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Abstract 

Objectives: Classical methods for combining summary data from genome-wide association studies 

(GWAS) only use marginal genetic effects and power can be compromised in the presence of 

heterogeneity. We aim to enhance the discovery of novel associated loci in the presence of 

heterogeneity of genetic effects in sub-groups defined by an environmental factor.  25 

Methods: We present a p-value Assisted Subset Testing for Associations (pASTA) framework that 

generalizes the previously proposed association analysis based on subsets (ASSET) method by 

incorporating gene-environment (G-E) interactions into the testing procedure. We conduct simulation 

studies and provide two data examples. 

Results: Simulation studies show that our proposal is more powerful than methods based on marginal 30 

associations in the presence of G-E interactions and maintains comparable power even in their absence. 

Both data examples demonstrate that our method can increase power to detect overall genetic 

associations and identify novel studies/phenotypes that contribute to the association. 

Conclusions: Our proposed method can be a useful screening tool to identify candidate single 

nucleotide polymorphisms (SNPs) that are potentially associated with the trait(s) of interest for further 35 

validation. It also allows researchers to determine the most probable subset of traits that exhibit genetic 

associations in addition to the enhancement of power. 

Keywords: Gene-environment independence; Gene-environment interactions; Type 2 Diabetes; Meta-

analysis; Pleiotropic effects; Overlapping subjects; Subset-based association test 

 40 
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INTRODUCTION 

Genome-wide association studies (GWAS) are popular epidemiologic tools for studying the genetic 45 

architecture underlying a phenotypic trait [1]. Meta-analysis is a commonly used approach to combine 

genetic associations across multiple independent studies [2]. Fixed effect meta-analysis based on 

summary statistics is known to retain full efficiency of an analysis based on individual level data [3]. 

More recently, methods for aggregating association signals across multiple related phenotypes have 

also become more popular [4,5]. 50 

 

The association analysis based on subsets (ASSET) test, proposed by Bhattacharjee et al. [6], uses 

summary statistics from individual association analysis to develop a powerful test that allows the 

existence of both a subset of null results and effects in opposite directions in different individual tests. 

This approach essentially explores all possible non-empty subsets of available studies/traits and 55 

searches for the one that yields the strongest evidence of association while adjusting for multiple 

testing during such exhaustive search. One appealing feature of ASSET is that the most probable 

subset of studies/traits that exhibit genetic association can be identified in addition to the enhancement 

of power of detecting association signals. This method has been widely used in analyses of 

associations across multiple studies and phenotypes [7,8].  60 

 

Exploiting gene-environment (G-E) interaction may help identify genetic variants that do not 

demonstrate very strong marginal effects due to environmental heterogeneity but may have stronger 

genetic effects in sub-groups defined by certain levels of an exposure [9–12]. Like most commonly 

used methods that screen only for marginal associations, ASSET does not account for potential G-E 65 

interactions in the testing procedure. If a genetic variant only affects a subgroup, for example the 
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exposed group, then in the presence of such pure G-E interaction, the power of ASSET can be largely 

compromised. Several existing versions of 2-degree-of-freedom (2-df) tests for discovering genetic 

associations take G-E interactions into account. Kraft et al. [11] proposed a likelihood ratio test that 

jointly tests for genetic main effects and G-E interactions in case-control studies. Dai et al. [10] 70 

proposed a slightly different approach that is based on the sum of two Wald chi-square statistics for 

detecting marginal effects combined with G-E interactions. The latter approach has the advantage of 

incorporating G-E independence into the test statistic for G-E interaction in case-control studies to 

achieve increased power [13,14]. The literature on meta-analysis of G-E interactions or joint tests 

remains relatively limited [15–17], and none of these approaches attempt to specifically identify a 75 

subset of studies/traits that are most likely to have genetic associations and/or interactions. Current 

literature shows that the 2-df tests mentioned above can offer enhanced power in the presence of G-E 

interactions and do not lead to significant loss of power even when the interactions are absent [15,17]. 

 

In this paper, we propose a modification to ASSET that incorporates G-E interactions to increase the 80 

power of detecting genetic associations in combining summary data across studies of a given 

phenotype (say type 2 diabetes) or across multiple related phenotypes (say a set of lipid traits) 

measured in different studies. Our approach is similar to ASSET in terms of searching over all possible 

combinations of studies/phenotypes and thus inherits its advantage of identifying the maximally 

associated subset along with increased power for detecting the overall associations. The proposed 85 

framework uses p-values from the underlying tests as input instead of �-statistics that are used by 

ASSET, and is therefore referred to as p-value Assisted Subset Testing for Associations (pASTA). To 

be able to incorporate G-E interactions, pASTA uses 2-df tests as the underlying test statistics to be 

combined.  In fact, the p-values can result from any statistical tests, including tests with multiple 
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degrees of freedom. On the other hand, by using p-values, one loses the ability to incorporate the signs 90 

of coefficients (for both genetic main effect and G-E interaction) and the method is intrinsically two-

sided. Since the key input variables are the p-values from underlying tests, pASTA can be used under 

any commonly used epidemiologic study design and we present our simulation studies and data 

examples for both case-control and cohort studies. Like ASSET, the analytical method in pASTA can 

handle a set of correlated p-values, enabling its validity in studies with overlapping subjects or multiple 95 

phenotypes measured on the same set of subjects. 

 

The rest of the paper is organized as follows. We first describe the construction of our test statistic and 

derivation of the associated p-value. We present extensive simulation studies to compare the 

performance of our proposed method to ASSET and Fisher’s combined p-value approaches [18] with 100 

and without G-E interactions under various parameter settings. Specifically, we examine the type I 

error rates and the power to detect (1) the truly associated variant and (2) the truly associated subset of 

studies/traits for the given variant. We illustrate our proposed method with two data applications. The 

first is a meta-analysis of six case-control studies of type 2 diabetes (T2D) among European population, 

with 4,422 cases and 5,202 controls. We focus on two single nucleotide polymorphisms (SNPs) in the 105 

FTO gene (MIM 610966) related to obesity and their interactions with body mass index (BMI). The 

second application is a multiple-phenotype analysis of nine lipid-related quantitative traits using data 

of 5,123 individuals from the North Finland Birth Cohort 1966 (NFBC1966) Study. We investigate the 

association between two SNPs discovered by GWAS, one near the LPL gene (MIM 609708) and the 

other in the APOB gene (MIM 107730), and the nine lipid traits while taking the SNP-BMI 110 

interactions into consideration. We conclude the paper with a discussion. 
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MATERIAL AND METHODS 

Notation 

We consider � studies, each with sample size �� . We allow the studies to have a set of overlapping 115 

subjects. Let ��� , ���  and ���  denote the underlying phenotype, the given genetic variant and the 

environmental factor, respectively, measured for the �th subject in the �th study. The trait(s) � can 

either be disease status in a case-control study or binary or quantitative trait(s) measured in a cohort 

study. The genetic variant � may be coded as binary (under a dominant or recessive susceptibility 

model) or as allele count (under the additive model), and for the latter case, we treat � as continuous 120 

dosage. The environmental factor � can either be categorical or continuous. We mainly consider two 

models for each of the � studies: the marginal genetic association model 

	
�����  | ����� � ��

��� � ��

��� � ���#������ 1�  

and the joint model with G-E interaction 

	
�����  | ��� , ���  �� � ��

��� � ��

��� � ��� � ��

��� � ��� � ���

��� � ��� � ���#������ 2�  

where � � 1, � , ��  and � � 1, � , �. The choice of the link function 	�·� depends upon the type of �. 

