storage of emer-

gency supplies or deploy emergency personnel (Vitart

andRobertson 2018). Forecasts of basinwide TC activity

clearly do not provide the ideal type of forecast infor-

mation at these time scales as they do not provide the

kind of regional information that is essential for regional

disaster preparedness. Conversely, due to the limitations of

current prediction systems, it is not reasonable to expect

reliable forecasts of the exact time, location or intensity of

landfalling TCs weeks in advance. The verification method

used byVitart et al. (2010), Campet al. (2018), andGregory

et al. (2019) is therefore a reasonable compromise, since it

balances the capability of current weather prediction sys-

tems with the needs of the user on subseasonal time scales.

Many studies have shown that forecasts of TC posi-

tion and genesis can have skill beyond 10 days. Elsberry

et al. (2011) and Tsai et al. (2013) found that the

ECMWF ensembles were able to predict most of the

named typhoons’ tracks out to 4 weeks in advance in

the 2009 and 2010 Northwestern Pacific typhoon seasons,

although there was a 50% false alarm rate. Vitart et al.

(2010) showed that a calibration that removes the mean

forecast bias could increase the ECMWF’s track predic-

tions skill in the SouthernHemisphere TC basins from 2 to

4 weeks. Similar results are found in two recent papers

(Camp et al. 2018; Gregory et al. 2019), which evaluated

reforecasts and real-time forecasts of the Australian

Bureau of Meteorology seasonal forecasting system

(ACCESS-S1) over the Southern Oceans. In the sub-

seasonal to seasonal (S2S) dataset (see section 2), Lee et al.

(2018) showed that reforecasts run by six operational

centers can predict genesis weeks in advance.

TCs have a strong climatological seasonal cycle, and

subseasonal variability of TCs is defined as the anomaly

(fluctuation) that deviates from that cycle. Thus, accu-

rately predicting TCs at subseasonal time scales requires

models to forecast both the seasonal cycle and anoma-

lies. Generally speaking, global models can predict the

seasonal cycle reasonably well because they are good at

simulating the low-frequency large-scale atmospheric

and oceanic patterns. These large-scale patterns con-

tribute to the predictability of the TC seasonal cycle

(Camargo and Barnston 2009; Zhan et al. 2012). The

main source of predictability for subseasonal TC variabil-

ity, on the other hand, is the Madden–Julian oscillation

(MJO). Models tend to be more skillful both when the

MJO signal is strong during the initial forecast time (e.g.,

Belanger et al. 2010), and when the MJO is in phases

that are favorable to TCs in the basin at the forecast

verification time (e.g., Jiang et al. 2012). Tropical waves,

such as Kelvin waves and African easterly waves, also

influence TC genesis on subseasonal scales (e.g., Ventrice

et al. 2012a,b; Schreck 2015). The models’ ability to

forecast the large-scale environmental patterns associ-

ated with El Niño–Southern Oscillation, the Atlantic

meridional mode (e.g., Belanger et al. 2010; Li et al. 2016),

as well as extratropical–tropical interactions (Zhang

andWang 2019) influence subseasonal TC predictability

as well.

The promising results mentioned above (Vitart et al.

2010; Camp et al. 2018; Gregory et al. 2019; Lee et al.

2018) are based on verifications that credit models for

capturing the seasonal cycle and the subseasonal variability.

That is to say, forecasts are evaluated against seasonally

constant climatological forecasts as a reference. To under-

stand if the S2S models have skill at predicting genesis

anomalies, Lee et al. (2018) further used seasonally varying

climatological forecasts as a reference (no credit for cap-

turing the seasonal cycle), and showed that the ECMWF

model is the only one that has skill in predicting genesis

anomalies at 2–3 weeks lead time in most TC basins. Vitart

et al. (2010) also discuss the ECMWF model’s prediction

skill in SouthernHemisphereTCbasins in comparisonwith

seasonally varying climatological forecasts.

The present study is a continuation of Lee et al.

(2018), which evaluated the S2S models’ performance in

predicting basinwide TC formation. In contrast to Lee

et al. (2018), we focus here on 1) the S2S models’ per-

formance in predicting regional TC occurrence (i.e.,

genesis and subsequent locations) and ACE; 2) applying

the various calibration methods, including the one used
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in Camp et al. (2018), to the forecasts and discussing

their impact; and 3) investigating the dependence of the

prediction skill on the MJO as characterized by two

MJO indices, namely the real-time multivariate MJO

index (RMM; Wheeler and Hendon 2004) and the real-

time outgoing longwave radiation (OLR) MJO index

(ROMI; Kiladis et al. 2014). Data and methods for

model evaluation are described in section 2. Themodels’

performance in storm occurrence is in section 3, followed

by discussion of the calibration schemes in section 4. We

report the dependence of model skill onMJO in section 5

and the models’ performance in predicting ACE in

section 6, followed by the conclusions in section 7.

2. Methods

a. The S2S dataset and observations

We consider the same S2S reforecasts as in Lee

et al. (2018), based on coupled, global general cir-

culation models run by six operational centers: the

Australian Bureau of Meteorology (BoM), the China

Meteorological Administration (CMA), the ECMWF,

the Japan Meteorological Agency (JMA), the Météo-

France/Centre National de Recherche Météorologiques

(MetFr), and the National Centers for Environmental

Prediction (NCEP). Basic characteristics of these six

reforecasts are shown in Table 1 and further details of

the S2S dataset are described in Vitart et al. (2017).

TCs in the S2S models are tracked daily using the

methodology of Vitart and Stockdale (2001). The tracker

defines a storm center at a local minimum sea level pres-

surewhere 1) a local vorticitymaximum (.3.53 1025 s21)

at 850hPa is nearby, 2) a local maximum in the vertically

averaged temperature (warm core, .0.58C) in between

250 and 500hPa is within a distance (in any direction)

equivalent to 28 latitude, 3) the two locations detected from

criteria 1 and 2 are within a distance equivalent to 88 lati-

tude, and 4) a local maximum thickness between 1000 and

200hPa can be identified within a distance equivalent to 28

latitude. Additionally, a detected storm must last at least

two days to be included in our analysis. The same criteria

apply to TCs in all ocean basins.

