

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 26, 2022

Subsequence Generation for the Airline Crew Pairing Problem

Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David; Larsen, Jesper

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rasmussen, M. S., Lusby, R. M., Ryan, D., & Larsen, J. (2011). Subsequence Generation for the Airline Crew
Pairing Problem. DTU Management. DTU Management 2011 No. 9
http://www.man.dtu.dk/Om_instituttet/Rapporter/2011.aspx

https://orbit.dtu.dk/en/publications/0259d40d-c399-4940-a390-eef948dd2a37
http://www.man.dtu.dk/Om_instituttet/Rapporter/2011.aspx

Matias S. Rasmussen
Richard M. Lusby
David M. Ryan
Jesper Larsen

May 2011

Report 9 2011

DTU Management Engineering

Subsequence Generation for the
Airline Crew Pairing Problem

Subsequence Generation for the Airline Crew

Pairing Problem

Matias Sevel Rasmussen1, Richard M. Lusby1, David M. Ryan2, and
Jesper Larsen∗,1

1Department of Management Engineering, Technical University of
Denmark, Denmark

2Department of Engineering Science, The University of Auckland,
New Zealand

May, 2011

Abstract

Good and fast solutions to the airline crew pairing problem are
highly interesting for the airline industry, as crew costs are the biggest
expenditure after fuel for an airline. The crew pairing problem is typ-
ically modelled as a set partitioning problem and solved by column
generation. However, the extremely large number of possible columns
naturally has an impact on the solution time.

In the solution method of this work we severely limit the number of
allowed subsequent flights, i.e. the subsequences, thereby significantly
decreasing the number of possible columns. Set partitioning problems
with limited subsequence counts are known to be easier to solve, re-
sulting in a decrease in solution time.

The problem though, is that a small number of deep subsequences
might be needed for an optimal or near-optimal solution and these
might not have been included by the subsequence limitation. There-
fore, we try to identify or generate such subsequences that potentially
can improve the solution value.

We benchmark the subsequence generation approach against a clas-
sical column generation approach on real-life test instances. We con-
sider the LP relaxation and compare the quality and the integrality of
the solutions. The LP solutions from the subsequence generation ap-
proach are less fractional, but it comes at the cost of a worse solution
quality.

∗Corresponding author: E-mail: jesla@man.dtu.dk. Address: Department of Man-
agement Engineering, Technical University of Denmark, Produktionstorvet, Building 424,
DK-2800 Kgs. Lyngby, Denmark. Tel.: +45-45253385. Fax: +45-45933435.

1

The approach in the present paper is novel. To our knowledge gen-
eration of subsequences have not been described and tested previously
in the literature.

Keywords: Airline crew pairing, Subsequence generation, Column gen-
eration, Limited subsequence, Crew scheduling, Real-life application, Set
partitioning, LP relaxation

1 Introduction

Crew costs are the second largest expense for an airline company. Only
fuel costs are higher, see Gopalakrishnan and Johnson (2005). Here it is
also reported that, for instance, American Airlines spent USD 1.3 billion
on crew in 1991. The expenditures for an airline can roughly be divided
equally between three areas: Fuel, crew, and other costs (buildings, main-
tenance, administrative staff, etc.). As fuel costs cannot be controlled by
an airline, crew costs are probably the most important area for potential
savings. Therefore, airline crew scheduling has received a lot of attention
in the literature, and consequently, optimisation is heavily used by the air-
lines. With such a large amount of money being spent on crew, even small
improvements in how they are scheduled can result in significant savings.

The airline crew pairing problem which is dealt with in this work is a part
of a larger series of optimisation problems, see Figure 1. The times are for
Air New Zealand’s domestic scheduling. The first step is flight timetabling.
In this step a schedule of all the flights that the airline will fly is constructed.
The next steps are fleet assignment, where aircraft types are allocated to the
flights, and aircraft routing, where the aircraft routes are laid. These steps,
however, do not directly influence the crew scheduling. The crew pairing
step (which is the focus of this paper) finds sequences of flights that can be
flown in a feasible way at a minimum cost. These sequences of flights are
called pairings and are anonymous, that is they are not associated with a
specific crew member. The crew pairing problem can be solved separately for
cockpit crew and cabin crew, and it is also solved separately per aircraft type
qualification. The last step is crew rostering where pairings are combined
to form actual rosters for individual crew member. The crew pairing and
the crew rostering steps are together called airline crew scheduling.

This paper presents a novel subsequence generation approach to solving
the crew pairing problem. The subsequence generation approach is to our
knowledge not found elsewhere in the literature. We consider the linear pro-
gramming (LP) relaxation of a set partitioning formulation of the problem.
The idea is to generate subsequences of flights that appears in the optimal
pairings instead of—as in classic column generation—generating the actual
pairings. Whenever a subsequence is found, that is generated, a whole set of

2

Figure 1: The airline crew scheduling process.

pairings containing that subsequence is enumerated and added to the LP re-
laxation. The devised solution algorithm is tested on real-life data instances
and benchmarked against classic column generation.

In Gopalakrishnan and Johnson (2005) a recent survey of airline crew
scheduling can be found. The authors describe the different approaches that
have been used over the last two decades, and point out promising directions
for future work in the area. The crew pairing problem is treated separately
and in detail. Barnhart et al. (2003) give a text book description of air-
line crew scheduling and also have a detailed section on crew pairing with
examples. They formulate the crew pairing problem as a set partitioning
problem and describe how the problem can be solved as a weekly problem
or a dated problem. The weekly problem approach exploits repetitive pat-
terns of flights over the weekdays, and is thus able to break the problem into
smaller parts, which are then combined. This division of the problem is of
course a trade-off against optimality. The dated problem approach on the
other hand solves the problem directly, and is necessary for flight timetables
where flights are not repeated several times a week. The complex cost struc-
tures for pairings are described by Gopalakrishnan and Johnson (2005) and
Barnhart et al. (2003). Andersson et al. (1998) describe different approaches
to crew pairing and give a detailed introduction to the Carmen (now Jeppe-
sen) system for solving the crew pairing problem. The Carmen system uses a
priori column generation; however, it has separated the checking of the pair-
ing requirements into a special rules language. The Carmen system uses the
algorithm described by Wedelin (1995). Desaulniers et al. (1998) present
the crew pairing model as a special case of a generic air crew scheduling
model, that also covers, for instance, rostering. They solve the crew pairing
problem with column generation. AhmadBeygi et al. (2009) develop an in-
teger programming model for generating pairings. The model can be used
especially in research to overcome the time-consuming task of implement-
ing a pairing generator. Butchers et al. (2001) describe airline optimisation
problems in general and the crew pairing problem in particular for Air New
Zealand’s domestic and international schedule. Also here the crew pairing
problem is formulated as a set partitioning problem. Lavoie et al. (1988)