Adjusted covariates are dropped from the presentation for simplicity of notations. Note that the � 125 

studies in this setup can be replaced by � traits in a single study of size �, and the inferential procedure 

for each of the � traits stays the same with �� � � for each � � 1, � , �. 

 

We primarily consider three types of association tests for each of the � studies: 1) marginal genetic 

effect in Model 1 (MA), with null hypothesis ( ��) being ��

��� � 0; 2) genetic main effect and G-E 130 

interaction in Model 2 (JOINT) [11], with  ��  being ��

��� � ���

��� � 0; and 3) marginal genetic effect 

in Model 1 and G-E interaction in Model 2 (MA+GE) [10], with  ��  being ��

��� � ���

��� � 0. MA is a 
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1-df test while JOINT and MA+GE are 2-df tests. A summary description of the different tests and 

their corresponding null hypotheses, test statistics and distributions under the null are presented in 

Supplemental Table S1. The test of the form MA+GE is typically the sum of two Wald chi-square test 135 

statistics that are known to be asymptotically independent and can thus be combined to yield a 2-df 

chi-square statistic [19]. 

 

For a case-control study, the coefficient of interaction ������ can be estimated using case-control (CC), 

case-only (CO) [13], or empirical Bayes (EB) [14] estimators, respectively denoted as �"�����, �"�	��� and 140 

�"�
���. It has been proved that �"����� and �#���� are asymptotically independent, and so are �"�	��� and �#���� 
when we assume G-E independence and a rare disease [19]. As such, for case-control studies we use 

�"����� and �"�
��� separately as two possible choices for the estimator of ������ when computing the test 

statistic of MA+GE, and denote these two types of tests as MA+CC and MA+EB, respectively [10]. 

Note that the use of G-E independence requires the use of a retrospective likelihood of the form 145 

��, ��|$, which is not valid unless the sampling is conditional on D. A cohort analysis is always based 

on $|��, �� and we cannot model the stochastic distribution of ��, ��. Therefore, for a cohort study 

with multiple quantitative or binary phenotypes, the use of G-E independence does not lead to 

enhanced power and as such the EB estimator does not apply. 

 150 

p-value Assisted Subset Testing for Associations (pASTA) 

Regardless of the test statistic chosen for each study, the underlying analytical framework of pASTA 

starts with a set of p-values: %� , � � 1,� ,�. In our setting they are obtained from the three tests, MA, 

JOINT, or MA+GE. For pASTA, we define the �-statistic for the �th study as 

�� � &Φ���%��, 
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where Φ�·� is the cumulative distribution function (CDF) corresponding to the standard normal 155 

distribution. That is, smaller p-values indicate larger �-statistics, and the null hypothesis  ��  should be 

rejected if �� is large in the positive direction. For any non-empty subset ( ) *1, � , �+, let 

��(� � , -.��(�
��

��, 

where we consider -.��(� � -��/ ∑ ����  as the weight of �� . Other options for the weights 

-.��(� can also be accommodated in this framework. For example, when cases and controls are not of 

equal numbers, ��  can be substituted by the effective sample size [2]. The test statistic for evaluating 160 

the overall association of a given genetic variant is defined as 

����� � max
��

��(�, 

and is obtained by searching over all possible |4| � 2� & 1 non-empty subsets of studies.  

 

It is challenging to characterize the exact distribution of ����� in a closed form, especially when the 

number of studies � is large. Therefore, we borrow the idea followed in ASSET and use the discrete 165 

local maxima (DLM) procedure [20] to obtain a conservative upper bound for the meta-analytic 

combined p-value. The DLM procedure automatically accounts for the multiple comparison issue. The 

detailed derivation of the combined p-value based on ����� is included in Appendix. In brief, let 5 6 7 

be a �-dimensional vector, each of whose components takes value in *0, 1+, and let (� be the subset of 

studies whose corresponding coordinates in 5 are 1. A neighbor of (� is defined as a subset in 4 that 170 

can be obtained by adding or dropping one study to or from (�. Then  ��(��� is called a local maxima 

if it is greater than all ��(��’s where (� refers to any possible neighbor of (�� . For an observed test 

statistic ����� � 8��� , the DLM approximated p-value can be expressed as (see Equation A1 in 

Appendix) 
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���� � � � �����	� 
 ��  � � ��	�� � ���

���

������,∞

	���

 

where ���� is the probability distribution function of ��	��. This DLM-based p-value is actually an 175 

upper bound to the exact one (Equation A1 in Appendix). Hence the overall procedure is conservative 

in terms of type I error. 

 

Each of the terms of the form ����	� 
 ��  � � ��	�� � ��  can be evaluated based on the 

conditional normal distribution of �� given ��	�� (Equations A2 and A3 in Appendix). Thus all we 180 

need to evaluate is the joint bivariate distributions of ��  and ��	�� for � � 1, � , �. Note that �� 

follows the standard normal distribution under the null hypothesis that there is no association (and 

interaction) in study �. The set of ��’s are independent if the studies are independent. For multiple 

studies with overlapping subjects or multiple phenotypes measured on the same set of individuals, ��’s 

will be correlated with variance one and correlation matrix Σ with entries say, ���� � �������, ����.  185 

 

Let � � � �, � ,  ��, where  
 � 1 if the !-th study is in 	� and  
 � 0 otherwise. Let # � ���, � , ��� 

follow a multivariate normal distribution $%&��', Σ� . In particular, if all studies/traits are 

independent, then Σ is a � ( � identity matrix. Let ) � �*�, � , *�� be the vector of weights for the 

element in �. *
 � + ��

∑ �����	

 if  
 � 1 and 0 if  
 � 0. Let ,�  be a vector of length � where the �th 190 

element equals 1 and 0 elsewhere, e.g. , � �0,1,0, � ,0�	. Let -� � . ,�	/	
0, which is a 2 ( � matrix. 

Under the null hypothesis, 

. ����	��0 � -�# 2 $%&��', -�Σ-�
	�. 
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Several methods have been proposed to estimate the correlation matrix Σ. Lin and Sullivan ([21] 

provided a formula to estimate the correlation between a pair of studies using the information of shared 195 

cases and controls when the number of overlapping subjects is known. They also discussed a modified 

version of the formula for quantitative traits in a cross-sectional study. Bhattacharjee et al. [6] extended 

Lin and Sullivan’s formula for case-control studies to accommodate the situation where cases of one 

study serves as controls of another. However, these estimates will likely be inaccurate when the 

overlap fraction is large, and therefore do not directly apply to multiple-phenotype analysis, where the 200 

phenotypes are measured on the same set of subjects and the overlap fraction is 100%. In this case, 

since large positive values of phenotypic measurements usually indicate strong positive genetic 

associations and thus large positive �-statistics, an intuitive way to approximate the correlations of 

��’s is to use the phenotypic correlations [22], as is done in ASSET. We adopt this approach for our 

simulation studies and the second data example to estimate the correlation matrix Σ corresponding to Z. 205 

In other words, if  4���5�6�, � , 6�� � 	, then we let Σ7 � 	.  