Observations of tropical cyclone tracks are from

the HURDAT2, produced by the National Hurricane

Center (Landsea and Franklin 2013), and from the

Joint Typhoon Warning Center (Chu et al. 2002). Both

best track datasets include 1-min maximum sustained

wind, minimum sea level pressure (not used in this

study), and storm location every 6 h. Following the

conventional definitions (Fig. 1), the TC basins are the

following: Atlantic (ATL), northern Indian Ocean (NI),

western North Pacific (WNP), eastern North Pacific

(ENP), southern Indian Ocean (SIN, 08–908E), Australia

(AUS, 908–1608E), and southern Pacific (SPC, east

of 1608E). For each basin, we only use forecasts that

are initialized during their respective TC seasons:

May–November for ATL and WNP, May–October

for ENP, April–June and September–November for NI,

November–April for SIN and AUS, and December–

April for SPC.

b. Defining forecasts

Following Camp et al. (2018), we subdivide global TC

basins into 208 in longitude 3 158 in latitude boxes

(centers are labeled by circles in Fig. 1). Each box

overlaps with its neighboring boxes by 108 and 7.58 in the

longitude and latitude direction, respectively. A grid on

TABLE 1. Characteristics of the six S2S reforecasts used here. (Adapted from Lee et al. 2018.)

Model Forecast time Resolution Period Ensemble size Frequency and sample size

BoM 0–64 days 28, L17 1981–2013 33 ;5 days and 2160

CMA 0–61 days 18, L40 1994–2014 4 Daily and 7665

ECMWF 0–46 days 0.258 for first 10 days 1994–2014 11 ;4 days and 2058

0.58 after day 10, L91

JMA 0–33 days 0.58, L60 1981–2010 5 ;10 days and 1079

MetFr 0–61 days ;0.78, L91 1993–2014 15 ;15 days and 528

NCEP 0–44 days ;18, L64 1999–2010 4 Daily and 4380

FIG. 1. The verification areas for seven TC basins. The verifica-

tion is conducted over regions of 208 in longitude3 158 in latitude,

and there is a total of 303 regions (113 33 grids minus the southern

Atlantic and eastern South Pacific). The regions overlap by 108 in

longitude and 7.58 in latitude.
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the border of the two basins belongs to the one on the

east and/or on the north side. Thus, the 208 3 158 boxes

centered at the equator belong to theNorthernHemisphere

basins. Then, we define occurrence forecasts by the fraction

of all the ensemble members that contain a TC (ensemble

frequency) in individual grids for each of the six models.

Similarly, we also define the ACE forecast by the frac-

tion of ensemble members that have weekly ACE ex-

ceeding specified thresholds (section 2d) over each box.

Forecasts are evaluated at daily time resolution with

a weekly (7 day) window, starting from day 4. In other

words, prediction skill at day 4 contains forecasts from

day 1 to day 7, prediction skill at day 5 includes forecasts

from day 2 to day 8, and so on. Sometimes we also

use ‘‘week’’ to describe the forecasts, such that ‘‘week 1

forecasts’’ refers to forecasts containing data fromdays 1

to 7, ‘‘week 2 forecasts’’ are forecasts from days 8 to 14,

and so on. As an example, Figs. 2a and 2b show week-2

occurrence forecasts (in dots) and the gridded occur-

rence forecasts (in shading) from an ECMWF forecast

initialized on 20 August 2005. The observed storm occur-

rence and ACE are calculated following the same proce-

dure as described above. For convenience, we refer to each

of these 208 3 158 boxes as a ‘‘region,’’ and thus ‘‘regional’’

refers to the analyses done over individual boxes.

c. Defining the MJO

Two real-time MJO indices are considered. The first

one is the RMM, which is calculated using intraseasonal

zonal winds at 200 and 850 hPa and observed OLR

(Wheeler and Hendon 2004; Gottschalck et al. 2010;

Vitart 2017). The second MJO index is ROMI, an

OLR-based index, calculated from observed intra-

seasonal OLR anomalies (Kiladis et al. 2014).Wang et al.

(2018) showed that ROMI better represents northward

propagation of the boreal summer intraseasonal oscillation

than RMM.

d. Skill scores

1) BRIER SKILL SCORE

The Brier skill score (BSS) is used to assess the skill

of a probabilistic forecast of TC occurrence relative

to a climatological forecast. The Brier score (BS) is

defined as

BS5
1

N
�
N

i51

(p
i
2 o

i
)2 , (1)

BSS5 12
BS

BS
ref

, (2)

where N is the total number of forecasts, oi is the ith

observation. The term pi is the predicted probability of

TC occurrence for the ith forecast, defined as

p
i
5

1

M
�
M

j51

P
i,j
, (3)

whereM is the number of ensemble members, Pi,j is the

TC occurrence prediction from the jth ensemble mem-

ber for the ith forecast. The terms Pi,j and oi are 0 for no

storm and 1 for one or more storm occurrences during

the forecast period. Thus, the BS is the mean squared

probability forecast error. When analyzing the models’

FIG. 2. (a) All TC tracks (colored lines) predicted from an ECMWF forecast initialized at 20 Aug 2005. There are

11 ensemble members for the ECMWF model and one color per ensemble member. Forecast storm centers (oc-

currence) at lead times 8–14 days (week 2) are marked by colored circles. The corresponding observed TC tracks

and storm centers are marked in black lines and circles. (b) Week-2 forecast probability of storm occurrence [Eq.

