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Abstract

We update theSVM score of an object through a video se-
quence with a small and variable subset of support vectors.
In the first frame we use all the support vectors to compute the
SVM score of the object but in subsequent frames we use only
a small and variable subset of support vectors to update the
SVM score. In each frame we calculate the dot-products of
the support vectors in the subset with the pattern of the object
being tracked. The difference in the dot-products, between
past and current frames, is used to update theSVM score.
This is done at a fraction of the computational cost required
to re-evaluate theSVM score from scratch in every frame.
The two methods we develop are “Cyclic subset selection”,
in which we break the set of all support vectors into subsets
of equal size and use them cyclically, and “Maximum vari-
ance subset selection”, in which we choose the support vec-
tors whose dot-product with the test pattern varied the most
in previous frames. We combine these techniques together for
the problem of maintaining theSVM score of objects through
a video sequence. Results on real video sequences are shown.

1 Introduction
Object detection in video sequence consists of object detec-
tion and confirmation. First, the object must be detected in
the image and then it must be tracked, and confirmed, in sub-
sequent frames. To confirm that we are still tracking it, we
need to re-classify the object in each frame. This might be
computationally expansive , especially if we maintain several
hypothesis for each object, or if we have several objects in the
scene (say, several vehicles on the road, or several faces in an
office scene).

Object detection algorithms exhaustively search the cur-
rent frame in various positions, scales and orientations for a
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desired object. At each position the candidate image patch
is passed to a classifier that determines if the object appears
in that particular image patch. These algorithms use vari-
ous classifiers such as Support Vector Machine [10], neural
networks [12, 16] or maximum likelihood on products of his-
tograms [15]. These methods are too slow to run in real-time
and one way to accelerate them is to use a rejection-based
scheme. In this scheme candidates that are deemed unlikely
to be the object are rejected early on so that the classifier can
focus on the “interesting” regions of the image. Such ap-
proaches include maximal rejection of Eladet al [6], sequen-
tial SVM of Romdhaniet al [11], the cascade of AdaBoost
classifiers of Viola and Jones [18] or the FloatBoost method
of Li et al. [8].

However, all these methods focus on the problem of de-
tecting an object in a given frame rather than the problem of
re-classifying the object in subsequent frames. Clearly, we
can use the detected regions from previous frames to guide
the object detection algorithm in the current frame. But bear
in mind that since these are “interesting” regions in the image
the rejection scheme will not help and the full force of the
classifier will have to be used for every candidate. Our goal is
to accelerate the confirmation stage, given that the object was
correctly detected in a previous frame.

In this work we focus on Support Vector Machines be-
cause they were shown to perform well on face or vehicle de-
tection [10, 11, 2]. Recall thatSVM classifies a test pattern by
summing the result of a non-linear function (calledkernel) on
the dot-product between the test pattern and a set of support
vectors. Thus, evaluating a test pattern is linear in the number
of support vectors. Face detection applications, for example,
might have several hundreds of support vectors [11, 10]. If
there are several objects in the image then this amounts to
several thousands of dot-products, just for re-classification.

One approach to reducing the run-time complexity of
SVM classification is the reduced set method [4, 13] that
computes a small number of synthetic support vectors that
approximate the original set of support vectors. This pro-
cess takes the form of a non-linear optimization and is done



off-line. Still, maintaining good classification results requires
several hundreds of support vectors in the reduced set. Romd-
hani et al. [11] appliedSVM sequentially. After each dot-
product of the test pattern with a support vector a decision
is made if to proceed with the evaluation. In most cases a
small number of support vectors is enough to reject a pat-
tern. Unfortunately, this approach will not accelerate object
re-classification since these regions in the image are the most
probable places for the object to be and hence most, if not all,
of the support vectors will be used.

Instead, we propose a different approach. Given that the
object was detected in a previous frame, we look for a small
and variable number of support vectors that will suffice for a
correct update of theSVM score for the current frame. Our
goal is to find this small subset of support vectors. This is
complementary to filtering techniques such as Kalman Filter-
ing or Condensation [7, 9] that are concerned with correct in-
tegration of information over time. We, on the other hand, are
concerned with reducing the number of features (i.e., support
vectors) we need to use. To this end we evaluate two different
techniques.