 

Comparison of pASTA and ASSET 

We would like to point out a few features of pASTA as compared to ASSET when one is only 

interested in marginal genetic association estimated by Model 1. First, ASSET and pASTA use the �-210 

statistics in different ways (Table S2). The �-statistics used in pASTA no longer differentiate between 

possible directions of association, while the signs of the �-statistics used in ASSET are consistent with 

those of 89����’s. ASSET can detect genetic associations in either one direction (one-sided) or both 

directions (two-sided). For the latter case, ASSET searches for the subsets of studies that yield the 

strongest evidence separately in both directions. It obtains a p-value for each direction, and combines 215 

the two p-values using Fisher’s combined p-value method [18]. pASTA does not have this feature. A 
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more detailed comparison of the �-statistics, test statistics and analytic expression for the DLM-based 

p-values of the two methods are presented in Table S2. The extension in this paper is mainly to 

incorporate interaction while testing association using 2-df tests in the ASSET framework via the use 

of p-values. 220 

 

Simulation studies 

Simulation Study 1:  Combining Signals Across Multiple Independent Case-Control Studies 

Methods Considered. We first assess the performance of the proposed pASTA approach for 

combining summary results from multiple independent case-control studies that have no overlapping 225 

subjects or relatedness. We compare pASTA to three classes of alternatives (Table 1): ASSET, 

Fisher’s combined p-value method [18], and the gold standard test which assumes that the true subset 

of non-null studies and the true model from which the data are generated are known a priori, to reflect 

the maximum achievable power for benchmarking each method. Given �  independent p-values 

��,� , �� , the chi-square test statistic of Fisher’s method follows a :������  distribution under the 230 

global null. Bhattacharjee et al. [6] has already compared inverse-variance weighted meta-analysis 

with ASSET and Fisher’s method, showing that the former is not as powerful as the latter two. 

Therefore, we do not include standard fixed effect inverse-variance weighted meta-analysis method in 

our comparative study. We use several choices of 2 df tests as described in Table 2 and expanded in 

Table S1. 235 

Data Generative Model. We consider � � 10 independent studies with 6,000 cases and 6,000 

controls. The disease status ; , the genetic marker <  and the environmental factor =  are assumed 

binary (1 for presence and 0 for absence) for simplicity. Following the standard approach of simulating 

case-control data with G-E interaction [9], we generate the data from a logistic regression model  
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log ��;�
 � 1|<�
 , =�
���;�
 � 0|<�
 , =�
�  � B�
��� C B�

��� � <�
 C B�
��� � =�
 C B��

��� � <�
 � =�
  

for � � 1, � , � . In addition, we let D�� , ��  and ��  denote the G-E association, the frequency of  240 

< � 1 (this probability depends on the frequency of the risk allele, we only consider a dominant model 

in the simulation study) and the prevalence of environmental factor (= � 1) in controls, respectively. 

We specify the parameters D��, �� , �� , B�
���

, B�
���

, and B��
���

 , and determine the odds ratios of marginal 

genetic association (ORG) and environmental  association (ORE) using the formula in Boonstra et al. 

[9]. In all of our simulation studies, we assume G-E independence among the control population, i.e., 245 

D�� � 0.  

Evaluation of Type I Error. To assess the type I error rate of each method in the presence or absence 

of environmental effects, we generate data under the null hypothesis of no genetic effects, namely, set 

B�
��� � B��

��� � 0 in Model 2. We consider two scenarios (Table S3), one with no environmental factor 

and hence no G-E interaction and the other with ORE � 1.4. All ten studies share the same parameters 250 

in each scenario (Table S3). We evaluate the type I errors at three levels of significance: 8 � 10�� and 

10�� resembling a candidate gene study, and 10�� resembling large scale exploration. We simulate 

5 ( 10� replicated datasets for each scenario. 

Metrics for Power Analysis. We compare the power of pASTA with the other methods displayed in 

Table 1 from two perspectives: the power of detecting overall genetic associations and the accuracy of 255 

identifying the exact subset of non-null studies. Here the non-null studies refer to studies in which 

either 8�
��� G 0 (and hence B�

��� G 0) or B��
��� G 0. The specific definitions of the two metrics are given 

in Appendix. We also report the sensitivity and specificity of identifying the subset of non-null studies, 

defined as the proportion of non-null studies that are correctly identified by subset-based approaches, 

and the proportion of truly null studies that are declared null, respectively.  260 
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Power for Detecting Marginal Association. Prior to consideration of G-E interaction we extensively 

investigate the relative performance of ASSET and pASTA(MA) in detecting marginal genetic 

associations in a case-control setting where the data are generated under Model 1. We consider two 

scenarios in this simulation, each with � � 10 independent studies and �� � 4 of them having true 

associations. The prevalence of the genetic variant ��  is 0.2. In the first scenario, we assume that the 265 

marginal genetic effects in the four non-null studies are all in the positive direction. In the second, we 

reverse the sign of the log-odds ratio parameter of genetic effect (B�) in two of the four studies. In both 

scenarios, the absolute values of log odds ratio of marginal associations |8����| are the same for all non-

null studies, ranging from log 1.05 to log1.2, and OR
G

�k�
 is incremented by 0.01. Since in reality it is 

possible that all studies have non-null signals, we also carry out a simulation study where �� � 10 . 270 

We use 8 � 0.001 as the significance level, which resembles a candidate gene study with 50 SNPs, 

and repeat the simulation 2,000 times for each parameter configuration. 

Power for Detecting Association After Incorporating Interaction. We then consider both <  and =  in 

our model and the whole set of 1-df and 2-df tests as listed in Table 1. We consider five scenarios 

(Table S4) to evaluate the power of pASTA. Scenario 1 assumes no G-E interaction and a moderate 275 

marginal genetic effect (ORG). In Scenario 2, we set parameters to induce large G-E interaction but 

small marginal genetic effect. Scenario 3 considers the same magnitude of interaction as Scenario 2, 

but with zero genetic and environmental main effects, which result in a smaller marginal genetic effect 

compared to Scenario 2. Scenario 4 assumes strong G-E interaction and protective genetic main effect, 

the two of which cancel out and result in an odds ratio of marginal genetic effect close to one. Scenario 280 

5 considers negative interaction and positive genetic main effect, which lead to a nearly-null marginal 

genetic effect. The last two scenarios represent less common case-control settings, where the genetic 

associations exist in opposite directions for exposed and unexposed groups. The number of non-null 
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studies ranges from two to seven. Simulations are repeated 2,000 times for each scenario, and 

significance level is 8 � 0.001. 285 

 

Simulation Study 2: A Multiple-Phenotype Analysis in a Cohort Study 

Methods Considered. We compare the performance of pASTA and ASSET in a cohort study with a set 

of multiple correlated traits. In this case, the test statistics of Fisher’s method no longer follows a 

:�����
�  distribution under the null hypotheses due to the correlations among ��, � , �� . Resampling-290 

based approaches can be used to obtain the null distribution when correlations exist [23], but in this 

situation we are dealing with significance level at the magnitude of 10��  or smaller. It is 

computationally intensive to obtain a null distribution to evaluate the p-value at such a stringent 

threshold. Therefore, we exclude comparison with Fisher’s method from Simulation Study 2.  

Data Generative Model. We consider a multiple-phenotype study with 6,000 subjects and � � 9 295 

correlated traits. The outcome 6 is generated from a multivariate linear regression model 

6�
 � K�
��� C K�

���<�
 C K�
���=�
 C K��

���<�
 · =�
 C M�
 , 
where �M�
 , � , M�
  �	~$%&�0, Ω�. We use the empirical phenotypic correlations from the NFBC1966 

study (Table S5) as the generative covariance matrix Ω.  