3

use a set covering formulation and perform column generation on a duty
period network. A duty period is a sequence of flights that corresponds to a
day’s work, see more in Section 2. Graves et al. (1993) use a set partitioning
formulation and do column generation on a network of flights. Vance et al.
(1997) use a two-stage approach. First flights are combined to form duty pe-
riods, and next duty periods are combined to form pairings. Using dynamic
constraint aggregation crew scheduling can be solved in an integrated ap-
proach, see Saddoune et al. (2011). In this way all constraints are virtually
present in the master problem, but in an aggregated form, where basically
constraints belonging to the same pairing are just represented by one active
constraint. The update of these active constraints lead to a complex setup
in the interplay with the column generator. This, though, does at present
remain a very complex and time-consuming approach limited to academic
environments only.

The remainder of this paper is organised as follows. In Section 2, we
present a formal definition of the airline crew pairing problem. In Section 3,
we introduce the concept of subsequence limitation and the motivation be-
hind it. In Section 4, we develop the suggested subsequence generation
solution algorithm. In Section 5, we present real-life test instances, and
we show benchmark results from the comparison between the subsequence
generation approach and a classical column generation approach. Finally,
in Section 6, we conclude on the work and point out directions for future
research.

2 Problem formulation

Let F denote the set of flights in the flight schedule for an airline. A duty
period is a sequence of flights from F which can be flown by an anonymous
crew member. A duty period must comply with several rules and regulations
in order to be feasible. A crew member can either be operating or passen-
gering (sometimes called deadheading) on a flight. Passengering allows crew
members to be repositioned in order to operate other flights. A duty period
consists of flying time, where the crew member is operating the flight, and
idle time, which together give the elapsed time. Each duty period has a
maximum flying time and a maximum elapsed time, as well as a maximum
number of flights that can be operated. Duty periods must also respect
meal break regulations. Duty periods are separated by rest periods, which
must have a minimum length. Starting and ending a duty period impose a
sign-on and sign-off time, respectively.

A pairing (sometimes called a tour-of-duty) is a sequence of duty periods
and rest periods. Every airline has a set of crew bases, i.e. airports from
where crew can start working. A feasible pairing must start and end at
the same crew base. Pairings can only contain up to a maximum number

4

Base Base

Duty period Duty periodRest period Operated f l ight

Deadheading

Rest

Figure 2: Illustration of a pairing.

of duties, and a pairing is only allowed to stretch over a certain number of
mandays. The manday count is increased every time midnight is passed in
the time zone where the pairing originates. Different airlines use different
and quite complex ways of calculating the cost of a pairing, for examples
of this see Gopalakrishnan and Johnson (2005) and Barnhart et al. (2003).
For the research carried out in the present paper, we use the pairing’s idle
time as the cost of the pairing. That way crew utilisation is maximised. An
illustration of a pairing can be seen on Figure 2.

The airline crew pairing problem is then to find the set of pairings that
covers all flights exactly once at minimum cost. Let P be the set of feasible
pairings. The problem is modelled as a set partitioning problem. Each
row corresponds to a flight and each column corresponds to a pairing. Let
m̄ = |F| be the number of flights and n = |P| be the number of pairings.
Now, the pairings can be represented by a binary m̄ × n matrix A, where
the entries are defined by aij = 1 if flight i ∈ {1, . . . , m̄} is contained in
pairing j ∈ {1, . . . , n}, and aij = 0 otherwise. Let cj be the cost of pairing
j ∈ {1, . . . , n}. The decision variables xj for j ∈ {1, . . . , n} govern the
inclusion of pairing j in the solution and are binary. The mathematical
programme can then be written as

minimise c>x

subject to Ax = 1

x ∈ {0, 1}n .

Most airlines, however, extend this standard model to include the so-called
base constraints. These constraints are required for distributing the pairings
amongst the crew bases in a way that matches the actual distribution of
where the crew is located geographically. Base constraints can be defined in
many different ways. In order to simplify matters, we have chosen to include
only one type of base constraint. A base constraint puts a lower or an upper
bound on the number of mandays that can be worked out of a set of crew
bases in a given time period. A pairing contributes to a base constraint, if
the pairing origins from that set of crew bases in the specified time period.

5

The pairing’s contribution to the base constraint is the manday count of the
pairing and given as dj , where j ∈ {1, . . . , n}.

Let B denote the set of base constraints and set m = m̄ + |B|. We can
then augment A to an m× n matrix where

aij =

dj if pairing j originates from the set of crew bases and in the

time period specified by base constraint i,
0 otherwise

for i ∈ {m′+ 1, . . . ,m} and j ∈ {1, . . . , n}. The base constraints are of less-
than-or-equal or greater-than-or-equal type, and most often have non-unit
right hand sides. We therefore end up with a generalised set partitioning
model, where slack and surplus columns are included to convert the inequal-
ity base constraints to equality constraints:

minimise c>x

subject to Ax = b

x ∈ {0, 1}n .

Here, the flight set partitioning constraints for i ∈ {1, . . . , m̄} have bi = 1,
and the base constraints for i ∈ {m̄ + 1, . . . ,m} have bi ∈ Z+ ∪ {0}.

We allow for the possibility of leaving flights uncovered at a high objec-
tive value penalty, and we allow for the violation of base constraints, also
with a high penalty. This is modelled by having feasibility singleton columns
for flights and for base constraints in the model.

The number of possible pairings in the set partitioning formulation is
very large, so the pairings are typically only enumerated implicitly by column
generation. In the present approach we will, however, not perform column
generation, but subsequence generation.

3 Subsequence limitation

The subsequences for a flight f ∈ F are the set of pairs (f, g) ∈ F2 where
g ∈ F is a subsequent flight that can follow f in a feasible way in a pairing.
We denote this set S(f) ⊂ F2. Subsequences are illustrated on Figure 3(a).
In general terms for an m× n zero-one matrix A with entries aij , the sub-
sequence set S(s), for any row s is given by

S(s) = {(s, t) : [∃j ∈ {1, . . . , n} : asj = 1, aij = 0 for s < i < t, atj = 1]} .