The first technique, termed “Cyclic subset selection”
(CSS) breaks the summation of the dot-products across sev-
eral, sayk, frames. At each frame we perform only part of
the dot-products, keep their results and then use a tracker to
track the object to the next frame, where we continue to per-
form the dot-products. At each frame we sum the interme-
diate scores of the lastk frames, reducing the total number
of dot-products performed per-frame by a factor ofk. If the
test pattern does not change much between successive frames,
then this method is approximating a low pass filter over the
SVM score, had all the support vectors been used in each
frame.

The second technique, termed “Maximum Variance Sub-
set Selection” (MVSS), chooses a subset of support vectors
based on the variance of their dot-product with the test pattern
over time (i.e. in previous frames). This way we choose the
support vectors that are most likely to affect theSVM score
in the current frame. The difference between the current dot-
products and the previous dot-products is used to update the
SVM score. Thus, we can update theSVM score with only
a fraction of the support vectors being used. The subset can
be selected deterministically to be then support vectors with
the largest variance in their dot-product, or it can be selected
stochastically by a weighted sampling of the support vectors,
where the weight is based on the variance.

We combine the above mentioned techniques and show re-
sults on the problem of updatingSVM score of vehicles in a
video sequence.

2 Support Vector Machine

For the paper to be self contained we give a brief description
of SVM. The interested reader is referred to [17, 3] for a more
detailed description.

Figure 1. Support Vector Machine: (a) A separating hyper-
plane with small margin. (b) A separating hyperplane with
a large margin. A better generalization capability is ex-
pected from (b). The filled squares and circles are termed
“support vectors”.

2.1 Support Vector Machine
Consider the simple case of two linearly separable classes.
Given a data set{xi, yi}l

i=1 of l examplesxi with labelsyi ∈
{−1, +1}, we wish to find a separating hyperplane between
the two classes. Formally, we consider the family of decision
functions

f(x) = sgn(wT x + b) (1)

and wish to findw, b such thatsgn(wT xi + b) = sgn(yi).
This problem is in general ill-posed because there might be
an infinite number of separating hyperplanes. The question is
which one has a low generalization error (i.e. which one will
do a good job in classifying new examples). It was shown by
Vapnik [17] that choosing the hyperplane with the minimal
norm ofw minimizes the “Structural Risk” which is an upper
bound on the generalization error. Intuitively, thisw is the
one to maximize the margin between the two classes (See
Figure 1). Practically, this amounts to solving the following
quadratic optimization problem (QP)

minw
1
2w

T w

subject to yi(wT w + b) ≥ 1,
i = 1...l

(2)

that can be solved quite efficiently. The example vectors clos-
est to the separating hyperplane are called “support vectors”.
The classification itself is performed by measuring the signed
distance of the test image from the separating hyperplane.

But how can theSVM be extended to handle decision
functions that are not linear in the data? The answer is to
use a nonlinear mappingΦ of the input data and map it to
some high-dimensional (possibly even with infinite dimen-
sions)feature spaceF . The linearSVM is then performed
in F and will therefor be nonlinear in the original input data.
Formally, let

Φ : Rn → F (3)



be a nonlinear mapping from input space to feature space and
the decision functions we deal with becomes

f(x) = sgn(
l∑

j=1

yjαjΦ(x)T Φ(xj) + b). (4)

whereαj is a set of parameters computed by solving the QP
problem. However, working in feature space can be pro-
hibitively expansive to compute. Therefor we use Mercer
kernels on the input data to avoid computing the dot prod-
ucts in feature space. Mercer kernelsk(x,xj) satisfy that
k(x,xj) = Φ(x)T Φ(xj). This way, instead of performing a
non-linear mapping first and then do a dot-product in feature
space, the order is reversed, first we perform the dot-product
and then apply the non-linear mapping. Thus, in kernel-SVM
we use the following decision functions

f(x) = sgn(
∑l

j=1 yjαjΦ(x)T Φ(xj) + b)
= sgn(

∑l
j=1 yjαjk(x,xj) + b)

(5)

and the quadratic programming problem becomes:

maximize

W (α) =
∑l

i=1 αj − 1
2

∑l
i,j=1 αiαjyiyjk(xi,xj)

subject to
αi ≥ 0, i = 1...l,

and
∑l

i=1 αiyi = 0.