Type I Error and Power Analysis. Similar to Simulation Study 1, the type I error rates are estimated 

in the presence and absence of environmental factor (Table S6). The power of these subset-based 300 

approaches are evaluated in two scenarios (Table S7) using the same metrics as used in Simulation 

Study 1. In Scenario 1, no interaction is involved, while in Scenario 2, interaction comes into play. 

 

Data Analyses 
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We illustrate our methods by using data from two genetic association studies. The first is a meta-305 

analysis of six independent case-control studies of T2D and the other considers a multiple-phenotype 

analysis of nine quantitative lipid-related traits measured on a population-based cohort. In both 

examples, we compare the performance of pASTA with other competing methods as described in 

Table 1. 

 310 

Application to Case-Control Studies of Type 2 Diabetes 

This analysis includes data from a subset of subjects in six independent studies of T2D: FIN-D2D 2007 

(D2D2007), The DIAbetes GENetic Study (DIAGEN), the Finland-United States Investigation of 

NIDDM Genetics Stage 2 (FUSION S2), The Nord-Trøndelag Health Study 2 (HUNT), the 

METabolic Syndrome In Men Study (METSIM) and the Tromsø Study (TROMSO) [24]. We 315 

investigated the associations of T2D and two SNPs in the FTO gene, rs6499640 and rs1121980, 

respectively after taking into account potential interaction effects with BMI. These two SNPs were 

chosen as candidates because they showed significant interactions with BMI in a previous study [25]. 

Descriptive statistics of the six studies are summarized in Supplemental Table S8. In particular, the 

total sample size of the six studies was 9,624, with 4,422 cases and 5,202 controls. Sample sizes of the 320 

six studies vary from 1,058 to 2,219 and the case to control ratios vary from 0.37 to 1.75. The minor 

allele frequencies (MAF) of rs6499640 and rs1121980 in controls range from 0.37 to 0.43 and 0.39 to 

0.48, respectively, across the studies.  

 

The outcome of interest is the presence �; � 1� or absence �; � 0� of T2D. Each SNP is coded as 325 

< � 0, 1, 2, representing the number of minor alleles in rs6499640 or rs1121980 for each subject 

assuming an additive genetic susceptibility model. Let = denote BMI, - denote age in years, and 	 
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represent an indicator of sex (Male � 1). For the !-th individual in the �-th study, the standard logistic 

regression model incorporating G-E interaction is specified as  

log  ��;�
 � 1|=�
 , <�
 , ��
���;�
 � 0|=�
 , <�
 , ��
� � B�
��� C B�

��� � �=�
 P =Q�� C B�
��� � <�
  

                                                            C B��
��� � <�
 � �=�
 P =Q�� C B���� � -�
 C B���� � 	�
  �$��RS 3�   330 

and the standard logistic regression model of marginal SNP effect (adjusted for BMI, age and gender) 

is specified as 

log  ��;�
 � 1|=�
 , <�
 , ��
���;�
 � 0|=�
 , <�
 , ��
� � 8�
��� C 8�

��� � �=�
 P =Q�� C 8�
��� � <�
  

                                                                          C8�
��� � -�
 C 8�

��� � 	�
 .                                 �$��RS 4�  

Model 3 and Model 4 were fitted separately to the six studies. Then the various meta-analysis methods 

were applied to the summary statistics. Note that the METSIM study only contains male subjects, so 335 

the sex indicator was removed from the two models for this study. 

 

Application to the North Finland Birth Cohort 1966 Study 

We obtained the genotype and phenotype data of the NFBC1966 study from dbGaP with accession 

number phs000276.v2.p1. The NFBC1966 data contain 5,402 individuals and 364,590 SNPs, with 340 

multiple metabolic traits measured on subsets of individuals. Among these traits, we considered nine 

quantitative traits in the present study as phenotypes: C-reactive protein (CRP), glucose, insulin, total 

cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TG), 

systolic blood pressure (SBP), and diastolic blood pressure (DBP). Body mass index (BMI) was the 

environmental factor of interest. Following previous studies [26,27] we excluded individuals with 345 

missing phenotype data or having discrepancies between reported sex and sex determined from the X 

chromosome. We excluded SNPs with a minor allele frequency less than 1%, having missing values in 
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more than 1% of the individuals, or with a Hardy-Weinberg equilibrium p-value below 10��. This left 

us with 5,123 individuals and 319,147 SNPs. For each phenotype in turn, we quantile transformed the 

phenotypic values to a standard normal distribution, regressed out sex, oral contraceptives and 350 

pregnancy status effects [26], and quantile transformed the residuals to a standard normal distribution 

again. We replaced the missing genotypes for a given SNP with its mean genotype value. To account 

for potential relatedness in the Finnish population one can use a kinship matrix in a linear mixed model 

to account for population admixture. As an alternative, we find that using linear regression models 

with principal components (PCs) as covariates also effectively controls for population stratification in 355 

the data. For example, with ten PCs, the genomic control factors for the ten phenotypes ranged from 

0.96 to 1.01, with a median value of 0.99. Therefore, we extracted the top ten PCs from the genotype 

matrix as covariates to control for potential population stratifications.  

 

The linear regression model with G-E interaction is specified as 360 

                           6�
 � B�
��� C B�

��� � <�
 C B�
��� � =�
 C B��

��� � <�
 � =�
 C U�
V�
���             �$��RS 5� 

and the linear regression model of marginal SNP effect (adjusted for BMI and PCs) is specified as 

                                     6�
 � 8�
��� C 8�

��� � <�
 C 8�
��� � =�
 C U�
W�

���                                    �$��RS 6� 

where � indexes phenotypes, ! indexes subjects, = denotes BMI, < denotes the number of minor alleles, 

and U  denotes the vector of top ten PCs. We performed a genome-wide analysis of multiple 

phenotypes by fitting Model 5 and Model 6 separately to each of the nine phenotypes for all 319,147 365 

SNPs in the data. Then for each SNP we calculated the meta-analytic p-values using ASSET and 

pASTA, respectively. Correlations among the resultant � -statistics of the nine phenotypes were 

estimated using observed phenotypic correlations.  
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After the genome-wide screening using the nine phenotypes separately, we performed another 370 

genome-wide association analysis by analyzing all ten traits jointly with the multivariate linear mixed 

model implemented in GEMMA [28,29] and compared the results of the two GWAS. We then selected 

the top 100 SNPs that showed the strongest associations for subsequent interaction analysis. We 

performed SNP-BMI interaction analysis on these 100 SNPs.  

 375 

 

Results 

Simulation Study 1: Combining Signals Across Multiple Independent Case-Control Studies 

Type I Error 

In both scenarios, empirical type I error rates at thresholds 8 � 10�� , 10�� , and 10��  are well-380 

preserved for all methods except pASTA(MA+EB) (Table 2), which tends to be conservative (e.g. type 

I error rate being 3.8 ( 10�� at the level of 10��). This has been noted in previous studies of EB-type 

adaptive methods [14].  