In the example on Figure 4 we have S(1) = {(1, 3), (1, 4), (1, 6)}. Matrices
where the subsequence count |S(s)| ≤ 1 for all s ∈ {1, . . . ,m} are said to
have unique subsequence, and such matrices are balanced, see Ryan and
Falkner (1988). Exploiting results from graph theory, see Conforti et al.
(2001), we know that the LP relaxation of a set partitioning problem with a

6

Airport
Time

Ingoing flight

Outgoing flight

(a) Subsequences.

Airport
Time

Ingoing flight

Outgoing flight

Disallowed flight

(b) Severely limited subsequences.

Figure 3: Subsequences for an ingoing flight.

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 1 1 0

1 0 1 0 1 0 1

0 0 0 0 0 0 1

0 1 1 0 0 1 0

Figure 4: Subsequences for row 1.

7

balanced A matrix has an integral optimal solution. Intuitively, the closer
we get towards unique subsequence, the closer we get to naturally integral
LP solutions. Ryan and Falkner (1988) show experimental results to support
this.

Therefore, we severely limit the subsequence count for each flight when
generating pairings, see Figure 3(b). In this example the first disallowed
flight is removed, because there is not enough ground time for a robust
aircraft change. The three last disallowed flights are removed, because they
have a lot of ground idle time, so it is not likely (though still possible) that
they will end up in an optimal solution.

The possible subsequent outgoing flights for an ingoing flight f are
now restricted to be in the limited subsequence set L(f) ⊆ S(f). Let
S =

⋃
f∈F S(f) denote the set of all subsequences for all flights, let L =⋃

f∈F L(f) denote the set of limited subsequences for all flights, and let O
denote an optimal subsequence set, i.e. an optimal solution, for all flights.
Naturally, O has unique subsequence due to the set partitioning constraints.
The relations between these three sets can be illustrated by a Venn diagram,
see Figure 5(a). There could, of course, be more than one set of optimal
subsequences, but we only show one set on the figure.

The disadvantage of this limited subsequence approach is that some op-
timal subsequences might be excluded. However, the approach results in
significantly fewer possible pairings, and therefore a total enumeration of
the pairings in L can be carried out. Moreover, when the LP relaxation is
solved, fewer fractions are expected, as the subsequence count of all flights
per construction is low.

4 Subsequence generation

To remedy the possible lack of optimal subsequences, the limited subse-
quence set is made to be dynamic. The core idea is to generate subse-
quences that will decrease the objective value. We exploit the fact, that
in crew pairing the chosen subsequences will most often be close in time,
which is natural, keeping the pairing cost definition in mind. Therefore, the
hope is that only relatively few subsequences with much idle time have to
be generated.

A candidate subsequence set C(f) is defined for all flights f ∈ F , and
again we define C =

⋃
f∈F C(f). We have L(f) ⊆ C(f) ⊆ S(f) for all

f ∈ F and L ⊆ C ⊆ S, which is shown in Figure 5(b). The idea is now
to expand L with attractive subsequences from C. A subsequence s ∈ C
is attractive if it is likely that s ∈ O, where again O is a set of optimal
subsequences. Iteratively an attractive subsequence set A ⊆ C is found and
added to L. Although Figure 5(b) shows the set of optimal subsequences to
be contained in the candidate subsequence set, there is no guarantee for this.

8

All subsequences

Limited subsequence set

Optimal subsequences

(a) Optimal subsequences might be miss-
ing.

All subsequences

Limited subsequence set

Optimal subsequences

Candidate subsequence set

(b) Limited subsequence set is dynamic.

Figure 5: The relations between the set of all subsequences S, the limited
subsequence set L, the candidate subsequence set C, and an optimal subse-
quence set O.

In Algorithm 1 the outline of the algorithm for solving the LP relaxation of
the pairing problem can be seen.

Algorithm 1 Subsequence generation

1: Find an initial limited subsequence set L
2: Enumerate all pairings over L
3: Solve the LP relaxation on these pairings
4: while stop criteria not met do
5: Based on the LP dual vector, identify a set of attractive subsequences

A ⊆ C
6: Enumerate pairings for each of the subsequences in A
7: Set L := L ∪ A
8: Expand the LP relaxation with the enumerated pairings and re-solve
9: end while

The means that is used to identify attractive subsequences is the dual
vector from the LP solution. The dual vector is passed on to a pairing
generator that produces negative reduced cost columns on a the candidate
subsequence set C. The pairing generator is a resource constrained shortest
path solver, which is run on subsequences from C. The shortest path solver
is a labelling algorithm, see for instance Irnich and Desaulniers (2005). The
negative reduced cost columns, that are returned from the pairing generator,
are analysed in order to collect statistics about the subsequences in C\L.

The pairing generator is run sequentially on N different networks con-
sisting of subsequences Ck ⊆ C for k ∈ {1, . . . , N} with

⋃N
k=1 Ck = C. The

networks are kept small, so that the shortest path solver can execute very
fast. In crew pairing there are four classes of subsequences that are very
important to recognise:

9

1. Follow-the-aircraft subsequences: A follow-the-aircraft subsequence is
a subsequence, where the crew flies out on the same aircraft as they
flew in with. This type of subsequence is very robust towards pos-
sible delays, and one would expect the majority of the subsequences
in an optimal crew pairing solution to be follow-the-aircraft. This
expectation is supported by data from Air New Zealand. The follow-
the-aircraft subsequence is unique, as there can only be one subsequent
flight on the same aircraft. Most often the follow-the-aircraft subse-
quence will be low-cost, because the minimum sit time for crew is
close to the minimum turnaround time for the aircraft. Being unique,
robust, and low-cost, the follow-the-aircraft subsequence is the most
attractive subsequence class.

2. Robust subsequences: A crew coming in on flight f can leave on flight
g, if the minimum sit time is respected. However, if flight f is delayed
and the time difference between arrival and departure of the two flights
is exactly the minimum sit time, then flight g will also be delayed. A
way to try avoid this delay propagation, is to add some buffer time
to the minimum sit time. This of course comes at a higher pairing
cost, as the crew might get unnecessary idle time. Studies in Ehrgott
and Ryan (2002) show that delays increase during the day (and reset
at midnight), so the buffer time should also increase during the day.
We can now define a robust subsequence, as a subsequence, where the
time difference between arrival and departure respects the buffer time
needed at the given time of day.

3. Meal break subsequences: Naturally, crew is entitled to meal breaks,
which is controlled by complex regulations. A meal break subsequence
is a subsequence, where there is sufficient time for a meal break either
inflight or on the ground between the flights.