(6)

It turns out thatαj are equal to1 for examples on the border
between the two classes and0 otherwise. In typical appli-
cations about10% of the examples haveαj equal to1 and
these examples are calledsupport vectors. The rest of the
examples are not relevant because they do not help separate
between the two classes. The only difference between ker-
nel and linearSVM is that the dot product of linearSVM is
replaced with a kernel function.

Typical kernels used in theSVM literature include
k(x,xj) = exp(− x − xj‖)2 which leads to a Gaussian
RBF, k(x,xj) = (xT xj + 1)d which represent polynomial
of degreed andk(x,xj) = tanh(xT xj − Θ) which leads to
multi-layer perceptron. Extension to non-separable classifi-
cation problem exist [5], where the idea is that a penalty term
is used to govern the price we are willing to pay for misclas-
sified examples.

2.2 Reduced Set Methods
Reduced set methods aim at reducing the run-time complex-
ity of SVM, during classification, by using a reduced set of
support vectors. There are two methods for computing the re-
duced set. The first involvesselectingthe most important sup-
port vectors from the given set of support vectors. This im-
plies changing the weightsαi of the remaining support vec-
tors to compenstate for the support vectors we omit. The sec-
ond method involvesconstructinga set of newly synthesized
support vectors, and their weights, that will approximate the

original set. A comprehansive discussion on the topic of re-
duced set methods can be found in [4, 14].

Both methods approximate the separating hyperplane
given by the vectorΨ ∈ F with a vectorΨ′ ∈ F . But
while Ψ is expressed usingNx images of input patterns,Ψ′
is expressed using onlyNz images of input patterns, and
Nz < Nx. Let

Ψ = ΣNx
i=1αiΨ(xi)

whereαi ∈ R andxi ∈ RN are images of input patterns and
let

Ψ′ = ΣNz
i=1βiΨ(zi)

with Nz < Nx, βi ∈ R, zi ∈ RN . Then this leads to the
following minimization inβj , zj:

||Ψ−Ψ′||2 = ΣNx
i,j=1αiαjk(xi,xj)

+ ΣNz
i,j=1βiβjk(zi, zj)

− 2ΣNx
i=1Σ

Nz
j=1αiβjk(xi, zj).

This minimization is possible even thoughΨ is not given ex-
plicitly, because we use it implicitly, through the kernel. In
the selectionreduced set method we take thezj to be some
subset of the original support vectorsxj and only estimate the
βj . In theconstructionreduced set method we generate asyn-
theticset of support vectors and then try to adjust the weights
βj to improve the apporimxation. A common approach in
both cases is the greedy approach which increases the num-
ber of support vectors one by one, adjusting their weights af-
ter every support vector is added to the reduced set. Thus, the
support vectors in the reduced set can be sorted in order of
importance from the most important reduced-set vector to the
least important reduced-set vector.

3 Subset Selection
Assume that an object is detected in the first frame of a video
sequence and is to be re-evaluated in subsequent frames. Fur-
ther assume that all the support vectors were used in the de-
tection stage, but we wish to use only a small subset of them
in subsequent frames for confirmation. Letxi denote the test
pattern to be evaluated in thei − th frame in the video se-
quence. We will also assume that an SSD tracker was used
to track the test pattern from one frame to the next. In ideal
conditions where the object does not deform, the view point
does not change, the illumination remains fixed and the sen-
sor does not fluctuate we would expect theSVM score to be
identical for every test patternxi 1 ≤ i ≤ n. Clearly this
does not happen. However, we assume that running the full
SVM classifier on every patternxi will correctly classify it.