 

Power Comparisons of ASSET and pASTA Based on 1-df Tests for Marginal Genetic Association 385 

We extensively investigate how pASTA(MA) performs compared to ASSET when no environmental 

factors are considered (i.e. data generated under Model 1). The power of pASTA to detect overall 

genetic associations is almost the same as that of ASSET as the odds ratio of the marginal genetic 

effects varies, regardless of the directions of the genetic effects (Figures S1A, S1E). However, there is 

an observable difference in their accuracy of determining the exact subset of non-null studies for both 390 

scenarios (Figures S1B, S1F). When the marginal genetic effects of non-null studies exist in the same 

direction (in this case positive direction), the accuracy of pASTA to determine the correct subset 
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increases as the signal grows stronger, and reaches an empirical power of 0.72 as the odds ratio goes 

up to 1.2. However, two-sided ASSET is rarely able to identify the exact true subset, and the 

corresponding power stays around zero as the odds ratio varies. The main reason for such low accuracy 395 

is that two-sided ASSET searches for associated subset in both positive and negative directions, 

identifies a subset that gives the largest |��	�| for each direction, and takes the union of the two 

subsets as the final identified subset regardless of the significance of association in either direction. As 

a result, two-sided ASSET generally identifies more false positive studies when the significant 

associations are all in one direction. For example, when associations only exist in the positive direction 400 

in a subset of studies, the log odds ratios in the truly null studies are likely to be estimated as negative, 

and thus some null studies will be selected by two-sided ASSET. When the associations exist in 

opposite directions, two-sided ASSET has improved power to identify the correct subset of studies, but 

pASTA still consistently outperforms ASSET (Figures S1B, S1F). For both scenarios, the sensitivity of 

ASSET consistently stays higher than that of pASTA, while the specificity of ASSET is relatively low 405 

(Figures S1C, S1D, S1G, S1H). These results are intuitively reasonable, since sensitivity is the 

proportion of non-null studies that are correctly identified and does not require that the exact subsets to 

be identified.  

When all of the ten studies are non-null (Figure S2A), pASTA is as powerful as ASSET in detecting 

signals of marginal associations, and only slightly less powerful than Fisher’s method when the odds 410 

ratio of marginal genetic effects is small (<1.1).  

 

Power Comparison of All Methods with Data Generated under Model 2 

Detection of Association. We consider five scenarios (Table S4) to evaluate the power of detecting 

overall genetic associations. When there exists only marginal genetic effect but no G-E interaction 415 
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(Scenario 1), 1-df methods are slightly more powerful in discovering the overall associations than 2-df 

methods when the number of non-null studies �� Z 5. For example, pASTA(JOINT) reaches a power 

of 0.85 when four out of the ten studies are non-null, which is 9.1%, 7.1%, and 9.9% lower than the 

power of Fisher’s(MA), ASSET, and pASTA(MA), respectively (Figure 1A). This loss of power 

results from a penalty of the additional degree of freedom incorporated in the testing procedure in the 420 

absence of G-E interaction. In Scenario 2, when G-E interaction exists and marginal genetic effect is 

moderate, all 2-df methods provide substantial power gain over 1-df methods (Figure 1B). For example, 

when �� � 7, the power of pASTA(MA+EB) reaches 0.99, while that of ASSET stays around 0.6. In 

Scenario 3, where the marginal genetic effect is even smaller, the power of all methods is 

compromised, with pASTA(MA+EB) achieving the best power of 0.79 when �� � 7 . The gold 425 

standard test has the second best performance with the power being 0.61 when �� � 7. All 1-df 

methods barely detect any signals (Figure 1C). When the marginal association is nearly null but sub-

group effects of genetic factor present in opposite directions in the exposed and unexposed group 

(Scenario 4), 2-df methods are more powerful in detecting signals than their 1-df counterparts. 

Specifically, pASTA(MA+EB) performs the best when �� \ 3, already achieving a power of 0.82 430 

when �� � 3. Other 2-df methods perform slightly worse, with their power ranging from 0.44 to 0.52 

when �� � 3, but they still yield power greater than 0.8 when �� \ 5. All 1-df methods fail to detect 

the associations (Figure 1D). In a much less common situation where “cross-over” interaction exists 

(Scenario 5), the empirical power curves show a similar trend (Figure 1E) to those in Scenario 4. It is 

instructive to note that for Scenario 2-5 where the interaction effects are present, we tested the null 435 

hypothesis of JOINT for the gold standard test. Therefore, pASTA(MA+EB) outperforms the gold 

standard when �� is large since EB estimator exploits the putative G-E independence and can be more 

efficient in this case. 
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Subset Identification. When the environmental factor is absent (Scenario 1), pASTA(MA) achieves 

the highest accuracy in identifying the exact subset of non-null studies, with the corresponding power 440 

being constantly around 0.4 (Figure 1F). The sensitivity of the subset-based methods, whether they are 

1-df or 2-df, are close to one another as the number of non-null studies varies, and all of the methods 

are able to identify more than 80% of the non-null studies (Figure S3A). The specificity of ASSET is 

much smaller than that of the other subset-based methods based on pASTA (Figure S3F). When G-E 

interaction comes into play (Scenario 2-5), pASTA(MA+EB) performs the best in identifying the exact 445 

subset and has both the highest sensitivity and specificity across the four scenarios. In particular, in 

Scenario 4 where the genetic variant has opposite effects on exposed and unexposed groups, the 

highest empirical probability of pASTA(MA+EB) to select the correct non-null studies is 0.46 when 

three out of the ten studies are non-null. pASTA(JOINT) and pASTA(MA+CC) have the second-best 

performance in terms of determining the exact subset of non-null studies as well as sensitivity and 450 

specificity across Scenarios 2-5. It is noteworthy that in all five scenarios, the specificity of ASSET is 

the lowest among the subset-based methods, which indicates that ASSET tends to give more false 

positives of non-null studies than pASTA.  

 

Simulation Study 2: A Multiple-Phenotype Analysis in a Cohort Study 455 

Type I Error  

The results of the type I error rates are presented in Table 2. In general, the type I error rates of all 

methods tend to be conservative at all thresholds under evaluation. The only exception is that 

pASTA(JOINT) yields a type I error of 1.2 ( 10�� at the level of 10�� when no environmental factor 

is considered. The conservativeness of the type I errors may be due to the inaccurate estimation of Σ, 460 

the correlation matrix of the �-statistics. 
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Power Comparison 

Detection of Association. Figure 2A reveals that in the absence of interaction, pASTA(MA) 

outperforms the other two methods when over five out of the nine traits have genetic associations. The 465 

power of ASSET drastically falls when the number of non-null traits exceeds five due to computational 

issues of the ASSET package. According to Figure 2E, when interaction exists, pASTA(JOINT) 

provides great power gain in detecting the overall associations and reaches a power of 0.92 when five 

out of the nine traits are non-null. The power of the 1-df methods stays below 0.9.  

Subset Identification. Similar to what we observe in Simulation Study 1, the accuracy of ASSET in 470 

identifying the exact subset of non-null traits are constantly close to 0 in both scenarios (Figures 2B, 

2F). In Figures 2C and 2G, the sensitivity of the pASTA approaches is close to one another and stays 

above 0.8 as the number of non-null traits varies, which indicates that these methods are able to 

identify over 80% of the non-null traits in one study. On the other hand, the sensitivity of ASSET 

decreases as the number of non-null traits increases. The curves of specificity (Figures 2D, 2H) show 475 

similar trends to those of sensitivity. 