(3)]. (c) Week-2 forecast after calibration [Eq. (8)]. (d) Difference between (b) and (c).
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performance over individual 208 3 158 regions, N in

Eq. (1) is the number of forecasts used.When evaluating

models’ performance in a basin, N is the product of the

number of forecasts used and the number of regions in

that basin. For example, for evaluating the ECMWF

model in theAtlantic basin,N is 64 554, which consists of

1218 forecasts across 53 regions. Note that the forecast

number, 1218, is different from the one (2058) listed in

Table 1, because we only use data during the Atlantic

hurricane season.

The BSref is similar to the BS, but for a reference

forecast based on the observed climatology. The ob-

served climatology is calculated using observations over

the same period and at the same temporal resolution as

the S2S model data. In this study, two climatologies are

used. The first one is the seasonally varying climatology

at monthly time resolution. The second one is a constant,

seasonal-mean climatology. When a model is skillful

compared to the climatology, the BSS is positive. For

convenience, we refer to the BSS for the monthly

varying climatology as BSSm, and the BSS for the sea-

sonal mean, constant climatology as BSSc hereafter.

BSSc can be interpreted as the model skill in predicting

the absolute TC occurrence, including seasonality. On

the other hand, BSSm evaluates the model’s ability to

predict the anomalies in TC activity that deviate from

the seasonal cycle. The values of BSSm are lower than

those of BSSc because its reference forecast (monthly

varying mean) is more informative.

2) RANKED PROBABILITY SKILL SCORE

To verify ACE predictions (section 6), we use the

ranked probability skill score (RPSS). RPSS is a squared-

error score for categorical forecasts. The cumulative

forecasts Pc, observations Oc, and and the ranked prob-

ability score (RPS) are denoted as

P
c
5�

c

j51

p
j
, c5 1, . . . ,C , (4)

O
c
5�

c

j51

o
j
, c5 1, . . . ,C , (5)

RPS5�
C

c51

(P
c
2O

c
)2 , (6)

whereC is the number of forecast categories and pj is the

forecast probability of the storm intensity falling in the

jth category. The observed probability oj is 1 if the ob-

servations fall in the jth category and 0 otherwise. The

RPS is the sum of the squared differences between the

cumulative probabilities Pc and Oc. RPS is oriented so

that smaller values indicate better forecasts. A correct

forecast with no uncertainty has an RPS of 0. Similar to

the BSS, the RPSS compares the average RPS to that

of a reference forecast:

RPSS5 12

�
N

i51

RPS
i

�
N

i51

RPS
refi

. (7)

We again have two reference forecasts: the first uses the

seasonal-mean climatology, the second uses themonthly

varying seasonal climatology. They are referred to as

RPSSc and RPSSm, respectively. The RPSS is sensitive

to the definitions of the forecast categories. Because TCs

are rare events, more than 95% of the observations have

ACE of 0, and the categories should not be equally

spaced, Here, we define six categories, and the first

category is for ACE 5 0. The other five categories cor-

respond to the 0, 20, 40, 60, and 80 quantiles of the ob-

served distribution of nonzero ACE.

3. TC occurrence prediction

TC occurrence predictions are evaluated here from

both regional and basinwide perspectives. From a basin-

wide perspective, the ECMWF model is skillful in pre-

dicting TC occurrence (BSSc) at all TC basins up to

4 weeks in advance (Fig. 3). The BoM andMetFrmodels

also have positive BSSc at weeks 1–4 in most TC basins.

The JMAmodel is skillful up to 10 days in all TC basins

except the NI. In terms of predicting seasonal anomalies

(BSSm), the ECMWFmodel is skillful up to 2–3 weeks in

the WNP, ENP, SIN, and SPC, and 1–2 weeks in the

ATL and AUS. Other S2S models have limited skill: the

BoM model has positive BSSm in the SIN and SPC at

weeks 1–2, the MetFr model is skillful in the SIN and

AUS at week 1, and the JMAmodel is skillful in the SIN

and SPC at week 1. The CMA and NCEPmodels do not

have skill in predicting TC occurrence globally. The

basinwide prediction skill scores shown in Fig. 3 do not

always reflect the models’ performance on the regional

scale. For example, while the ECMWF model is skillful

in predicting TC occurrence at weeks 1–2 globally, Fig. 4a

shows that the model has negative BSSc in parts of AUS

(Timor Sea, Arafura Sea, Banda Sea). Similarly, ECMWF

model has no skill in predicting TC activity over the

Arabian Sea at week 2, but it has an overall positive BSSc
in NI. In contrast, themodel is not skillful in predicting TC

occurrence anomaly in the NI, but is skillful in the Bay of

Bengal (Fig. 4b).

The TC occurrence prediction skill scores in the S2S

models are qualitatively consistent with those for gen-

esis prediction shown in Lee et al. (2018); both suggest
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that the ECMWF is the most skillful model and can

predict storm activity anomalies with respect to monthly

climatology up to 2–3 weeks in advance. This similarity

is not surprising as the prevailing circulation associated

with the genesis location may influence the subsequent

track pattern. Still, it is interesting to know how a

model’s occurrence prediction skill is limited by its

genesis prediction skill. To address this question, we

conduct an additional BSS analysis using the fore-

casted storms forming within 500 km and 63 days of

the observed TC genesis locations. We keep cases in

which the observed genesis is captured by at least one

ensemble member. In other words, we are looking at

BSS conditioned on the genesis having occurred cor-

rectly in at least one of the ensemble members in the

forecast (BSSmjTC). One can also think of BSSmjTC as a

measure of occurrence forecast skill only with the gen-

esis element removed.

