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Abstract—In this paper, we develop robust methods for subset
selection based on the minimization of diversity measures. A
Bayesian framework is used to account for noise in the data and
a maximum a posteriori (MAP) estimation procedure leads to an
iterative procedure which is a regularized version of the FOCal
Underdetermined System Solver (FOCUSS) algorithm. The
convergence of the regularized FOCUSS algorithm is established
and it is shown that the stable fixed points of the algorithm are
sparse.

We investigate three different criteria for choosing the regular-
ization parameter: quality of fit, sparsity criterion, and -curve.
The -curve method, as applied to the problem of subset selec-
tion, is found not to be robust, and we propose a novel modified

-curve procedure that solves this problem. Each of the regular-
ized FOCUSS algorithms is evaluated through simulation of a de-
tection problem, and the results are compared with those obtained
using a sequential forward selection algorithm termed orthogonal
matching pursuit (OMP). In each case, the regularized FOCUSS
algorithm is shown to be superior to the OMP in noisy environ-
ments.

Index Terms—Diversity measures, linear inverse problems,
matching pursuit, regularization, sparsity, subset selection,
undetermined systems.

I. INTRODUCTION

SUBSET selection algorithms have received a lot of atten-
tion in recent years because of the large number of appli-

cations in which they arise [1]. The task of a subset selection
algorithm can be viewed, in many instances, as that of selecting
a small number of elements or vectors from a large collection
of elements (termed a dictionary) that are then used to repre-
sent a signal of interest. The subset selection problem has been
shown to be NP-hard and many algorithms have been proposed
for finding suboptimal solutions to the problem, including al-
gorithms based on forward sequential search or elimination of
elements from the full dictionary available [2]. In previous work
[3]–[5], an iterative algorithm termedFOCal Underdetermined
SystemSolver (FOCUSS) has been developed based on the min-
imization of diversity measures. This algorithm essentially re-
moves elements from the dictionary in parallel and has been
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shown to outperform other subset selection algorithms in low
noise environments.

The goal of this paper, which expands on work presented in
[6] and [7], is to extend the FOCUSS algorithm so that it can
be used in subset selection problems where the signal-to-noise
ratio (SNR) is low. A formal methodology is developed for de-
riving algorithms that can deal with noise in the data. It is shown
how a Bayesian framework coupled with priors on the solution
components consistent with the diversity measure leads
to a regularized version of the FOCUSS algorithm. The con-
vergence of the regularized FOCUSS algorithm is established,
and it is shown that the stable fixed points of the algorithm are
sparse.

In practice, some method must be used in choosing the magni-
tude of the regularization parameter. Motivated by applications,
we explore three different ways of setting this parameter. First,
we consider a discrepancy criterion that assures a certain quality
of fit in the representation as is typically required in signal rep-
resentation problems [1]. Next, we consider limiting the size of
the selected subset, which is important in compression; we term
this a sparsity criterion since the representation obtained uses a
small number of vectors from the available dictionary. Finally,
we experiment with an -curve criterion, which seeks to trade
off the representation error and the size of the selection subset
[8], [9]. This criterion is applicable to the problem of dictio-
nary/frame learning as considered in [10] and [11]. However,
as applied to the problem of subset selection, we find that the

-curve method did not provide robust solutions. This leads us
to develop a novel modified-curve procedure to determine the
regularization parameter that incorporates a target SNR. This
results in a robust procedure for implementing the regularized
FOCUSS algorithm when compared with the-curve method of
[8], [9]. A detection problem is used to examine the implementa-
tions of these regularized FOCUSS algorithms. The results ob-
tained using each of the regularized FOCUSS algorithms are
compared to the results of an improved sequential forward se-
lection algorithm termed orthogonal matching pursuit (OMP)
[12], [13]. We conclude that the regularized FOCUSS proce-
dures give much better results than OMP in detecting the correct
subset in noisy environments.

The outline of this paper is as follows. In Section II, we out-
line the subset selection problem. We give some examples of
diversity measures and show how minimization of these mea-
sures can be used to provide solutions to the subset selection
problem. In Section III, we use a Bayesian framework to ac-
count for noise in the measured data, and the MAP procedure
is used to produce an iterative algorithm to provide solutions to

1053-587X/03$17.00 © 2003 IEEE



RAO et al.: SUBSET SELECTION IN NOISE BASED ON DIVERSITY MEASURE MINIMIZATION 761

the subset selection problem. This procedure can be viewed as a
regularized FOCUSS algorithm. The convergence of this algo-
rithm is established, and it is shown that the stable fixed points
of the algorithm are sparse in Section IV. Practical methods for
the choice of the regularization parameter are considered in Sec-
tion V, and a modified -curve criterion is introduced. The dif-
ferent choices of regularization parameter are examined through
simulation of a detection problem in Section VI, and the results
obtained using OMP are also included for comparison. We draw
some conclusions in Section VII.