 

Application 1: Type 2 Diabetes Data 

The exponential of the parameter estimates (8����, B���� and B�����), their corresponding 95% confidence 

interval (CI) and p-values obtained from Model 3 and Model 4 for each of the six studies are 480 

summarized in Supplemental Table S9. The EB estimates of the interaction terms and their associated 

Wald chi-square statistics were obtained using the R package CGEN [30]. For SNP rs6499640, the 

odds ratios of marginal genetic effect range from 0.89 to 1.11, and none of them are significant at the 

level of 0.05. When the interaction between SNP and BMI is included in the model, the odds ratios of 
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genetic main effect do not change remarkably from those of marginal genetic effects. However, despite 485 

the small effect sizes of interactions in all six studies, the interaction effects are statistically significant 

in D2D2007 for CC method (p=0.017) and in FUSION S2 for CC (p=0.0006) and EB (p=0.003) 

methods. The SNP rs1121980 has significant marginal associations with T2D in FUSION S2 (]^� �
1.19, p=0.011) and HUNT (]^� � 1.21, p=0.020), while none of the studies show significant SNP-

BMI interactions for this SNP.  490 

 

We then meta-analyzed the results from the six studies by applying all methods in Table 1, and we 

present the results of the eight methods in Table 3. For SNP rs6499640, all 1-df methods give 

insignificant p-values for marginal genetic associations with T2D at the level of 0.05. As for 2-df 

methods, pASTA(JOINT) gives the smallest p-value (p=0.008), and pASTA(MA+CC) give a slightly 495 

higher p-value (p=0.009). The result of pASTA(MA+EB) is not statistically significant (p=0.090), 

which may be due to the presence of G-E correlation in this example. All 2-df pASTA methods 

identify D2D2007 and FUSION S2 as the non-null studies, which is consistent with what we observe 

from the results of 2-df tests for each study separately. We also investigated the odds ratios of T2D 

across different levels of BMI by fitting a logistic regression adjusting for age, gender, and the studies 500 

to which the subjects belong. Supplemental Figure S4 shows that the marginal odds ratio for the SNP 

rs6499640 is close to 1, but when G-E interaction is taken into account, this SNP reveals a significant 

protective effect at the level of 0.05 when BMI equals 20 and 25. When BMI equals 30, the odds ratio 

of T2D becomes positive and is significantly different from the one when BMI equals 20.   

 505 

When there is no evidence for G-E interactions in individual studies, as with SNP rs1121980, all 2-df 

methods fail to detect the overall genetic associations, but the p-values obtained from 2-df pASTA are 
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smaller than those from 2-df Fisher’s p-value combined methods. Furthermore, the p-value given by 

pASTA(MA) (p=0.024) is smaller than those of Fisher’s(MA) (p=0.080) and ASSET (p=0.031). 

pASTA also provides more plausible subset identification than ASSET when there are only significant 510 

marginal genetic effects. In addition to FUSION S2 and HUNT as identified by all pASTA methods, 

ASSET also includes D2D2007, METSIM, and TROMSO as associated studies, whose p-values with 

respect to marginal associations in study-specific analysis (Table S9) are far from significant. This data 

analysis demonstrates that without sacrificing much efficiency in the absence of G-E interaction, 

pASTA provides potential power gain when marginal genetic effects are modest and interactions are 515 

involved. Moreover, pASTA yields a more plausible subset of non-null studies. 

 

Application 2: North Finland Birth Cohort 1966 Data 

We performed a genome-wide multiple-phenotype analysis by applying pASTA and ASSET to the 

lipid-related traits in the NFBC1966 study. Supplemental Table S10 presents the SNPs whose meta-520 

analytic p-values are smaller than the genome-wide significance level (� � 5 ( 10� ). Seventeen 

SNPs are identified by pASTA(MA) at the genome-wide significance level. ASSET identifies seven 

SNPs as the genome-wide significant SNPs, and the only overlapping SNP between the two sets is 

rs754524, which is located in the APOB region on chromosome 2. However, it should be noted that 

since ASSET fails to produce p-values for some of the SNPs due to computational issues, the list of 525 

genome-wide significant SNPs generated by ASSET is not comprehensive and thus is not comparable 

to the list generated by pASTA(MA). Taking G-E interaction into consideration, pASTA(JOINT) 

identifies 13 SNPs, which are a subset of the SNPs identified by pASTA(MA). The SNP rs3764261, 

located on chromosome 16 near the CETP gene, is identified by pASTA(MA) (� � 3.6 ( 10���) and 
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pASTA(JOINT) (� � 7.1 ( 10���) as the top SNP. Figure 3 presents the QQ plots corresponding to 530 

the three methods.  

We then compared the 17 genome-wide significant SNPs identified by pASTA(MA) to the 23 SNPs 

identified by another GWAS where all ten traits were analyzed jointly using a multivariate marginal 

association test (i.e. GEMMA) (Table S10). Seven SNPs belong to both lists, and the top five SNPs 

identified respectively by GEMMA and pASTA(MA) are the same (though in slightly different order). 535 

We considered the top 100 SNPs identified by GEMMA for follow-up interaction analysis. The p-

values produced by GEMMA for the 100 SNPs range from 5.5 ( 10��� to 7.0 ( 10��. The results of 

the combined p-values for the complete set is presented in Supplemental Table S11. Two SNPs, 

rs2083637 (on chromosome 8, near gene LPL) and rs754524 (on chromosome 2, in the APOB region), 

are used to illustrate the performance of the methods in the presence (rs2083637) or absence (rs754524) 540 

of G-E interaction. These two examples offer insight into the properties of the proposed methods and 

illustrate the advantage of incorporating G-E interaction into the analytic framework very clearly.  

 

Supplemental Table S12 summarizes the linear regression coefficients and their corresponding 95% CI 

and p-values obtained from Model 5 and Model 6. The SNP rs2083637, located near the LPL gene, is 545 

marginally associated with HDL and TG, with coefficients being -0.1 (� � 3.4(10-6) and 0.1 (� �
5.6(10-6), respectively. CRP (� � 1.3(10-3), TC (� � 6.3(10-3), and LDL (� � 8.2(10-3 ) are 

associated with rs2083637 through SNP-BMI interactions. On the other hand, rs754524 has a positive 

marginal effect on HDL (� � 3.6(10-2) and a negative marginal effect on TC (� � 6.3(10-10), LDL 

(� � 2.1(10-11), and TG (� � 1.8(10-2), while no significant SNP-BMI interactions are observed for 550 

these nine phenotypes under the 0.05 threshold.  
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For rs2083637, ASSET and pASTA(MA) both identify TG and HDL as associated phenotypes (Table 

4). However, both pASTA(JOINT) and pASTA(MA+CC) identify three additional phenotypes (CRP, 

TC, LDL), for which rs2083637 has significant interaction with BMI, when G-E interaction is taken 555 

into account. Supplemental Figure S5 presents the effect and the corresponding 95% CIs for rs2083637 

on CRP, TC, and LDL when BMI equals the mean, mean
1 standard deviation (sd), and mean
2sd. 

We observe variation of the SNP effect sizes across different levels of BMI. For example, rs2083637 

has positive but not significant effect on CRP for subjects with average BMI, while for subjects whose 

BMI is 2 sd greater than the average, the association becomes negative and significant at the level of 560 

0.05. Therefore, the incorporation of G-E interaction can enhance the knowledge that is not available 

in marginal association testing. The overall p-value of associations given by pASTA(JOINT) 

(2.5(10-6) is also smaller than those given by 1-df methods (2.7(10-5 for pASTA[MA] and 3.6(10-6 

for ASSET). For rs754524, pASTA(MA) identifies two phenotypes (TC and LDL), both of which have 

significant marginal associations with this SNP in phenotype-specific analysis, as associated 565 

phenotypes. SNP rs754524 has been previously reported to be associated with both traits. [31,32]. 