4. Overnight subsequences: An overnight subsequence is a subsequence,
where the time difference between arrival and departure is longer than
the minimum rest time. An overnight subsequence is needed for a
crew that flies in to a non-base airport late at night, where there is no
subsequent flight to a home base. The overnight subsequence is also
needed for a crew to fly out of a non-base airport early in the morning,
where there has been no preceding incoming flight.

Follow-the-aircraft and robust subsequences are preferred from a pairing
cost and robustness point of view, but the meal break and overnight sub-
sequences are needed in order to make the pairings feasible and cover all
flights. We will work with three subset of the candidate subsequence set C
(so we have N = 3), based on these classes. The set C1 consists of follow-
the-aircraft subsequences and robust subsequences. The set C2 consists of

10

follow-the-aircraft subsequences and meal break subsequences, and C3 con-
sists of follow-the-aircraft subsequences and overnight subsequences. The
motivation for this setup, is, that we will now have networks for the pair-
ing generator, that search specifically for robust, meal break, or overnight
subsequences.

In order for the pairing generator to solve quickly, the subsequence count
for all flights is kept low, that is |Ck(f)| ≤ nk, where nk is a small integer
less than, say, five for all k ∈ {1, . . . , N}. It is important to note that nk

is an upper bound on the subsequence count in the given set for a flight.
Consider for instance a flight going in to a non-busy airport. If the first
robust outgoing flight (other than the follow-the-aircraft flight) departs, say,
nine hours after the arrival of the ingoing flight, we do not include the flight
as a robust subsequence, because it is unlikely that a pairing with such
excessive idle time will end up in an optimal solution. Similar reasoning
goes for the meal break and the overnight subsequence sets.

The set C1 is used as the initial limited subsequence set L, where total
enumeration is carried out.

For each subsequence s ∈ C we maintain four measures that are accu-
mulated over all iterations and updated after analysis of the set of negative
reduced cost columns returned by the pairing generator:

1. Count of columns containing s.

2. Count of different dual vectors that have produced columns containing
s.

3. Sum of the reduced cost of columns that contain s.

4. Sum of the contribution from s to the negative reduced cost of columns
containing s.

These measures can all be computed and updated quickly, which is impor-
tant with respect to keeping the computational overhead of the approach at
a minimum. The measures are correlated, so a high rank in one measure
could also give a high rank in some of the other measures. In each iteration
some subsequences are identified as attractive based on these four measures
and added to A. The goal is, of course, to be able to, as early as possible,
identify the subsequences that potentially could end up in an optimal or
near-optimal solution. Ideally one would identify subsequences that were
non-dominated on all four measures and add these to A. However, finding
non-dominated points in four dimensions is very time-consuming, so instead
we use just add one of the four measures, or we alternate between them.
The idea of using dual information to identify attractive flights is also used
by Barnhart et al. (1995). Here, only passengering flights are searched for,
and added to a standard column generation approach.

11

Init ial pairings

LP solver

Column generator

DualsColumns

(a) Classic column genera-
tion.

Init ial subsequence set

LP solver

Subsequence generator

Duals
Modified

subsequence
set

Column generator(s)

DualsColumns

(b) Subsequence generation.

Figure 6: Difference between classic column generation and subsequence
generation.

Whenever a subsequence s is identified as an attractive subsequence, a
whole set of columns which include the new subsequence is added to the LP
relaxation. Enumeration is carried out in one of the following two ways:

1. Enumeration of all feasible pairings in C containing s.

2. Enumeration of all feasible pairings in L containing s.

The reason why a relatively large set of columns is added to the LP re-
laxation, is, that whenever a subsequence is identified as attractive, it is
believed that it is likely to end up in an optimal solution. And hence, the
optimal solution will contain one of the enumerated columns. The first way
of enumerating gives rise to more columns in the LP relaxation. This is ben-
eficial when it is strongly believed that a “right” subsequence is identified.
The second way of enumerating is more restrictive on the set of columns that
are added to the LP relaxation. Hence, the second enumeration scheme is
expected to better at keeping the good integer properties of the initial lim-
ited subsequence set. With this scheme, adding a subsequence only increases
the subsequence count with one for a single flight, namely for the first flight
in the added subsequence. The subsequence generation algorithm is termi-
nated, when the objective value has not improved significantly over a given
span of iterations.

The differences between classic column generation and subsequence gen-
eration can be illustrated as the flowchart comparison in Figure 6. Subse-
quence generation has an extra part where columns are analysed.

12

w
0
8
r0

1
a

w
0
8
r0

1
b

w
0
8
r0

1
c

w
0
8
r0

1
d

w
0
8
r0

1
e

w
0
8
r0

2
a

w
0
8
r0

2
b

w
0
8
r0

2
c

w
0
8
r0

2
d

w
0
8
r0

2
e

w
0
8
r0

3
a

w
0
8
r0

3
b

w
0
8
r0

3
c

w
0
8
r0

3
d

w
0
8
r0

3
e

w
0
8
r0

4
a

w
0
8
r0

4
b

w
0
8
r0

4
c

w
0
8
r0

4
d

|F| 450 430 430 370 400 380 400 320 450 350 320 420 420 450 320 400 400 350 320
|B| 5 5 5 5 4 5 5 5 5 4 5 5 5 5 4 5 5 5 5

Table 1: Characteristics for the test instances. |F| is number of flights and
|B| is number of base constraints.

5 Computational results

The goal in this section is to provide a benchmark analysis of the devised so-
lution algorithm. We will benchmark the subsequence generation approach
against a classical column generation approach. In this way, we will investi-
gate the trade-off between solution quality and integrality of the solutions.

Air New Zealand have provided us with 19 real-life data instances from
their domestic timetable. It should be noted that the domestic timetable
for Air New Zealand covers Australia and various destinations in the Pacific
Ocean. In order to allow the algorithm to terminate in reasonable time, we
have limited the number of flights in the instances. Characteristics for these
instances can be seen in Table 1.

We consider two quality measures for a solution. The first quality mea-
sure is the LP objective value. The objective value is value is the sum of
idle time for all pairings plus penalties for leaving flights uncovered and
penalties for violating base constraints. The second quality parameter is
the number of uncovered flights. A flight is uncovered, if the feasibility col-
umn for that flight is chosen (perhaps fractionally) in the LP solution. Both
quality parameters should be minimised.

To gauge the integrality of a solution, we consider two integer measures.
Let x∗ = (x∗1, . . . , x

∗
n)> denote an LP solution to the crew pairing problem.