Our goal is to approximate theSVM score obtained using
all the support vectors with only a small subset of them. This
marks a departure from known reduced set methods in two as-
pects. First, we perform an online reduced set selection that
is tuned for theparticular pattern that is currently tracked,
whereas traditional reduced set methods try to find a reduced



set that will apporximate the fullSVM for everypattern. Sec-
ond, finding a good subset must be done considerably faster
then evaluating the fullSVM for the proposed method to be
usefull.

For clarity let us make the following definitions:

Definition: The responseof a support vectorsj to a
test patternxi is

αjyjk(xi, sj).

Definition: Theresponse varianceof support vectorsj is

V ar(αjyjk(xi, sj)) i = 1...n

wheren is the number of frames the test patternxi appears
in.

3.1 Cyclic Subset Selection
A straightforward approach to choosing a subset of the sup-
port vectors is to break the set of all support vectors intok
subsets of equal size and use a different subset in every frame.
This way, every support vector will be used once everyk
frames.

To measure the error incurred by this method consider the
following toy problem. The video consists of only two frames
with patterns(x1,x2) and there are only two support vectors
(s1, s2). We assume that:

2∑

j=1

yjαjk(xi, sj) > 0 ∀i = 1, 2

and consider the difference between the fullSVM evaluation
and the Cyclic subset selection (CSS) version for the test pat-
ternx2. TheSVM score ofx2, using fullSVM evaluation is
given by

(y1α1k(x2, s1) + y2α2k(x2, s2))

whereas itsSVM score usingCSS(with two subsets) is given
by

(y1α1k(x1, s1) + y2α2k(x2, s2))

The difference between the two expressions is given in the
following derivation.

(y1α1k(x2, s1) + y2α2k(x2, s2))−
(y1α1k(x1, s1) + y2α2k(x2, s2)) =
y1α1(k(x2, s1)− k(x1, s1)) =
y1α1(Φ(x2)Φ(s1)− Φ(x1)Φ(s1)) =
y1α1(Φ(x2 − x1)Φ(s1)) =
y1α1k(x2 − x1, s1)

(7)

and the dot-product< x2 − x1, s1 > should be small since
the SSD tracker minimized the difference betweenx1 andx2.
This suggests that the error incurred by splitting dot-product
computations across several frames is bounded by the kernel
of the dot-product of the temporal derivative of the test pattern

and the support vectors. This is why we use an SSD tracker,
it minimizes the sum-of-squared-differences in gray values.
And in doing so it minimizes the error introduced byCSS.

Cyclic subset selection can be summarized as follows.
Givenn support vectors, break them intok groups of equal
size. At each frame compute the dot-product of the current
pattern with the currentn/k support vectors and add the re-
sult of the rest of then − n/k dot-products computed in the
previousk − 1 frames to give theSVM score for the pattern
in the current frame.

Ideally,CSSwill approximate a moving average of the full
SVM score. This is because it takes every support vector to
be an approximation of its average response value over the
pastk frames. Unfortunately, this may not be good enough
in practice. As we show in the experimental section, the rigid
structure ofCSS does not allow it to change the subset of
support vectors selected and there might be cases in which
a subset of support vectors that hardly change their response
to the test pattern is chosen, while support vectors that have
very large response variance are not chosen, leading to errors
in the updatedSVM score.

3.2 Maximum Variance Subset Selection
Instead of using fixed subsets that are cyclically used we look
for support vectors that we suspect might change their re-
sponse to the test pattern and use them.

Let f(xi) be theSVM score of patternxi (either using full
SVM computation orCSS). Then theSVM score of pattern
xi+1 can be written as:

f(xi+1) = f(xi)−
NS∑

j=1

yjαjk(xi, sj)+
NS∑

j=1

yjαjk(xi+1, sj).

(8)
WhereNS is the number of support vectors in the subset

of framei + 1. Note that asNS approach the total number
of support vectors we obtain a better approximation of the
correctSVM score. Intuitively, we would like to choose the
support vectors whose response, with respect to this particular
test pattern, varies the most. This is because there is no need
to re-compute the dot-product with a support vector with low
response variance. The difference between the old and new
support vector responses is used to update theSVM score.
We use deterministic and stochastic approaches to select sup-
port vectors with maximum variance.