Using the ECMWF forecasts, Fig. 5 shows that the

positive BSSmjTC values (gray lines) can last much longer

than the positive BSSm values (black lines). In the NI and

the three southern basins BSSmjTC is positive from weeks

1 to 4 while BSSm is only positive up to week 2. The in-

crease in the prediction skill is smaller (from a few days to

one week) in the WNP, ENP, and ATL. It is well known

that TCs are steered by their ambient steering flow (Dong

and Neumann 1986) and storm motion forecasts depend

upon skillful prediction of the environmental wind field

(Galarneau and Davis 2013). While S2S models’ perfor-

mance on steering flow has not yet been examined in the

literature (to the best of our knowledge), the difference

between BSSm and BSSmjTC values implies that the

ECMWFmodel may be able to predict the steering flow

weeks in advance. An interpretation of Fig. 5 is that the

biggest challenge for subseasonal storm occurrence pre-

dictions is to forecast genesis well. Vitart and Robertson

(2018) also mentioned that if a model can predict genesis

correctly, there is a potential for skillful prediction of the

subsequent track even at long lead times, at least for long-

lived storms. In practice, however, we will not be able to

FIG. 4. Global map of ECMWF week-2 TC occurrence skill scores for (a) BSSc (seasonal mean constant clima-

tology) and (b) BSSm (seasonal monthly varying climatology).

FIG. 3. Basinwide BSSc (dashed lines) and BSSm (solid lines) for TC occurrence prediction in the S2S models.
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identify which genesis (and subsequent track) predictions

are reliable in advance.

4. Calibration

Next, we discuss whether the occurrence prediction

skills, particularly as measured by the BSSm, can be

further improved through a postprocessing calibration.

Three techniques are explored here: removing the mean

genesis bias, removing the mean occurrence bias, and

the linear regression method. In principle, the calibra-

tion parameters should be developed using a subset of

the entire dataset, known as the ‘‘training’’ or ‘‘in-sample’’

data, and evaluated with the remainder of the dataset,

known as the ‘‘testing’’ or the ‘‘out-of-smaple’’ data.

Here, we apply a calibration method to the whole

dataset and examine the impact of the method in the in-

sample dataset. If the results are promising, we will test

the method by separating the dataset into in-sample and

out-of-sample groups. As shown in this section, we only

conduct out-of-sample data evaluation for the linear

regression method.

a. Removing the mean genesis bias

The BSSmjTC results suggest that there is potential

to improve the models’ occurrence prediction skill by

removing the mean genesis bias—that is, by cor-

recting the mean forecast genesis rate to match the

observed one:

p
ijgen 5 p

i
3 r

gen
, (8)

r
gen

5

�
N

i51

o
i,gen

�
N

i51

p
i,gen

. (9)

Here, the genesis rate is defined as the number of genesis

events per day, and themean genesis bias is the ratio rgen
between the observed genesis rate�

N

i51oi,gen and model

simulations �
N

i51pi,gen over each region. This ratio is

multiplied by the forecast occurrence probability to get

the calibrated occurrence probability pijgen. The ratio

rgen is a function of lead times and regions. The modified

forecasts are then used for calculating the Brier skill

score for anomalies (BSSmjgen):

BS
mjgen 5

1

N
�
N

i51

(p
ijgen 2 o

i
)2 , (10)

BSS
mjgen

5 12
BS

mjgen

BS
ref

. (11)

Equation (11) is the BSS conditioned on the same gen-

esis rate. Compared to the BSSm (black lines in Fig. 5),

BSSmjgen (green dashed lines in Fig. 5) has positive skill

in NI andAUS for almost a week longer. In other words,

in these two basins the mean genesis biases reduces

the ECMWF model occurrence prediction skill by one

FIG. 5. Basinwide ECMWF BSSm (black lines), BSSmjTC (gray lines), BSSmjgen (green dashed lines), BSSmjmean (green solid lines), and

BSSmjlinear (pink lines) calculatedwith thewhole forecast data. BSSmjlinear,out (red lines) are similar to BSSmjlinear but use the out-of-sample

data. See sections 3 and 4 for details.
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week. BSSmjgen and BSSm are closer in the WNP, SIN,

and SPC than in other basins. In the ENP and ATL,

BSSmjgen values are even smaller than BSSm.

b. Removing the mean occurrence bias

Another common approach for calibrating occurrence

forecasts is to remove the mean occurrence biases (e.g.,

Vitart et al. 2010; Camp et al. 2018). Similar toEq. (8), the

calibrated probability pijmean is derived bymultiplying the

forecast probability by a ratio, but now it is the ratio rmean

of mean observed probability and the mean forecast

probability:

r
mean

5

�
N

i51

o
i

�
N

i51

p
i

. (12)

The ratio rmean is also a function of lead times and re-

gions. We follow Camp et al. (2018) and restrict rmean to

values between 0.5 and 2. For example, a rmean value of

3 is changed to 2, and a rmean value of 0.02 is changed to

to 0.5. This restriction is done to avoid unreasonably

large pijmean at areas where the sample size (of TCs) in

the forecasts is too small and to avoid forcing the model

to predict very small or 0 probability values at regions

where the observed sample TC size is small. As men-

tioned in the introduction, removing themean occurrence

biases increases the ACCESS-S1’s occurrence prediction

skill from week 2 to week 5 (Camp et al. 2018; Gregory

et al. 2019). Spatial maps of BSSmjmean from ECMWF

week-2 forecasts are used to show the impact of this cal-

ibration method. The ECMWF week-2 BSSmjmean has

positive values in the NI, ENP, SIN, AUS, and SPC

(Fig. 6a). When compared to BSSm (Fig. 4b), the cali-

brated score (BSSmjmean) increases the prediction skill in

the Bay of Bengal, western SIN, AUS, and SPC (Fig. 6b).

On the basinwide scale, BSSmjmean (green solid lines in

Fig. 5) improves the skill of predicting NI, SIN, and AUS

storms at all lead times (BSSm) but degrades the skill of

predicting WNP, ENP, and ATL storms. In the SPC, it

has positive impact on BSSm before day-10 lead time but

negative impact afterward.

The results above show that removing the mean oc-

currence bias does not always have a positive impact on

the forecast. This is consistent with Camargo et al.