The first integer measure counts the number of variables at value one in the
solution and is calculated as |{i ∈ {1, . . . , n} : x∗i = 1}|·100/|{i ∈ {1, . . . , n} :
x∗i > 0}|. The second integer measure counts the number of “nice fraction”-
variables in the solution, where a nice fraction is nonzero rational number
smaller than or equal to one and a multiple of 1, 1/2, . . . , 1/8. It is calculated
as |{i ∈ {1, . . . , n} : x∗i ∈ {a/b : a, b ∈ {1, . . . , 8}}}| · 100/|{i ∈ {1, . . . , n} :
x∗i > 0}|. Integer measures should be maximised. The integer measure
should give an indication of how easy or how difficult the fractions in the
LP solution would be to resolve in a branch-and-bound framework. The use
of such integer measures are based on the results from Ryan and Falkner
(1988). The last measure we compare is run time.

We test different settings of the subsequence algorithm:

1. Maximum sizes for the candidate subsequence sets for a flight nk:
Experiments are carried out with nk set to 2, 3, or 4.

13

2. Subsequence identification scheme: Either 1) count of columns, 2)
count of different duals, 3) sum of reduced costs, 4) sum of subsequence
contribution, or 5) an alternation of the previous is used.

3. Pairing enumeration scheme: Either enumeration is done over 1) C or
2) L.

We identify one subsequence per iteration, and the algorithm is terminated,
when the improvement in the LP objective value is less than 1% over a span
of 100 iterations. The pairing generator returns up to eight columns with
negative reduced cost each time it is run. For all of the 19 instances we
run the algorithm for all 30 combinations of the settings described above.
For all instances we also run a classic column generation algorithm where
no limitation of subsequences is used. In order to make a fair comparison
on quality, we set the robust buffer time to zero, so that we in effect do
not search for robust subsequences. The time-out for all test runs is set to
one hour, and all tests are run on 2.67 GHz Intel Xeon X5550 CPUs with
23.5 GB of memory. The algorithm is implemented in C++ and compiled
with g++ 4.4.0 on a Linux computer. LP relaxations are solved with the
LP solver from MOSEK version 6 using an academic license.

For all instances and for all 30 combinations of settings, we calculate
ratios R/Rben, where R denotes the value for the subsequence generation
algorithm, we want to benchmark, and Rben denotes the value for classic
column generation to benchmark against. Table 2 shows the averages over
all instances for each of the settings. For the solve time ratio it is preferable
for our algorithm to have a ratio less than 1.00, meaning that subsequence
generation is faster. For the root LP value ratio, and the uncovered ratio
it is preferable for our algorithm to have a ratio as close to 1.00 as possi-
ble, as the optimal values from classic column generation is a lower bound.
However, classic column generation times out on all instances, and there-
fore it would actually be possible to have a ratio less than 1.00. For the
“at 1”-measure ratio and the “nice fraction”-measure ratio it is preferable
for our algorithm to have a ratio larger than 1.00. From Table 2 it can
be seen that the subsequence generation algorithm is always clearly faster
than classic column generation. Classic column generation is still produc-
ing negative reduced cost columns at the one hour time-out limit. This is
probably due to high degeneracy. From the table it can also be seen that
the subsequence generation algorithm performs worse on the two quality
parameters, LP objective value and number of uncovered flights. This was
expected, as the subsequence generation algorithm is working on a limited
subsequence set and therefore is more restricted than classic column gen-
eration, which has the full set of subsequences to choose from. Still, the
conclusion that must be drawn from these averages, is, that more work on
the subsequence identification procedure must be carried out, as there are
some optimal subsequences missing.

14

Settings S
o
lv

e
ti

m
e

ra
ti

o

R
o
o
t

L
P

v
a
lu

e
ra

ti
o

U
n

co
v
er

ed
ra

ti
o

“
A

t
1
”
-m

ea
su

re
ra

ti
o

“
N

ic
e

fr
a
ct

io
n

”
-m

ea
su

re
ra

ti
o

CG 1.00 1.00 1.00 1.00 1.00
2/1/1 0.00 1.77 1.63 1.95 1.98
2/1/2 0.00 1.84 1.80 1.83 2.02
2/2/1 0.00 1.75 1.66 1.75 2.11
2/2/2 0.00 1.84 1.82 1.57 1.94
2/3/1 0.00 1.76 1.73 1.34 1.81
2/3/2 0.00 1.85 1.80 1.47 1.90
2/4/1 0.00 1.75 1.64 2.10 2.10
2/4/2 0.00 1.90 1.87 1.47 1.90
2/5/1 0.00 1.75 1.74 1.76 1.92
2/5/2 0.00 1.83 1.79 1.92 2.05
3/1/1 0.01 1.25 1.25 1.22 2.08
3/1/2 0.00 1.30 1.21 1.48 2.08
3/2/1 0.01 1.25 1.27 1.06 1.89
3/2/2 0.00 1.30 1.30 1.43 1.89
3/3/1 0.01 1.25 1.29 0.92 1.74
3/3/2 0.00 1.28 1.23 1.43 1.89
3/4/1 0.00 1.25 1.35 1.13 2.06
3/4/2 0.00 1.29 1.31 1.98 2.04
3/5/1 0.01 1.25 1.32 1.09 1.85
3/5/2 0.00 1.28 1.34 1.47 1.94
4/1/1 0.01 1.23 1.22 1.07 1.71
4/1/2 0.01 1.26 1.21 1.72 1.57
4/2/1 0.01 1.23 1.24 1.02 1.52
4/2/2 0.01 1.26 1.28 1.49 1.73
4/3/1 0.01 1.24 1.27 0.88 1.80
4/3/2 0.01 1.24 1.30 1.26 1.80
4/4/1 0.01 1.21 1.26 0.81 1.51
4/4/2 0.00 1.25 1.26 1.62 2.06
4/5/1 0.01 1.23 1.31 0.80 1.55
4/5/2 0.01 1.24 1.21 1.44 1.75
2/*/* 0.00 1.81 1.75 1.72 1.97
3/*/* 0.00 1.27 1.29 1.32 1.95
4/*/* 0.01 1.24 1.25 1.21 1.70
/1/ 0.01 1.44 1.39 1.55 1.91
/2/ 0.01 1.44 1.43 1.39 1.85
/3/ 0.01 1.44 1.44 1.22 1.82
/4/ 0.00 1.44 1.45 1.52 1.95
/5/ 0.01 1.43 1.45 1.41 1.84
//1 0.01 1.41 1.41 1.26 1.84
//2 0.00 1.47 1.45 1.57 1.90
//* 0.01 1.44 1.43 1.42 1.87

Table 2: Benchmarking of the subsequence generation algorithm against
classic column generation. Settings are read as Maximum-candidate-set-
size / Subsequence-identification-scheme / Pairing-enumeration-scheme. An
asterisk means that an average is taken over that setting.