3.2.1 Top Maximum Variance Subset Selection
Top Maximum Variance Subset Selection (Top-MVSS) takes
then support vectors with the largest response variance. To
do this we keep track of the variance of the response of each
support vector to the test pattern in the past. In every frame
We choose then support vectors with the largest response
variance, for some fixed numbern. Alternatively, we can
select all support vectors with response variance greater than
a predefined threshold, which can allow us to bound the error
on the updatedSVM score.



(a) Frame 0 Frame 50

(c) Frame 100 Cyclic subset selection evaluation

Figure 2. Evaluation of the Cyclic subset selection ( CSS) method. (a-c) show the first, middle and last frames from a sequence
of 100 frames. (d) compares the SVM score of CSS to full SVM evaluation with 50 support vectors. The solid line is the SVM
score using all 50 support vectors. The dashed line shows CSSwith 5 subsets (i.e. 10 support vectors per frame). The dotted
line shows CSSwith 10 subsets (i.e. 5 support vectors per frame).

3.2.2 Stochastic Maximum Variance Subset Selection

Stochastic Maximum Variance Subset Selection (Stochastic-
MVSS) performs a weighted sampling of the support vectors.
we perform a weighted sampling ofm support vectors, where
the weight of every support vector is proportional to its re-
sponse variance, andm is some predefined fixed number. In
this process there is a higher probability that we will choose
support vectors with high response variance, that will affect
the updating of theSVM score, than support vectors with low
response variance.

It is important to emphasize that subset selection is not
equivalent to computing a reduced set of support vectors as
was done, for example, in [11]. As we will show in the ex-
perimental section, support vectors with relatively low impor-
tance might have a larger variance with respect to the test pat-
tern and hence might affect the updatedSVM score more than
the leading support vectors (that might have low response
variance).

Each of the above mentioned techniques serves a different
purpose. TheCSS technique guarantees that all the support
vectors will be used everyk frames, for some fixed numberk.
However, it does not take the response variance into account

and therefor might fluctuate with respect to the correctSVM
score. To battle this phenomena we have introduced the Max-
imum Variance Subset Selection (MVSS) that specifically se-
lects support vectors that have large influence on updating the
SVM score. The Top-MVSS method is a deterministic al-
gorithm and as such it might get stuck with a single subset.
Stochastic-MVSS can prevent that from happening. Taken
together the three methods cover a wide range of conditions
and allow for an accurate update of theSVM score, using
only a small number of support vectors.

A couple of comments are in order. First, there is no need
to determine the number of selected support vectors before-
hand. In fact it would be wiser to use theSSDtracking error
to determine this number online. Second, the estimated vari-
ance is biased, because not all the support vectors are evalu-
ated in every frame.

4 Experiments
In the experiments that follow we assume that the detection of
the object in the first frame was completed successfully and
proceed from there. Furthermore, we have used a tracker to
track the object from one frame to the next, and used our tech-



Figure 3. The response variance of support vectors to a
test pattern tracked over 100 frames. There are 50 support
vectors that are ordered from left to right, in a decreasing
order of importance, yet the largest variance is recorded
for support vector 12. The test pattern is the one shown in
Figure 4. See text for further details.

nique to update theSVM score computed in the first frame.
The classification engine was trained on a set of approxi-

mately 10000 images of vehicles and non-vehicles. Vehicles
include cars, SUVs and trucks in different colors and sizes.
The images were digitized from a progressive scan video at a
resolution of320 × 240 pixels and at 30 frames per second.
Typical vehicle size is about50 × 50 pixels. The vehicles
and non-vehicles were manually selected and reduced to the
size of20×20 pixels. Their mean intensity value was shifted
to the value0.5 (in the range[0..1]) to help reduce the ef-
fect of variations in vehicle color. In all the experiments we
used an homogeneous quadratic polynomial kernel given by
k(x,x′) = (xT x′)2 to perform the learning phase. The clas-
sification rate was about92% for the learning set, with about
2000 support vectors. A similar classification rate was ob-
tained for the testing set that contained approximately10000
images as well. To speed up the classification phase we used
the Reduced Set Method [4] to reduce the number of support
vectors from2000 to 400. The Reduced Set Method shows
that for homogeneous quadratic polynomial kernel the num-
ber of support vectors does not have to exceed the dimension-
ality of the input space. The number of support vectors can be
reduced, through Principal Component Analysis on the sup-
port vectors in feature space, to a number bounded by the di-
mensionality of the input space, which is400 in our case. In
practice we found that the50 support vectors with the largest
eigenvalues are sufficient for classification.