ASSET identifies two additional phenotypes, glucose and HDL, and fails to identify TC. The evidence 

for the marginal association of this SNP with HDL is not strong [27], which indicates that such 

identified association may be false. pASTA (JOINT) identifies the same set of associated traits as 

pASTA(MA). This example shows that by incorporating interactions one can obtain smaller p-values 570 

for detecting overall associations and discover more relevant traits that are missed by ASSET, ones 

that show significant G-E interaction effects in phenotype-specific analysis. 

 

Discussion 

We propose a powerful subset-based framework for the analysis of association studies after accounting 575 
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for potential G-E interactions. Simulation studies demonstrate that this framework improves the power 

to detect overall associations as well as the accuracy of determining associated studies/traits by 

incorporating G-E interactions, while maintaining comparable power to ASSET in the absence of such 

interactions. Our data examples exemplify that 2-df pASTA yields smaller meta-analytic p-values for 

SNPs that show significant G-E interactions in study/phenotype-specific analysis compared to 1-df 580 

methods where only marginal genetic associations are considered (Table 3 and Table 4). In addition, 

our analysis on the NFBC1966 data illustrates that pASTA is able to identify new phenotypes that are 

associated with given susceptibility loci after considering G-E interactions that will be missed by 

traditional marginal association analysis (Table 4). These properties make pASTA a powerful tool to 

identify candidate SNPs that are potentially associated with the trait(s) of interest in the screening step 585 

of a GWAS, which then can be followed by deeper characterization/interpretation of the associations 

through other methods, such as biological validation. For example, RNA sequencing experiments can 

be performed to examine whether the candidate SNPs affect the expression level of the target gene [33]. 

Crispr-Cas9 knockout screening can be carried out in human cell lines to determine the functional 

significance of these candidate SNPs [34]. 590 

 

Our simulation studies show that in the presence of interaction, pASTA(MA+EB) has the best 

performance in terms of all four evaluation metrics in a case-control setting where G-E independence 

holds. The rest of the 2-df methods (Fisher’s methods, pASTA[JOINT] and pASTA[MA+CC]) give 

similar power for detecting overall associations across the scenarios (Figures 1B-1E), but pASTA has 595 

the advantage of being able to identify the subset of studies/traits that are most likely to contribute to 

the associations. For a cohort study with multiple phenotypes where the G-E independence does not 

apply, pASTA(JOINT) gives the best performance in terms of the four metrics (Figures 2E-2H). 
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There are several limitations of our proposed approach that lend the problem to future research. The 600 

present proposal for pASTA focuses on testing the existence of genetic associations using p-values as 

inputs and is purely bi-directional in nature. It aggregates the evidence of both genetic effects and G-E 

interactions from individual studies but does not specify the directions of such effects or interactions. It 

is a pure testing approach and does not provide pooled regression coefficient estimates from meta-

analysis.  Thus it loses insight into the nature of the environmental heterogeneity across cohorts. 605 

Further work is needed to define the subsets of studies that have similar direction of genetic effects in 

subsets defined by the environmental factor (for example the sign of estimates B� in the group = � 0 

and of B�� C B� in the group = � 1 for a binary exposure E).  The method is currently based on the 

assumption of fixed effect(s) meta-analysis. Since the input is p-values, the method can be extended to 

random effects meta-analysis as well as hybrid methods that combine fixed and random effects meta-610 

analysis [35]. In our simulation studies and data analysis, pASTA uses phenotypic correlations to 

approximate the correlations among ��’s, which may result in compromised power and conservative 

type I error. Optimizing the estimation of such correlation is an issue that needs to be further addressed. 

 

We only focused on candidate loci with known marginal association or gene-environment interaction 615 

in our data examples. Simulation results indicate that pASTA is scalable to a genome-wide level and 

maintains Type 1 error at smaller 10��  threshold of α . In the T2D data analysis, the average 

run time of pASTA for the marginal effect, i.e. pASTA(MA), for one SNP was 181.7 milliseconds on a 

2.9 GHz Intel processor, and the incorporation of G-E interaction, i.e. pASTA(JOINT), yielded a 

similar computation time (159.2 milliseconds). For the data from the NFBC 1966 study where 620 

correlations across the test statistics need to be taken into account, the average run times for both 
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pASTA(MA) and pASTA(JOINT) for one SNP were 1.7 seconds.  For a typical GWAS to analyze one 

million SNPs, the projected computation time of pASTA on 20 CPU cores is approximately one day. 

ASSET was slightly faster than pASTA in the NFBC 1966 data analysis (1.5 seconds) but twice slower 

in the T2D data analysis (3.3 seconds). Computing time was calculated using the R package 625 

microbenchmark [36]. We plan to optimize the pASTA implementation code and develop an efficient 

R package akin to ASSET.  

 

 

Appendix 630 

Detailed Derivation of Meta-analytic p-value  

For an observed test statistic �'()* � +̀,-, the DLM approximated p-value can be expressed as ���'()* \ +̀,-� � ��a�./ b��	� \ +̀,-c�
 Z ��a�.0 d��	�� \ +̀,- and ��	�� being a local maximan� 

Z o ����	�� \ +̀,- and ��	�� being a local maxima�
�.0

. 
For a fixed subset 	� p b1, � , �c, 

����	�� \ +̀,- and ��	�� being a local maxima� 

� � �����	�� being a local maxima � ��	�� � ��������1

	���

 

� � �����	� 
 ��  �, q� � ��	�� � ��������1

	���

 

Z � � �����	� 
 ��  � � ��	�� � ���

���

������, �Equation A1�1

	���

 

where ���� is the probability distribution function of ��	��. The last inequality is justified by the 

“separability” assumption that given the current subset, its neighbors have independent Z-statistics.  635 

i) When � w 	� , given that ��	�� � �, 
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��	� C �� � o x y2∑ y33.�	
C y�

� �2
2.�	

C x y�∑ y33.�	
C y�

� ��  

� {o x y2∑ y33.�	

� �2
2.�	

| � x ∑ y33.�	∑ y33.�	
C y�

C x y�∑ y33.�	
C y�

� ��  

� � � x ∑ y33.�	∑ y33.�	
C y�

C x y�∑ y33.�	
C y�

� ��. 
Hence,  

��	� C ��  � } �� 
{1 P x ∑ y33.�	∑ y33.�	

C y�
| � �

+ y�∑ y33.�	
C y�

~ �����  �Equation A2� 

and �����	� C ��  � � ��	�� � �� � �����  ����� | ��	�� � �� 

ii) When � � 	� , given that ��	�� � �, 

��	� P �� � o x y2∑ y33.�	�4�5
� �2

2.�	�4�5

 

� {o x y2∑ y33.�	

� �2
2.�	

| � x ∑ y33.�	∑ y33.�	�4�5
P x y�∑ y33.�	�4�5

� �� 

� � � x ∑ y33.�	∑ y33.�	�4�5
P x y�∑ y33.�	�4�5

� ��. 
Hence,  640 

��	� P ��  � } �� 
{x ∑ y33.�	∑ y33.�	

C y�
P 1| � �

+ y�∑ y33.�	
C y�

~ S���� �Equation A3� 

�����	� P ��  � � ��	�� � �� � ����� \ S���� | ��	�� � ��. 
This conditional probability of ��  given �(	6) can be evaluated based on a joint bivariate normal 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/326777doi: bioRxiv preprint 

https://doi.org/10.1101/326777
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution, which is specified in the main text. For numerical evaluation of the integrals, we directly 

apply the R function integrate(). 