15

One should note that the number of uncovered flights have a very large
impact on both the ‘Root LP value ratio’ and the ‘Uncovered ratio’. If, for
instance, one setting results in two out of 400 flights to be uncovered, and
a second setting leaves three out of 400 flights uncovered, then the second
setting would have a ‘Uncovered ratio’ of 1.5 when comparing to the first
setting. The same holds for the ‘Root LP value ratio’, due to the high and
dominant penalty for violating the flight constraints.

Lastly, from Table 2, it can be seen, that the subsequence generation
algorithm has better integer measures on average. Therefore, we have very
good reason to believe that integer solution can be found faster than when
classic column generation is used.

Comparing the different settings of the subsequence generation algo-
rithm, Table 2 shows, as expected, that the more the candidate subsequence
set C is limited, the worse the solution quality gets, but the solutions also
get slightly more integral, which is also expected. The different measures to
identify attractive subsequences seem to perform almost equally good. This
is probably due to a high correlation between them. Enumerating pair-
ings over C gives a better solution quality than enumerating pairings over
L, but the integrality of the solution is higher when enumerating over L.
This is also expected, as L is more restricted than C. Again, improving the
subsequence identification would lead to increased solution quality, while
integrality benefits of the restrictions could be kept.

Table 3 shows statistics for the test runs on the w08r03b instance. The
statistics are representative for the other instances as well. The table reveals
that almost no computation time is spent with analysis of columns and
subsequence identification. As these are the two core parts of the solution
approach, this clearly points out an area for future research with a great
potential gain. If the right subsequences are identified, the solution quality
would naturally increase.

Figure 7 shows a typical graph of the LP objective value per main loop
iteration. The flat lines of the graph are especially interesting. Whenever
there is a flat line, it means that the subsequences added in those iterations
did not lower the LP objective value. This could mean one of two things:
Either we have identified the wrong subsequence, or we have identified the
right subsequence, but the subsequence cannot be used, so we do not get
the gain of adding it. The latter is most easily seen in the case with unique
subsequence for all flights. Let (f1, f2) be the subsequence selected in the
current solution and let (f1, f3) be the new subsequence that is identified
as attractive in the current iteration. However, (f1, f3) cannot be selected
by the LP relaxation, before a new subsequence for (f4, f2) for f2 is added.
The dual vector will point out a suggestion for (f4, f2) eventually, but an
early “subsequence partner”-prediction of (f4, f2) would be beneficial. The
problem is, though, that this problem propagates much further than to just
one other subsequence. Still, both cases support that an improvement of

16

In
st

a
n

ce
S

et
ti

n
g
s

Solvetime(s)

LPsolver(%)

Col.generation(%)

Col.analysis(%)

Subs.identification(%)

Col.enumeration(%)

RootLPvalue

Uncoveredflights

“At1”(%)

“Nicefraction”(%)