In all the experiments we used an optic-flow [1] based
tracker to track the rectangle from frame to frame. In each
frame we have used the proposed techniques in the following
order. First, we usedCSS, then we used stochastic-MVSS
to sample support vectors with large variance and finally we
used Top-MVSS to select additional support vectors. The
support vectors selected by any one of the techniques were
added to the subset and evaluated in the current frame. In
addition, the variance response of each support vector, in the
subset, is updated. The experiments were conducted on a mix

Figure 5. Cyclic subset selection ( CSS) Vs. Maximum vari-
ance subset selection ( MVSS). The graph shows the dif-
ference between the SVM score calculated by each of the
methods and the correct SVM score, computed using all
the support vectors. The dashed line is the difference be-
tween CSS (using 18 support vectors per-frame) and the
correct SVM score (using all 50 support vectors), the solid
line is the difference between MVSS (using 9 support vec-
tors due to stochastic- MVSS and 9 support vectors due
to Top- MVSS) and the correct SVM (using all 50 support
vectors). The CSS technique does not take into account
support vectors that exhibit large response variance and
therefor fluctuates much more than the MVSS technique.

of MATLAB and C++ programs and hence exact timing in-
formation is not available. We did observe that decreasing the
size of the subset increased the speedup in run time.

We found that the method works better on reduced-set vec-
tors than on the full set of support vectors. The reason is that
if we have to select a subset from, say,2000 support vectors,
then we need to choose a large portion of the support vectors,
or else the response variance of the support vectors outside
the subset will be large enough to offset the results. Also,
there is the chance that many support vectors will be corre-
lated with each other and therefor choosing one of them will
not suffice.

In the first experiment we comparedCSSwith full SVM
evaluation. Figure 2 show several images from a 100-frame
long sequence. We used the reduced homogenous quadratic
polynomial with 50 support vectors and plotted theSVM
score when using all the support vectors in every frame and
compared that toCSSusing 5 or 10 subsets.

In the second experiment we analyzed which support vec-
tors had the largest variance in their response to a test pattern.
We measured the variance of the response of each support
vector to a test pattern that was tracked over 100 frames and
show the result in Figure 3. The support vectors are ordered
left-to-right with the leading support vectors on the left. Yet,
the support vector with the highest response variance is sup-
port vector number12. A possible reason for this behvior is
that different support vectors respond to different variations
in the test pattern (change in illumination, view-point, etc.)
and therefor different support vectors will vary their response
to reflect changes in the different image formation factors.

Next we tested the maximum variance subset selection



0 5 10 15 20 25 30
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Frame Number

S
V

M
 s

co
re

(a) (b)

Figure 4. Maximum Variance Subset Selection( MVSS). (a) the first image from a 30 frame sequence. (b) Comparing MVSS with
full SVM evaluation. The SVM score evaluated using all 50 support vectors is shown in solid line, the dashed line shows the
SVM score computed using MVSS using 10 vectors (5 using stochastic- MVSS and 5 using Top- MVSS).

(MVSS). In the first frame we used all 50 support vectors for
object detection. In subsequent frames we used stochastic-
MVSS to sample 5 support vectors and another 5 support
vectors using Top-MVSS, giving a total of 10 support vec-
tors per-frame. Figure 4 shows the results of this experiment.
The maximum difference between theSVM score computed
using all support vectors and the one computed using maxi-
mum variance subset selection was0.2 at most. Because of
the stochastic-MVSS we repeated the experiment 100 times
and reported the averageSVM scores.