(2019) who showed that this calibration method im-

proves ACCESS–S1 Southern Hemisphere skill scores

for long leads in 2017–18 but degrades the skill in 2018–

19. Because this calibration method has been used in

several studies, we conduct further analysis to under-

stand how it works. First of all, we decompose Eqs. (1)

FIG. 6. Globalmap of calibratedECMWFweek-2 TC occurrence skill score for (a) BSSmjmean, (c) BSSmjlinear, and

(e) BSSmjlinear,out. (b),(d) The differences between (a) and (c) to the BSSm, respectively, in Fig. 4b. (f) The dif-

ference between BSSmjlinear,out and the corresponding BSSm from the same out-of-sample period (not shown).
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and (2) following Murphy and Winkler (1992) and

Murphy (1988):

BS5
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N

i51
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2 o
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where s2 is the variance, m is the mean, g is the corre-

lation coefficient, and ( ) and hi represent averaging over

N forecasts. The skill score BSS can then be rewritten as
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in which the three terms on the right-hand side represent

the potential skill (correlations), conditional bias, and

unconditional bias (Bradley et al. 2008). To gain higher

values of BSS (better prediction skill), a calibration

schemeneeds to increase the correlation between forecasts

and observations, and/or reduce the conditional and un-

conditional biases. Removing the mean occurrence biases

reduces the unconditional bias to zero. However, it also

changes the value ofsp and therefore does not guarantee a

smaller conditional bias. Consequently, Eq. (8) could po-

tentially result in lower values of BSS.

When will BSSmjmean guarantee higher values of

BSSm? To obtain the necessary conditions for increasing

BSS values, we compare BS and BSmjmean (BSmjmean

should be smaller than BS) and obtain the following:

r
mean

#
2po

p2
2 1; if r

mean
$ 1, (15)

r
mean

.
2po

p2
2 1; if r

mean
, 1: (16)

When a model has a positive mean bias, the ratio rmean

between the mean observed probability and the mean

modeled probability has to be smaller than the threshold

(2po/p2)2 1. On the other hand, when the model is

biased low, rmean needs to be larger than the threshold.

Figures 7a and 7b show the spatial distributions of

rmean and the threshold. The colorbars in both figures

are designed such that for the calibration method to

have positive impact, the regions that are red (blue) in

Fig. 7a need to be redder (bluer) in Fig. 7b. The com-

parison is shown in Fig. 7c in which regions where the

ECMWF TC occurrence prediction skill can be im-

proved by the calibration method are labeled in red and

those where it cannot are labeled in blue. The red and

blue areas in Fig. 7c are similar to the reddish and bluish

areas in Fig. 6b. Figure 7c also suggests that removing

themean occurrence bias seems to work better when the

model mean occurrence forecast is biased low (gray dots

in Fig. 7). While not shown here, the blue–red pattern

shown in Fig. 7c is model dependent. The impact of the

restriction of r (0.5–2) on the calibrated forecast skill

score is not investigated here but is an interesting

question that should be further explored.

FIG. 7. (a) Week-2 ECMWF forecasts’ ratio between the mean

forecast probability and observed probability. (b) Global maps of

(2po/p2)2 1. (c) Areas where the calibration scheme has a positive

(negative) impact are marked in red (blue). Regions where the

ECMWFmodel has low biases [the values in (a) are smaller than 1]

are labeled by gray dots in all three figures. (see section 4 for details).
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c. Linear regression method

Removing the mean occurrence biases does not always

work because it corrects only the mean probabilistic

forecast error, but not the mean squared probability

forecast error, which is what BSS measures. While one

can argue that it is better to use mean error as an eval-

uation metric instead, BSS is a conventional metric for

evaluating the performance of probabilistic forecasts.

Therefore, we explore a linear regression-based technique

(van den Dool et al. 2017) that minimizes the mean

square error. In this approach, the calibrated probabi-

listic forecast is

p
ijlinear 5 a3p

i
1b , (17)

where a [a 5 gp,o(so/sp)] is the regression coefficient

and b is the intercept. It is noted that pijlinear may be

negative or greater than 1 despite the forecast proba-

bility being defined between 0 and 1. In this study, we

set all the negative pijlinear to 0; and 1 if it is greater than

1. For the in-sample data, Eq. (17) can remove the un-

conditional biases and minimize the conditional biases.

The resulting Brier skill score is therefore the potential

skill g2
p,o. Figure 6c shows that the week-2 BSSmjlinear for

ECMWFmodel is positive everywhere except the North

Atlantic; theECMWF’s week-2 forecasts of TC occurrence

anomaly in the North Atlantic are negatively correlated to

observations. The differences between BSSmjlinear and the

BSSm (Fig. 6d), as expected, show that Eq. (17) improves

the ECMWFmodel’s prediction skill globally. At the basin

scale, BSSmjlinear also outperforms BSSm (comparing the

pink lines to the black lines in Fig. 5).

We further examine the impact of applying Eq. (17)

to out-of-sample data. To do so, the first two-thirds of

ECMWF forecasts (from 1995 to 2009) are used as

training data and the remaining one-third (from 2010

to 2015) is the testing data. When applied to out-of-

sample data, Eq. (17) does not guarantee higher pre-

diction skill scores (Figs. 6e,f). This is especially true

in regions where the training data are insufficient to

capture the statistics of model’s forecast errors, and

thus the derived a and b do not minimize the mean

square error of the testing data. In central North Pacific

and part of North Atlantic, BSSmjlinear,out is smaller than

BSSm. At the basin scale, BSSmjlinear,out (red lines in

Fig. 5) still improves the ECMWF week 2 occurrence

prediction skill. The improvement is small in the WNP

and SIN, though. The basinwide BSSmjlinear,out for all

models are shown in Fig. 8. Compared to Fig. 3, applying

Eq. (17) seems to improve the S2S models’ occurrence

prediction skill in all basins. The improvement is espe-

cially evident in the SINwhere all the six S2Smodels are

skillful at week 1 with ECMWF, BoM, MetFr, and JMA

having skill at week 2. A more sophisticated way to

minimize the mean square error is to use logistic re-

gression, which will be explored in the future.