 

  645 
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Metrics Used in Power Analysis 

We used two main metrics for evaluation: 

• Power of detecting genetic associations that truly exist, defined as the probability of 

rejecting the relevant null hypotheses ���  within study k with a pre-specified level 8. This 

quantity is estimated as the empirical proportion of replications where the meta-analytic p-650 

value combined across all studies is smaller than 8; 

• Power of identifying the exact true subset of non-null studies, defined as the probability of 

correctly identifying such subset. The definition of non-null studies is specified above. The 

corresponding empirical proportion of replications declaring the correct subset to be non-null is 

used to estimate this power. 655 

We also report the sensitivity and specificity of identifying the subset of non-null studies, defined as 

the proportion of non-null studies that are correctly identified by subset-based approaches, and the 

proportion of truly null studies that are declared null, respectively. They are both estimated by the 

corresponding empirical proportions in the simulation. Note that sensitivity and specificity respectively 

allow false positives and false negatives in the identified subset, while power of identifying exactly the 660 

true subset is a much more stringent criterion. 
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Web Resources 

Current annotated code, https://github.com/youfeiyu/pASTA/  
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Tables 

Table 1. Methods Considered in Simulation Studies 

Method Label Explanation 

Fisher’s(MA) Fisher’s combined p-value method applied to p-values obtained from 

testing hypotheses of MA, i.e. ��
���

� 0. 

Fisher’s(JOINT) Fisher’s combined p-value method applied to p-values obtained from 

testing hypotheses of JOINT, i.e. ��
���

� ���
���

� 0. 

Fisher’s(MA+CC) Fisher’s combined p-value method applied to p-values obtained from 

testing hypotheses of MA+GE, i.e. ��
���

� ���
���

� 0; ���
���

 being CC 

estimator. 

ASSET(MA) Two-sided ASSET for testing hypotheses of MA, i.e. ��
���

� 0 

pASTA(MA) pASTA applied to p-values obtained from testing hypotheses of MA, i.e. 

��
���

� 0. 

pASTA(JOINT) pASTA applied to p-values obtained from testing hypotheses of JOINT, i.e. 

��
���

� ���
���

� 0. 

pASTA(MA+CC) pASTA applied to p-values obtained from testing hypotheses of MA+GE, 

i.e. ��
���

� ���
���

� 0; ���
���

 being CC estimator. 

pASTA(MA+EB) pASTA applied to p-values obtained from testing hypotheses of MA+GE, 

i.e. ��
���

� ���
���

� 0; ���
���

 being EB estimator. 

Gold standard Fisher’s combined p-value method as if the true subset of non-null studies 

and the model from which data were generated were known a priori. 

The null hypothesis in gold standard depends on specific situations. In the presence and absence of G-E 

interaction, JOINT and MA were tested, respectively. Therefore, the statistical power is not comparable 

across scenarios. 
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Table 2. Type I Error Rates at Various Significance Levels for the Two Simulation Studies 

Method Scenario 1
†
 Scenario 2

†
 

� � 10�� � � 10�� � � 10�	 � � 10�� � � 10�� � � 10�	 

Simulation 1
‡
       

Fisher’s(MA) 9.4 	 10�� 1.3 	 10�� 1.2 	 10�	 1.0 	 10�� 9.0 	 10�
 9.0 	 10�� 

Fisher’s(JOINT) 1.2 	 10�� 1.1 	 10�� 1.1 	 10�	 9.4 	 10�� 7.0 	 10�
 1.1 	 10�	 

Fisher’s(MA+CC) 1.2 	 10�� 1.1 	 10�� 1.1 	 10�	 9.8 	 10�� 8.0 	 10�
 1.0 	 10�	 

ASSET 1.1 	 10�� 1.2 	 10�� 1.4 	 10�	 1.1 	 10�� 8.0 	 10�
 1.1 	 10�	 

pASTA(MA) 9.8 	 10�� 9.0 	 10�
 1.1 	 10�	 1.0 	 10�� 8.0 	 10�
 1.2 	 10�	 

pASTA(JOINT) 1.1 	 10�� 9.0 	 10�
 1.1 	 10�	 9.0 	 10�� 7.0 	 10�
 8.6 	 10�� 

pASTA(MA+CC) 1.1 	 10�� 9.0 	 10�
 1.1 	 10�	 9.4 	 10�� 6.0 	 10�
 7.6 	 10�� 

pASTA(MA+EB) 6.8 	 10�� 6.0 	 10�
 3.8 	 10�� 5.0 	 10�� 3.0 	 10�
 4.2 	 10�� 

Simulation 2
‡
       

ASSET 5.0 	 10�� 5.0 	 10�
 8.0 	 10�� 3.4 	 10�� 2.9 	 10�
 4.0 	 10�� 

pASTA(MA) 7.5 	 10�� 6.6 	 10�
 6.0 	 10�� 6.1 	 10�� 5.7 	 10�
 6.0 	 10�� 

pASTA(JOINT) 7.1 	 10�� 5.6 	 10�
 1.2 	 10�	 5.5 	 10�� 4.5 	 10�
 6.0 	 10�� 
†
Scenario 1 and Scenario 2 correspond to situations where environmental effects are absent and present, 

respectively. Simulations were replicated � 	 �� times. Type I error was estimated as proportion of null 

hypotheses rejected. 
‡
Simulation 1 considers � � �� independent case-control studies and Simulation 2 considers � � � correlated 

phenotypes. 
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Table 3. Meta-analysis of Six Case-control Studies of Type 2 Diabetes 

Methods 
rs6499640 rs1121980 

p-Value Associated Subset p-Value Associated Subset 

Fisher’s(MA) 0.413  0.080  

Fisher’s(JOINT) 0.023  0.227  

Fisher’s(MA+CC) 0.025  0.228  

ASSET 0.490 D2D2007, DIAGEN, FUSION S2,  

HUNT, METSIM 

0.031 D2D2007, FUSION S2, 

HUNT, METSIM, TROMSO 

pASTA(MA) 0.923 D2D2007, DIAGEN, METSIM 0.024 FUSION S2, HUNT 

pASTA(JOINT) 0.007 D2D2007, FUSION S2 0.142 FUSION S2, HUNT 

pASTA(MA+CC) 0.008 D2D2007, FUSION S2 0.144 FUSION S2, HUNT 

pASTA(MA+EB) 0.083 D2D2007, FUSION S2 0.154 FUSION S2, HUNT 

The six studies are independent with no overlapping subjects. P-values less than 0.05 are italicized. 
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Table 4. Joint Analysis of Multiple Phenotypes in NFBC 1966 Study 

 rs2083637 rs754524 

Methods p-Value Associated Subset p-Value Associated Subset 

pASTA(MA) 2.7	10‐5 HDL, TG 9.9	10‐10 

TC, LDL 

pASTA(JOINT) 2.5	10‐6 CRP, TC, HDL, LDL, TG 6.7	10‐9 

TC, LDL 

ASSET 3.6	10‐6 HDL, TG 1.5	10‐9 

Glucose, HDL, LDL 

Abbreviations: CRP, C-reactive Protein; TC, Total Cholesterol; HDL, High Density Lipoprotein; LDL, 

Low Density Lipoprotein; TG, Triglycerides; Systolic Blood Pressure (SBP); Diastolic Blood Pressure 

(DBP). 

Correlations among study-specific �-statistics were approximated using phenotypic correlations. 
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