In the following experiment we comparedCSS with
MVSS. We compared both methods on a 30 frame sequence
and show the results in Figure 5. The graph shows the dif-
ference between theSVM score, as computed by each of
the techniques and the correctSVM score. Notice how the
CSSfluctuates because it does not account for support vectors
with large variations in their response to the test pattern. The
MVSS method, on the other hand gives much better results.
Again, we repeated the experiment 100 times and reported
the averageSVM scores.

In the following experiment we compare theMVSS
method with a combinedCSS+ MVSS method. We com-
pared the performance ofMVSS with 18 support vectors (In
each frame we sampled 9 support vectors using stochastic-
MVSS and 9 support vectors using Top-MVSS) and a com-
binedCSS+ MVSS (In each frame we choose 6 support vec-
tors usingCSS, another 6 support vectors were sampled us-
ing stochastic-MVSS and the other 6 support vectors were se-
lected using Top-MVSS). Figure 6 shows the results. It shows
that theMVSS captures the high-frequency fluctuations in the
SVM score but might have a bias. The bias is corrected with
theCSStechnique. The results shown are averaged over 100
trials to avoid rear samplings in the stochastic-MVSS part of
the algorithm affect the result.

In the last experiment we have used an RBF kernel, instead
of the homogenous quadratic polynomial kernel we have used
so far. Our goal was to show that instead of taking a reduced
set with a smaller number of support vectors, it is better to

use a reduced-set with a larger number of support vectors and
then use our technique. The classification results of the RBF
kernel were about96% on the test set. Then, we used the
method of [4] to create two reduced sets from the original set
of 2092 support vectors. One reduced set consisted of200
support vectors with a classification score of roughly95%.
The second reduced set consisted of only90 support vectors
with classification score of roughly93%. Then we compared
CSS+MVSS ran on the large reduced set (of200 support vec-
tors) to the results of the smaller reduced set (of90 support
vectors). The results are shown in Figure 7. As can be seen
the combination ofCSSandMVSS gives a better approxima-
tion of the reduced set of 200 support vectors, compared to
the reduced set of 90 support vectors. Again, we repeated the
experiment 100 times and reported the averageSVM scores.

5 Conclusions
We have used subset selection to maintain theSVM score
of a test pattern through a video sequence. In each frame
we select a small subset of the support vectors and compute
their dot-product with the test pattern in the current frame.
The difference in dot-products between previous and current
frames is used to update theSVM score of the test pattern at
a fraction of the computational cost required to evaluate the
SVM score from scratch in every frame.

In particular we have used “Cyclic subset selection” and
“Maximum variance subset selection”. The first breaks the
set of support vectors into smaller subsets and cyclically goes
over them. The second chooses support vectors whose re-
sponse to the test pattern vary the most. The maximum vari-
ance subset selection can be done either deterministically (i.e.
choose thek support vectors with maximum variance) or
stochastically (i.e. use weighted sampling to choose support
vectors with high variance). Taken together this methods can
effectively reduce the computational cost associated with ob-
ject re-evaluation.

While our work focused on support vector machines, it can



Figure 6. Cyclic subset selection ( CSS) and Maximum vari-
ance subset selection ( MVSS). The graph shows the SVM
score of a 100 frame sequence (not shown here), using
three different methods. The solid line was computed us-
ing all the 50 support vectors and it serves as the ground
truth. The dotted line was computed using 18 support
vectors (9 stochastic- MVSS, 9 deterministic- MVSS). The
dashed line was also computed using 18 support vectors
(6 CSS, 6 stochastic- MVSS and 6 Top- MVSS. The combined
MVSS and CSSgives a better approximation to the ground
truth.

be extended to other classification techniques. For example,
in the work of Viola and Jones [18] there is no need to recom-
pute all the features from scratch, only those that exhibit large
variance in response to the test pattern. The same can be said
about the calculation of products of histograms [15].

Future research directions will focus on sparse classifiers
(SVM in particular), so that once an object is detected, only
a small subset of the support vectors will respond to it, and
only this small subset will be used for later re-evaluations.
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