The three calibration techniques used here suggest

that calibrating subseasonal, probabilistic TC predic-

tions is not straightforward. A method that works for

in-sample data may not work for out-of-sample data,

especially regional scales. Further effort is necessary

to develop a comprehensive calibration method.

5. Dependence of occurrence prediction skill on

the MJO

As discussed in the Introduction, the predictability of

subseasonal TC activity is commonly related to theMJO

phase and amplitude (e.g., Belanger et al. 2010; Jiang

et al. 2012). To systematically assess the dependence of

FIG. 8. Basinwide BSSmjlinear,out of TC occurrence prediction in the S2S models.
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the S2S models’ prediction skill on the MJO, we com-

pare the lag relationships of TC occurrence and Brier

skill scores to the MJO phases defined by RMM and

ROMI (section 2c). To make sure the relationships are

not contaminated by the calibrationmethods, we use the

original BSSc and BSSm here.

We start by examining the observedMJO–TC genesis

relationship from these two indices using the candy-plot

analysis (Lee et al. 2018), a two-dimensional histogram

of genesis probability as a function of MJO phases and

basins. In Fig. 9, the TC basins are arranged so that the

convectively active MJO phases (with black circles)

are aligned diagonally. The probability of genesis in

convectively active (favorable) MJO phases is higher

(red colors) than in suppressed phases (blue colors).

The ROMI candy diagram shows more dark red and

dark blue circles than does the RMM candy diagram,

indicating that ROMI is sharper and better represents

the MJO’s modulating influence on TC genesis. The

favorable MJO phases defined by ROMI are shifted to

the east by one phase in the WNP, SPC, and ENP,

compared to those defined by RMM. The lag analysis be-

tweenTCoccurrence andMJO (Fig. 10) shows the eastward

shift of the favorable MJO phases from RMM to ROMI as

well. This shift may be related to the fact that RMMmostly

represents the MJO circulation (Straub 2013; Ventrice et al.

2013), while ROMI represents theMJO convection (Kiladis

et al. 2014). Another possibility is the existence of a shift in

the geographic locations of the MJO phases associated de-

fined using ROMI compared with those defined using

RMM. However, Kiladis et al. (2014) showed that the

maximum correlation between OMI (the nonrealtime

version of ROMI) and RMM occurs at lags from22 to

4 days, and thus these two indices do represent MJO

phases with similar (while not exactly the same) geo-

graphic location.

While not perfect, the candy plot analyses (Fig. 11)

suggest that the S2S models capture the shifts of the

favorable MJO phases. Except in the JMA model, the

pattern correlations between simulated and observed

MJO–TC relationships are higher when MJO is defined

by RMM than by ROMI. This is an indication that S2S

models better simulate the influence ofMJOwind signal

on TC frequency than they simulate the influence of the

MJO convection signal. The CMA and MetFr models

are the two extreme cases because their simulations of

the ROMI defined MJO–TC relationship yields cor-

relations with observations that are only 11% and 5%,

while in the case of RMM the correlation coefficients

are 41% and 42%, respectively.

Next, we analyze the contribution of the MJO to

S2S models’ prediction skill by grouping the forecasts

by MJO phase. Using BSSc as an example, first we

calculate the difference of BSScjmjo (i.e., the BSSc
conditioned on theMJO phase) and BSSc: dBSScjmjo5

BSScjmjo 2 BSSc. Positive dBSScjmjo means that fore-

casts initialized at the MJO phase (denoted mjo) con-

tribute positively to BSSc, which is calculated using the

full dataset. Then, we use lag analysis to examine the

MJO–BSSc relationship.

Figure 12 shows that the positive dBSSc (red shading)

is in phase with the positive TC activity anomalies (black

contour) in the ECMWF simulations, when the MJO is

defined by ROMI. Similar results are found when MJO

is defined by RMM (not shown). In other words, the

ECMWF model has better skill in predicting total TC

occurrence during favorable MJO phases than unfa-

vorable ones. The pattern correlation coefficients be-

tween the relationships of MJO–TC and MJO–BSSc in

the seven TC basins from the six S2S models are shown

in Table 2. In most cases, the S2S models have positive

correlation coefficients, meaning that they likely have

better skill in predicting total TC occurrence during favor-

able MJO phases. Exceptions include the BoM model in

FIG. 9. Candy plots for the MJO–TC relationship in the obser-

vations. The color of each candy indicates the PDF (%) of TC

frequency in the correspondingMJOphase in the basin. The sumof

the circles across the MJO phases in each basin is 100%. The black

circle at the edge indicates that the value is above the 90th per-

centile while the cross symbol (3) at the center means the value is

below the 10th percentile. (a) RMM is used to define MJO phases

and (b) ROMI is used.We use only the data fromMJO events with

a magnitude larger than 1.
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the ENP andATLwhen theMJO is defined by RMM, and

the CMA model in the ENP and ATL when the MJO is

definedbyROMI.The relationships betweenMJO–TCand

MJO–BSSc are significant only in a few TC basins in the

JMA and NCEP models. In contrast, the relationships be-

tween MJO–BSSm and MJO–TC in the ECMWF model

are not as strongly in phase (Fig. 13). For the ECMWF

model, the pattern correlation coefficients are still posi-

tive in most TC basins (Table 3) except in the ENP and

SPC when the MJO is defined by ROMI. In the BoM

model, theMJO–BSSm relationship is negatively related to

the MJO–TC relationship, indicating that the BoM model

has better skill in predicting the anomaly of TC occurrence

during the suppressed phases than the active ones.

While the impacts of theMJO phase on the prediction

skill (whether BSSc or BSSm) vary by basin and bymodel,

Tables 2 and 3 suggest that favorable MJO phases are as-

sociatedwith better forecasting skills for predicting total TC

occurrence. Favorable MJO phases are associated with

better BSSm in the ECMWF and CMAmodels in most TC

basins butnot in othermodels. It is not clear to us why there

is no general relationship between favorable MJO and

BSSm, since the MJO is associated with subseseasonal

TC variability. Causal connections between the MJO

phases and BSSc and BSSm are left for future research.