Mainloopiterations

Subsequencesadded

Columnsadded

Stopreason

w
0
8
r0

3
b

C
G

3
6
0
4
.7

5
0

1
0
0

0
0

0
2
.0

0
0
3
4
e+

0
8

2
2
6

3
3

2
4
9

0
1
9
8
1
1

T
O

w
0
8
r0

3
b

2
/
1
/
1

1
1
.4

2
2
5

2
7

1
0

4
7

2
.1

8
0
3
2
e+

0
8

2
1
0
0

1
0
0

1
6
4

1
6
3

6
2
9
8

N
I

w
0
8
r0

3
b

3
/
1
/
1

2
9
.4

5
5
3

1
4

1
0

3
2

2
.0

8
3
6
5
e+

0
8

2
2
9

9
9

1
4
4

1
4
3

3
1
6
6
9

N
I

w
0
8
r0

3
b

4
/
1
/
1

9
1
.5

8
4
9

7
0

0
4
3

2
.0

5
2
3
3
e+

0
8

3
1
8

6
7

1
7
4

1
7
3

9
9
3
8
5

N
I

w
0
8
r0

3
b

2
/
1
/
2

1
2
.3

2
1
5

2
6

2
0

5
7

2
.1

8
6
9
8
e+

0
8

2
5
0

9
9

1
9
6

1
9
5

4
0
7
5

N
I

w
0
8
r0

3
b

3
/
1
/
2

2
4
.2

2
3
8

2
2

2
0

3
8

2
.1

0
4
3
0
e+

0
8

2
6
1

9
7

1
9
4

1
9
3

1
3
9
0
4

N
I

w
0
8
r0

3
b

4
/
1
/
2

2
2
.9

1
4
6

2
2

1
0

3
1

2
.0

9
5
2
9
e+

0
8

2
3
6

1
0
0

1
2
9

1
2
8

1
6
9
4
9

N
I

w
0
8
r0

3
b

2
/
2
/
1

1
0
.7

2
2
5

2
5

2
0

4
8

2
.1

7
3
6
6
e+

0
8

3
5
5

9
9

1
6
3

1
6
2

6
5
9
0

N
I

w
0
8
r0

3
b

3
/
2
/
1

2
8
.2

3
5
3

1
4

1
0

3
2

2
.0

8
3
6
6
e+

0
8

2
4
3

9
9

1
4
2

1
4
1

2
6
4
4
3

N
I

w
0
8
r0

3
b

4
/
2
/
1

7
4
.8

9
5
4

7
0

0
3
9

2
.0

5
3
0
6
e+

0
8

2
1
9

2
5

1
3
6

1
3
5

9
2
1
1
5

N
I

w
0
8
r0

3
b

2
/
2
/
2

1
2
.4

2
1
6

2
6

2
0

5
6

2
.1

8
0
3
2
e+

0
8

4
4
2

1
0
0

1
9
6

1
9
5

4
3
7
4

N
I

w
0
8
r0

3
b

3
/
2
/
2

1
4
.5

3
4
5

2
2

1
0

3
2

2
.1

2
5
2
8
e+

0
8

3
3
7

9
9

1
1
2

1
1
1

1
2
5
9
6

N
I

w
0
8
r0

3
b

4
/
2
/
2

2
3
.4

2
5
3

1
9

1
0

2
7

2
.1

0
0
2
7
e+

0
8

2
6
9

9
9

1
1
7

1
1
6

2
7
3
3
9

N
I

w
0
8
r0

3
b

2
/
3
/
1

1
0
.6

1
2
5

2
6

2
0

4
7

2
.1

7
4
3
2
e+

0
8

3
4
9

9
9

1
6
7

1
6
6

6
3
5
6

N
I

w
0
8
r0

3
b

3
/
3
/
1

2
7
.1

7
5
2

1
4

1
0

3
3

2
.0

8
3
6
6
e+

0
8

2
2
2

5
8

1
4
1

1
4
0

2
9
9
1
8

N
I

w
0
8
r0

3
b

4
/
3
/
1

1
0
5
.7

0
6
4

5
0

0
3
1

2
.0

5
2
3
3
e+

0
8

3
1
7

9
0

1
4
6

1
4
5

1
5
3
3
8
8

N
I

w
0
8
r0

3
b

2
/
3
/
2

8
.2

5
1
8

2
7

2
0

5
3

2
.2

0
2
4
7
e+

0
8

2
2
8

7
9

1
3
8

1
3
7

3
6
0
6

N
I

w
0
8
r0

3
b

3
/
3
/
2

2
3
.7

4
4
3

2
1

1
0

3
5

2
.1

0
3
6
3
e+

0
8

2
3
8

6
7

1
7
4

1
7
3

1
7
8
3
2

N
I

w
0
8
r0

3
b

4
/
3
/
2

2
3
.7

0
5
5

1
9

1
0

2
5

2
.0

9
6
3
0
e+

0
8

3
1
9

7
2

1
0
9

1
0
8

2
0
8
3
7

N
I

w
0
8
r0

3
b

2
/
4
/
1

8
.8

4
2
4

2
7

2
0

4
7

2
.1

8
3
6
7
e+

0
8

3
2
3

6
1

1
4
4

1
4
3

4
6
7
9

N
I

w
0
8
r0

3
b

3
/
4
/
1

2
3
.9

5
4
9

1
6

1
0

3
4

2
.0

8
3
6
5
e+

0
8

2
1
3

6
5

1
3
5

1
3
4

2
2
7
4
1

N
I

w
0
8
r0

3
b

4
/
4
/
1

5
9
.0

2
5
3

8
0

0
3
8

2
.0

5
5
3
3
e+

0
8

2
2
1

8
9

1
2
5

1
2
4

7
1
8
5
2

N
I

w
0
8
r0

3
b

2
/
4
/
2

7
.1

0
1
6

2
8

3
0

5
3

2
.2

2
5
3
2
e+

0
8

2
2
2

7
2

1
2
0

1
1
9

2
8
4
0

N
I

w
0
8
r0

3
b

3
/
4
/
2

1
1
.2

6
3
6

2
6

1
0

3
7

2
.1

4
0
2
7
e+

0
8

4
5
4

9
9

1
0
5

1
0
4

8
7
2
6

N
I

w
0
8
r0

3
b

4
/
4
/
2

1
9
.7

6
5
1

2
1

1
0

2
6

2
.0

8
5
3
1
e+

0
8

2
4
9

9
9

1
0
7

1
0
6

1
6
6
8
2

N
I

w
0
8
r0

3
b

2
/
5
/
1

8
.2

1
2
3

2
7

1
0

4
9

2
.1

8
0
3
2
e+

0
8

2
5
4

9
9

1
3
5

1
3
4

5
0
6
0

N
I

w
0
8
r0

3
b

3
/
5
/
1

2
1
.4

9
4
7

1
5

1
0

3
6

2
.0

9
3
6
3
e+

0
8

2
2
7

6
6

1
2
3

1
2
2

2
3
2
7
5

N
I

w
0
8
r0

3
b

4
/
5
/
1

6
4
.1

1
4
6

8
0

0
4
6

2
.0

5
2
3
3
e+

0
8

3
1
2

3
7

1
2
7

1
2
6

8
5
3
7
5

N
I

w
0
8
r0

3
b

2
/
5
/
2

1
1
.2

0
1
5

2
6

3
0

5
5

2
.1

8
5
8
6
e+

0
8

4
2
0

2
5

1
7
7

1
7
6

3
6
7
5

N
I

w
0
8
r0

3
b

3
/
5
/
2

1
2
.1

5
3
6

2
4

1
0

3
8

2
.1

2
0
2
7
e+

0
8

3
5
1

9
8

1
0
9

1
0
8

1
2
1
4
3

N
I

w
0
8
r0

3
b

4
/
5
/
2

2
3
.8

5
5
3

1
9

1
0

2
7

2
.0

9
5
2
9
e+

0
8

2
5
8

9
9

1
1
7

1
1
6

2
0
0
0
7

N
I

T
a
b

le
3:

T
es

t
st

a
ti

st
ic

s
fo

r
th

e
su

b
se

q
u

en
ce

ge
n

er
at

io
n

al
go

ri
th

m
an

d
cl

as
si

c
co

lu
m

n
ge

n
er

at
io

n
.

S
et

ti
n

gs
ar

e
re

ad
as

M
ax

im
u

m
-c

an
d

id
a
te

-s
et

-s
iz

e
/

S
u

b
se

q
u

en
ce

-i
d

en
ti

fi
ca

ti
on

-s
ch

em
e

/
P

ai
ri

n
g-

en
u

m
er

at
io

n
-s

ch
em

e.
N

I
ab

b
re

v
ia

te
s

th
at

n
o

im
-

p
ro

ve
m

en
t

is
fo

u
n

d
ov

er
th

e
gi

ve
n

it
er

a
ti

o
n

sp
an

,
an

d
T

O
ab

b
re

v
ia

te
s

ti
m

e-
ou

t.

17

 5e+06

 5.2e+06

 5.4e+06

 5.6e+06

 5.8e+06

 6e+06

 6.2e+06

 6.4e+06

 6.6e+06

 0 50 100 150 200 250

L
P

 o
b
je

c
ti
v
e
 v

a
lu

e

Main loop iteration

Figure 7: The LP objective value per main loop iteration for the instance
w08r03b with settings 3/5/2.

the subsequence identification would benefit the overall algorithm a lot.

6 Conclusion and future work

We have contributed a novel solution approach based on generation of sub-
sequences of flights for solving the well-known airline crew pairing problem.
We have developed a method for solving the LP relaxation of the crew pair-
ing problem, and the method aims at keeping the LP solution as close to
integral as possible, thereby providing a good starting point for branch-and-
bound. We have benchmarked the new method against a classic column
generation algorithm. The benchmarking has revealed that the subsequence
generation approach indeed is less fractional, but this comes at the price of
a decrease in solution quality. The benchmarking has been carried out on
real-life instances, and on all instances the subsequence generation approach
was clearly faster than classic column generation.