II. M INIMIZING DIVERSITY MEASURES

The subset selection problem can be written in matrix form
and consists of solving anunderdeterminedlinear system of
equations of the form [1]

(1)

where is an matrix with (and, usually, ),
and rank . The columns of are formed from the ele-
ments of the dictionary in signal representation problems or de-
rived from the physics of the problem in linear inverse problems
[1], [2]. There aremanysolutions to the system of equations in
(1) and the subset selection problem corresponds to identifying
a few columns of the matrix , which can be used to represent
the data vector [1], [2], [14]. This corresponds to finding a so-
lution with few nonzero entries that satisfies (1), and such a
solution is said to be sparse.

Finding an optimal solution to this problem generally requires
a combinatorial search that is computationally unattractive.
Therefore, suboptimal techniques are usually employed [1], [2].
We discuss one such method called FOCUSS, which has been
extensively examined in [4] and [5]. The FOCUSS method was
motivated by the observation that if a sparse solution is desired
then choosing a solution based on the smallest-norm is not
appropriate. The minimum -norm criterion favors solutions
with many small nonzero entries, which is a property that is
contrary to the goal of sparsity [4], [15]. Consequently, there
is a need to consider the minimization of alternative measures
that promote sparsity. In this context, of particular interest are
diversity measures that are functionals that measure the lack
of concentration/sparsity and algorithms for minimizing these
measures to obtain sparse solutions. There are many measures
of diversity [16], [17], but a set of diversity measures that has
been found to produce very good results as applied to the subset
selection problem is the diversity measure given by [5],
[18]

sgn (2)

Minimization of this diversity measure leads to the FOCUSS
algorithm [4], [5]. The algorithm is iterative and produces inter-
mediate approximate solutions according to

(3)

where diag , and is used to denote
the Moore–Penrose pseudoinverse [19]. The properties of this

algorithm have been examined in depth in [4], [5], and [18]. In-
tuitively, the algorithm can be explained by noting that there is
competition between the columns ofto represent. In each it-
eration, certain columns get emphasized while others are de-em-
phasized. In the end, a few columns survive to represent, pro-
viding a sparse solution.

Interesting insight can be gained into (3) when it is viewed
as a sequence of weighted minimum-norm problems [1].
Defining , in each iteration of the FOCUSS algo-
rithm, the solution is computed as ,
where

subject to (4)

Therefore, the FOCUSS iteration is obtained as the minimum
norm solution to an underdetermined set of linear constraints.
Imposing the equality constraint in (4) is equivalent to assuming
the absence of noise. As we will see in Sections III–VI, ac-
counting for noise means that an exact minimum norm solution
of the form (4) is not sought, and instead, we find a solution at
each iteration step that minimizes andapproximatelysat-
isfies the set of constraints.

III. SUBSET SELECTION IN NOISY ENVIRONMENTS

The derivation of FOCUSS in [4], [5] was based on the
assumption that there was no noise in the data, i.e., the data
vector in (1) is formed as anexact linear combination of
a few columns from . Later, reasonable modifications to
the algorithm were suggested to deal heuristically with noise
[1], [4]. Here, we take a formal approach and extend the
FOCUSS method to deal with noise in the measurements using
a Bayesian framework. This stochastic framework provides
theoretical insights and assists in developing robust methods.

A. Bayesian Formulation

For this discussion, we assume that each of the measured data
vectors consists of a linear combination of a small number of
columns from together with additive noise:

(5)

It is assumed in this formulation thatis a random vector that is
sparse and independent of. Under these assumptions, a max-
imum a posteriori(MAP) estimate of can be obtained as

This formulation is general and offers considerable flexibility.
In order to proceed further, however, some assumptions must be
made on the distributions of the noise components inand the
components of the solution vector.

B. Generalized Gaussian Priors

Because, here, we are interested in a sparse, the distribu-
tion of is not very critical to the approach except for analytical
and computational tractability. We assume thatis a Gaussian
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random vector with independent identically distributed (i.i.d.)
elements,1 i.e., each component , is distributed
as , where , and is the
noise variance. The distribution ofis important for the gener-
ation of sparse solutions. Probability density functions (pdf’s)
that are concentrated near zero but also have heavy tails are ap-
propriate for this purpose [5], [17]. The elements are as-
sumed to be i.i.d. random variables with a generalized Gaussian
distribution. The pdf of the generalized Gaussian distribution
family is defined as [20], [21]

(6)

where is the standard gamma function. The factorcon-
trols the shape, and is a generalized variance. For instance,
setting reduces this generalized form to that of a Lapla-
cian distribution that has been assumed as the prior distribution
of in [15] and [22]. If we set and , this dis-
tribution reduces to the standard normal distribution. If a unit
variance distribution is desired, i.e., , then becomes a
function of as given by

(7)

Therefore, only one parameter characterizes the distribution,
and Fig. 1 plots the pdf for different values ofwhen .
From the figure, it can be seen that the pdf moves toward a uni-
form distribution as and toward a very peaky distribu-
tion as .