6. ACE prediction

Next, we briefly discuss S2S models’ performance

in predicting ACE. As mentioned in section 2, the

ACE forecasts are analyzed using RPSSc and RPSSm
(section 2d). Due to insufficient horizontal grid spacing,

most S2S models are unable to simulate either the TC’s

core structure or the occurrence of themost intense TCs.

In the case of the ECMWF model, another reason for

low-intensity values is that TC occurrence was derived

using a 1.58 grid, which corresponds to a lower resolution

than the original model grid (0.58). The strongest TC

FIG. 10. Observed lag plot of TC occurrence anomaly (%) based on RMM and ROMI. Gray dots showwhere the anomaly is statistically

significant. Data are normalized by the number of the MJO days in each phase.
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winds generated by the S2S models are around 50 kt

(1 kt’ 0.51m s21) (Lee et al. 2018), except for the BoM

model (60–70kt), which has 28 horizontal resolution.

The BoM model, however, might be reaching higher

values of wind speed than expected, as a 28 horizontal

resolution model should not be able to generate storms

with such strong winds (Davis 2018).

To correct the low-intensity bias in the S2Smodels, we

apply quantile matching, similar to that in Camargo and

Barnston (2009). One can also categorize the predicted

and observed ACE into 6 categories using their respec-

tive thresholds. Here we adjust the forecast intensities

before calculating ACE, so that the observed thresholds

are used for all models. Results from the RPSSc analyses

(Fig. 14) suggest that the ECMWF model is skillful in

predicting regional TC intensity in all basins at all leads.

BoM and MetFr models are skillful in most TC basins.

The prediction skill scores of the NCEP and CMA

models are the lowest among the six S2S models,

though CMA has positive RPSSc values up to 4 weeks

in the SIN. ECMWF has skill in predicting ACE

anomaly (RPSSm). In the WNP and SIN, the model is

skillful up to 2 weeks, while in other basins only at week

1. In the same way that a model’s occurrence prediction

skill is influenced by its ability in capturing the genesis,

the S2S models’ skill predicting ACE is influenced by

its ability in capturing observed genesis and occur-

rence. Isolating such impacts is left for a future study, as

is the calibration of ACE.

7. Conclusions

The subseasonal (week 1–4) prediction skills of

probabilistic forecasts of TC occurrence (genesis with

FIG. 11. As in Fig. 9, but for week-2 forecasts of the S2S models. The percent number in the title of each figure shows the pattern

correlation between model simulations and observations from Fig. 9.
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subsequent daily position) and accumulated cyclone

energy (ACE), at both basin and regional spatial scales,

are examined using reforecasts from the BoM, CMA,

ECMWF, JMA, MetFr, and NCEP in the S2S dataset.

We use the Brier skill score (BSS) for evaluating the

TC occurrence predictions, and the ranked probabi-

listic skill score (RPSS) for ACE. Both quantities are

evaluated over 158 in latitude 3 208 in longitude re-

gions (Fig. 1). The forecasts are defined as skillful

when they outperform the climatological forecasts,

defined by either the seasonal mean constant clima-

tology (BSSc and RPSSc) or the monthly varying cli-

matology (BSSm and RPSSm). Thus, BSSc and RPSSc
evaluate the models’ ability to forecast the observed

TC activity, including its seasonality, while BSSm and

RPSSm considers only the TC activity deviation from

that seasonality. Additionally, we investigate how the

occurrence prediction skill is affected by imperfect

genesis predictions and how various calibration schemes

impact a model’s prediction skill. We also systematically

examine the dependence of S2Smodels’ prediction skills

on MJO phase.

Among the six models examined here, the ECMWF

model has the best performance (Fig. 3). It is skillful in

predicting TC occurrence up to 4 weeks in all TC basins,

except in the NI where themodel is skillful up to week 3.

The model is also skillful in predicting TC occurrence

anomaly 2–3 weeks in advance. Following the ECMWF

are the MetFr and BoM models, which are skillful in

predicting TC activity 4 weeks in advance in most TC

basins. They are not skillful in predicting the TC oc-

currence anomaly, however. The JMA model is skillful

in predicting storm occurrence 2 weeks in advance,

while the CMA and NCEP models have no skill in

predicting either TC occurrence or anomalies at all TC

basins and leads. The prediction skills of the CMA and

NCEP models may be limited by their small ensemble

sizes as discussed in Lee et al. (2018). In addition to the

different ensemble sizes, the S2S data periods are also

different, which may also affect the S2S models’

FIG. 12. ECMWF lag plot of BSSc anomaly (BSScjmjo 2 BSSc) based on the ROMI index. BSScjmjo is the BSSc using only forecasts at

specified MJO phases. Note that the color scheme is centered at 0, and thus the reddish (bluish) color indicates a positive (negative)

contribution from MJO favorable (suppressed) phases. We only use data for MJO events with magnitudes larger than 1. The contours

show the simulated MJO–TC relationships, similar to those shown in Fig. 10.

TABLE 2. Pattern correlation coefficients between the lag plots of

TC occurrence anomaly (%) and MJO and those of BSScjmjo 2 BSSc
and MJO. Positive (negative) values correspond to favorable

(suppressed) MJO phases having a positive (negative) impact onto

BSSc. Correlations significant at the 95% level (p value, 0.05) are

shown in bold.