There is a number of directions that future work on the subsequence
generation method could go. Obviously, nesting the method in a branch-
and-bound framework in order to find integer solutions would be interesting.
This could be extended with delayed subsequence generation in each node
of the branching tree. It should be noted that generation of subsequences
in all tree nodes would mean that the objective value of a particular node
is not a lower bound on the solution value for the children nodes.

The subsequence identification step is very important for the method to

18

be successful. As mentioned earlier, the gain from adding a subsequence
might not appear before another subsequence is added. Therefore, some
kind of “subsequence partner”-prediction could prove beneficial. Perhaps
also new measures for subsequence identification could be invented to com-
plement the existing four measures. Still, as mentioned earlier, such mea-
sures should be computationally fast in order to avoid a large overhead of
the approach. It could also be interesting to experiment with the outcome
of identifying more than a single subsequence per iteration.

To use of historic data could also be a key to success. If one has a set
of pairings that make up a good solution for June, then many of the subse-
quences in these pairings would probably be repeated in a good solution for
July, as flight timetables and crew resources are relatively stable. Therefore,
last month’s subsequences could be put in the initial limited subsequence
set, or a measure that in some way took these into account could be used.

As it is now the limited subsequence set L can only expand. It could
speed up computation and maybe improve integrality, if the set could also
shrink. Subsequences that have not appeared, i.e. columns containing the
subsequence have not been selected even fractionally, in the LP solution for a
given span of iterations could be removed. When a subsequence is removed,
all columns containing the subsequence should be removed.

At the moment the candidate subsequence set C is static. However, there
might be a gain in making it dynamic, as is the case for the limited sub-
sequence set. Regarding the column enumeration, it is possible to generate
duplicate columns. These could also be removed from the problem, if the
overhead for doing this is not to severe.

A final suggestion for future work is to let pairing generation happen
in parallel. Each of the Ck candidate subsequence subsets could be run
on its own processor, and then return negative reduced cost columns to a
single controlling process. As the pairing generation is faster than solving
the LP relaxation, subsequences could be enumerated and added to the LP
relaxation, before the LP solver had reached its optimum. Dual stabilisation
should then be added in order to make the duals reliable as early as possible.

Acknowledgements: The authors would like to thank Paul Keating from
Air New Zealand for providing the data instances and explaining them thor-
oughly, as well as his participation in many stimulating discussions about
the solution approach.

References

S. AhmadBeygi, A. Cohn, and M. Weir. An integer programming approach
to generating airline crew pairings. Computers & Operations Research, 36
(4):1284–1298, 2009.

19

E. Andersson, E. Housos, N. Kohl, and D. Wedelin. Crew pairing opti-
mization. In G. Yu, editor, Operations Research in the Airline Industry,
chapter 8, pages 228–258. Kluwer Academic Publishers, 1998.

C. Barnhart, L. Hatay, and E. L. Johnson. Deadhead selection for the long-
haul crew pairing problem. Operations Research, 43(3):491–499, 1995.

C. Barnhart, A. M. Cohn, E. J. Johnson, D. Klabjan, G. L. Nemhauser, and
P. H. Vance. Airline crew scheduling. In R. W. Hall, editor, Handbook
of Transportation Science, chapter 14, pages 517–560. Kluwer Academic
Publishers, Norwell, 2 edition, 2003.

E. R. Butchers, P. R. Day, A. P. Goldie, S. Miller, J. A. Meyer, D. M. Ryan,
A. C. Scott, and C. A. Wallace. Optimized crew scheduling at air new
zealand. Interfaces, 31(1):30–56, 2001.

M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vuskovic. Perfect, ideal
and balanced matrices. European Journal of Operational Research, 133
(3):455–461, 2001.

G. Desaulniers, J. Desrosiers, M. Gamache, and F. Soumis. Crew scheduling
in air transportation. In T. G. Crainic and G. Laporte, editors, Fleet
Management and Logistics, pages 169–185. Kluwer Academic Publishers,
Boston, 1998.

M. Ehrgott and D. M. Ryan. Constructing robust crew schedules with
bicriteria optimization. Journal of Multi-Criteria Decision Analysis, 11
(3):139–150, 2002.

B. Gopalakrishnan and E. L. Johnson. Airline crew scheduling: State-of-
the-art. Annals of Operations Research, 140(1):305–337, 2005.

G. W. Graves, R. D. McBride, I. Gershkoff, D. Anderson, and D. Mahidhara.
Flight crew scheduling. Management Science, 39(6):736–745, 1993.

S. Irnich and G. Desaulniers. Shortest path problems with resource con-
straints. In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors,
Column Generation, GERAD 25th Anniversary Series, chapter 2, pages
33–65. Springer, 2005.

S. Lavoie, M. Minoux, and E. Odier. A new approach for crew pairing
problems by column generation with an application to air transportation.
European Journal of Operational Research, 35(1):45–58, 1988.

D. M. Ryan and J. C. Falkner. On the integer properties of scheduling set
partitioning models. European Journal of Operational Research, 35(3):
442–456, 1988.

20

M. Saddoune, G. Desaulniers, I. Elhallaoui, and F. Soumis. Integrated air-
line crew scheduling: A bi-dynamic constraint aggregation method using
neighborhoods. European Journal of Operational Research, 212(3):445–
454, 2011.

P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew
scheduling: A new formulation and decomposition algorithm. Operations
Research, 45(2):188–200, 1997.

D. Wedelin. An algorithm for large scale 0-1 integer programming with
application to airline crew scheduling. Annals of Operations Research, 57:
283–301, 1995.

21

Good and fast solutions to the airline crew pairing problem are highly interesting for the airline indus-
try. In the solution method of this work we severely limit the number of allowed subsequent flights.
Set partitioning problems with limited subsequences are known to be easier to solve, resulting in a
decrease in solution time. The problem though is that a small number of deep subsequences might
be needed for an optimal or near-optimal solution and these might not have been included by the
subsequence limitation. Therefore, we try to identify or generate such subsequences that poten-
tially can improve the solution value.

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk

	Rapport 9(2)11
	slslp.pdf
	Introduction
	Problem formulation
	Subsequence limitation
	Subsequence generation
	Computational results
	Conclusion and future work