A vector with elements that are distributed as gener-
alized Gaussian and are independent has the following pdf:

sgn (8)

where, for consistency with the diversity measure, sgn
is added to allow for .

C. Algorithm Development Based on Gradient Factorization

With the densities of the noiseand the solution chosen as
in the previous section, we can now proceed to find the MAP
estimate that is found from

where

with (9)

and as defined in (2). We note that the substitution of
, which is consistent with a Gaussian distribution of the

1More general Gaussian distributions can be also easily dealt with.

Fig. 1. Pdf of the generalized Gaussian distribution(� = 1) for different
values ofp: p = 10(� � �), p = 2(��) (standard normal distribution),p =
1(� � �), p = 0:5 (solid).

components in , gives rise to the standard regularized least
squares problem. With , it will be shown in Section IV
that the minima of are sparse. controls the tradeoff be-
tween quality of fit and the degree of sparsity. Large
values of lead to sparser solutions, and small values lead to
better fit and, hence, lower error .

Using the factored gradient approach developed in [5], an it-
erative algorithm can be derived to minimize . A necessary
condition for the optimum solution is that it satisfies

(10)

where

and diag . For convenience, we define
the scaling matrix diag . Substituting

in (10) and performing some simple manip-
ulations, we are left with

(11)
Hence, the optimum solution satisfies

(12)
This suggests the following iterative relaxation algorithm:2

(13)

where with diag and
. Using the fact that

2When the elements ofA andb are complex, the transpose operation has to
be replaced by the Hermitian transpose
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algorithm (13) can be expressed as

(14)

When the noise level is reduced, i.e., , this implies that
, and the algorithm reduces to the original FOCUSS al-

gorithm given in (3). Note that the algorithm (14) provides a
solution to the problem (9), which is well-posed for the under-
determined case as well as the overdetermined case. Therefore,
even though we concentrate on the underdetermined case in this
paper, the algorithm is also useful in the overdetermined context.

D. Interpretation as Regularized FOCUSS

The algorithm given in (14) has an interesting interpretation
as Tikhonov regularization [23] applied to (4). This can be
readily seen by rewriting (14) as , where

is obtained as

(15)

Alternately and equivalently, can be shown to be the solu-
tion to the following optimization problem:

where

(16)

By the uniqueness of the minima of , we have
for .

Interestingly, this results in algorithm identical to that sug-
gested in [4]. In [4], this algorithm was proposed as a method of
making the 2-norm minimization problem of (4) more robust to
noise. The derivation given here provides formal support to this
approach.

IV. CONVERGENCERESULTS

Throughout this discussion, a sparse solution refers to a basic
or degenerate basic solution, i.e., a solution with less than or
equal to nonzero entries where is the dimension of the data
vector . Another assumption we make is that anycolumns
of are linearly independent. We present two key results in this
section. First, we show that the local minima of the regularized
cost function [(9), cf. Section III-C] are sparse. This jus-
tifies minimization of the regularized cost function to achieve
sparsity. Second, we show that the regularized FOCUSS algo-
rithm does indeed reduce at each step and that the stable
fixed points of the algorithm are sparse.

Theorem 1: If is a local minima of , where is
the regularized cost function
with sgn , , and , then

is sparse.
Proof: Let or . Since is a

local minima of , it is also a local minima to the optimiza-
tion problem

sgn

subject to

It has been shown in [17] and [18] that the local minima of the
above optimization problem are necessarily sparse. Hence, the
local minima of are sparse.

The above proof and theorem also indicate how, in general,
inclusion of proper diversity measures as a regularizing com-
ponent can facilitate sparsity. Now, we show that the regular-
ized FOCUSS algorithm does indeed achieve the desired goal
by showing that is a descent function for the algorithm.
Before we prove that, we need a preparatory result that helps
connect to the quadratic cost function being minimized at
each iteration. This is presented next in Lemma 1, which spe-
cializes more general results to be found in [24] and [25].