Models

Basins BoM CMA ECMWF JMA MetFr NCEP

BSSc vs RMM

NI 0.15 0.38 0.58 20.02 0.23 0.27

WNP 0.29 0.30 0.66 0.32 0.27 0.53

ENP 20.25 0.29 0.23 0.52 0.32 20.08

ATL 20.22 0.09 0.17 0.27 20.01 20.03

SIN 0.61 0.58 0.64 0.05 0.44 0.57

AUS 0.38 0.46 0.46 0.17 0.22 0.35

SPC 0.31 0.74 0.37 0.08 0.26 0.45

BSSc vs ROMI

NI 0.47 0.63 0.38 20.04 0.16 0.07

WNP 0.55 0.45 0.33 0.09 0.32 0.37

ENP 0.13 20.16 0.27 0.26 0.01 20.10

ATL 0.09 20.31 0.43 0.22 0.13 20.00

SIN 0.68 0.26 0.34 20.04 0.23 20.07

AUS 0.57 0.51 0.51 20.02 0.28 0.23

SPC 0.25 0.35 0.33 20.18 0.29 0.63
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performance. By examining the BSS conditioned on the

same TC (no genesis errors), we showed that the most

challenging task in subseasonal occurrence predictions

is to forecast genesis correctly (Fig. 5). In the case of the

ECMWF model, correct genesis predictions can im-

prove prediction skills (for TC occurrence anomaly)

from 2 to 4 weeks. The S2S models’ performance for

ACE prediction (Fig. 14) follows their performance for

the occurrence predictions, since the storm frequency

largely influences ACE. The ECMWF,MetFr, and BoM

model skillfully predict ACE up to 3–4 weeks. The

ECMWF model is the only one that is skillful in pre-

dicting the ACE anomaly 2 weeks in advance, however.

Calibration of the mean probabilistic forecast error

has been used for improving TC occurrence prediction

(e.g., Camp et al. 2018; Gregory et al. 2019). Here we

showed that while calibrating the mean bias can reduce

the unconditional bias component of the BSS, it does not

always lead to a reduction of conditional bias [Fig. 6 and

Eqs. (13) and (14)]. As a result, this calibration method

may lead to lower BSS values (or worse skill). To know

whether a calibration of the mean probabilistic forecast

error benefits the BSS evaluation, one can compare

the ratio between the mean forecast probability p

and the mean observed probability o to the threshold

(2po/p2)2 1 [Eqs. (15) and (16)]. The prediction skill

of models with large mean bias, such as CMA and

NCEP, can be significantly improved with this cali-

bration method. To calibrate the mean square prob-

abilistic forecast error, the metric that BSS measures,

we used the linear regression approach proposed by

van den Dool et al. (2017). For the in-sample dataset,

the linear regression method improves the S2S model

prediction skill globally. For the out-of-sample da-

tasets, this method can improve the models’ skill

everywhere, except in areas where the sample TC

size is too small.

Next, the dependence of the S2S models’ TC forecast

skill on MJO is examined using both RMM and ROMI.

The S2S models’ prediction skill in TC occurrence

(including the seasonality) is positively related to the

favorable MJO phases (Table 2). The relationship be-

tween MJO phases and the models’ prediction skill for

TC occurrence deviation from the seasonality varies by

models and basin (Table 3). This finding is consistent

with our previous work on genesis anomaly prediction

(Lee et al. 2018), which showed that there is no clear

relationship between MJO and genesis prediction

skill. An unexpected result is that the ROMI–defined

favorable MJO phases have an eastward shift when

TABLE 3. As in Table 2, but for BSSm.

Models

Basins BoM CMA ECMWF JMA MetFr NCEP

BSSm vs RMM

NI 20.12 0.25 0.42 20.06 0.13 0.17

WNP 20.26 0.20 0.13 20.10 20.21 0.09

ENP 20.37 0.29 20.07 0.21 20.05 20.16

ATL 20.49 0.11 0.28 0.01 20.23 0.05

SIN 0.36 0.17 0.35 20.06 0.12 0.45

AUS 20.44 0.28 0.24 0.02 20.03 20.05

SPC 20.41 0.74 20.10 0.15 0.00 0.34

BSSm vs ROMI

NI 0.05 0.53 0.14 20.21 0.11 20.02

WNP 20.26 0.46 20.10 20.20 0.05 0.18

ENP 20.26 20.03 20.36 0.07 20.12 0.06

ATL 20.17 20.41 0.14 0.07 20.26 0.04

SIN 0.28 20.23 0.15 20.42 0.10 20.24

AUS 20.46 0.27 0.28 20.19 0.01 20.34

SPC 20.59 0.35 20.26 20.23 0.25 0.52

FIG. 13. As in Fig. 12, but for BSSm.

JUNE 2020 LEE ET AL . 935

Unauthenticated | Downloaded 08/27/22 09:19 PM UTC



compared to those defined by RMM (Fig. 9). To the best

of our knowledge, there has not yet been a satisfying

answer in the literature to explain why this is the case.

Based on our findings and those in Lee et al. (2018),

the ECMWF model is the most skillful ensemble pre-

diction system for subseasonal TC genesis, occurrence

and ACE forecasts in the S2S dataset, followed by BoM

and MetFr. The forecast skill in predicting the anomaly

of TC activity from the seasonal climatology remains

low, however, even in these models. Genesis prediction

is the key bottleneck causing this low prediction skill.

Our results highlight the importance of improving

our fundamental understanding of TC genesis in or-

der to obtain more skillful subseasonal TC predictions.

Calibrating subseasonal probabilistic TC predictions is

not easy, but a comprehensive calibration method can

largely increase models’ prediction skills and should

be further explored in the future. It should be men-

tioned that this research and Lee et al. (2018) present

the prediction skill directly derived from the refor-

ecasts in the S2S dataset. Our results may not reflect

the latest prediction skill of the operational centers

mentioned here because they may have further im-

proved since the collections of the S2S dataset. Also,

reforecasts in the S2S dataset have small ensemble

sizes, except for BoM, and both BSS and RPSS punish

small ensemble sizes. Such a negative impact maybe

even more significant for NCEP and CMA because

both models have only four members in the S2S da-

tasets. Variants of the RPSS and BSS (Weigel et al.

2007), which take into account the ensemble size, may

be used in the future to examine model skill if the

ensemble size was infinite.
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