Lemma 1:

(17)

where diag .
Proof: Consider the scalar function sgn ,
, and . Since it is concave [26]

Hence

sgn sgn

Substituting and , we have

sgn sgn

The above inequality applies to each of the components of
leading to

Now, we present the main convergence result.
Theorem 2: The regularized cost function

, , with ((9), cf.
Section III-C) is a descent function for the regularized FOCUSS
algorithm (cf. (14)). Furthermore, the stable fixed points of the
algorithm are sparse.

Proof: To show that is a descent function for the reg-
ularized FOCUSS algorithm, we need to show that

, for computed using (14) and

with

(18)
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The first inequality follows from Lemma 1 and the last in-
equality from (16). Thus, is decreased at every iteration
of the algorithm as desired.

Let be a fixed point of the algorithm and, therefore, neces-
sarily a solution of (12). If is not sparse, then from Theorem
1, it is not a local minima of . Using the notation of The-
orem 1, it is therefore not a local minima of subject to

. By the concavity property of on the pos-
itive orthant [17], [18], it can be shown that there are points ar-
bitrarily close to that can reduce [5]. Hence, nonsparse

are not stable fixed points, and only sparse solutions can be
stable fixed points.

Note that taking provides an alternate proof of the
convergence of the unregularized FOCUSS algorithm. In addi-
tion, note the key role that Lemma 1 has in proving the descent
aspect of the algorithm. In particular, the RHS of (17) (and the
RHS of its consequent (18)) shows why the FOCUSS algorithm
formulated as a sequence of two-norm optimization problems
is capable of minimizing the more complex objective function
[cf. the noiseless optimization case of (4) or the noisy case of
(15) and (16)]. More general results on related FOCUSS-like
algorithms and their convergence can be found in [24] and [25].
The rate of convergence, the number of local minima, and their
basins of attraction is a complex function of. Some discussion
of these issues in the noiseless case can be found in [4].

V. METHODS FOR CHOOSING THE

REGULARIZATION PARAMETER

The sparse solution obtained via the regularized version of
FOCUSS is governed by the choice of, and there remains the
implementation-level problem of determining a proper value for

. In addition, there appears to be no practical reason to limit
the choice of to a fixed value for all the iterations; therefore,
a value that is dependent on the iteration may be more appro-
priate. With this in mind, we suggest three approaches motivated
by three different scenarios. In the first approach, we ensure a
certain quality of fit in the signal representation. This may po-
tentially be motivated by the availability of some information on
the perturbations. The second approach ensures a certain degree
of sparsity in the solution, as would be required in applications
like compression. Finally, in the third approach, we seek stable
sparse solutions without the need for much prior information,
and a tradeoff is made between the sparsity of the solution and
the representation error. Note that once the columns to be used
are identified, then finding a least square solution to the resulting
problem can avoid any regularization bias. This is the approach
used in the simulations. A drawback is the penalty that is in-
curred when the wrong columns are chosen.

A. Quality-of-Fit Criterion/Discrepancy Principle

A potentially useful approach is to seek a sparse solution
that ensures a certain quality in the nature of the representa-
tion, i.e., . For instance, in a signal representation
problem, this a very commonly used criterion [1]. This is termed

thediscrepancy principlein [8]. Algorithmically, this reduces to
solving the optimization problem

subject to

Assuming that the inequality constraint is active, which is usu-
ally true, and following the approach used in deriving the reg-
ularized solution, an iterative algorithm can be derived that at
each iteration computes , where

subject to

This is in the form of a standard regularization problem, and the
solution is given by [19]

where is the rank of the matrix . , are the
dominant singular values of , and , are the left and
right singular values, respectively. is the regularization
parameter that satisfies the equation [19]

B. Sparsity Criterion

In some applications, we may have prior knowledge of the
number of vectors from that were used to produce the data
vector. As an example, in a compression algorithm, the number
of vectors used in the representation of a data vector would be
fixed [10], [11]. Therefore, another option is to chooseso that
the solution produced has a predetermined number of nonzero
entries . Note that upon convergence, the rank of is
equal to , i.e., rank . Therefore, a de-
sirable approach would be to use a sequencethat satisfies
this limiting rank property while providing the best possible
fit. Unfortunately, a reliable procedure for doing this is not yet
available. However, one practical approach is to use a sequen-
tial basis selection method like the OMP to first selectcolumns
from [12]. Then, based on the representation obtained using
these columns, a value for the errorcan be obtained, and this
value can be used in running the FOCUSS algorithm in the
manner suggested in Section V-A. If the FOCUSS procedure
returns more columns than desired, one can prune the selected
subset using OMP or a backward elimination procedure [27].
At this stage, we can choose to proceed using either the OMP
or FOCUSS generated solution, depending on which is better.

C. Modified -Curve Method

A final possibility is that the number of dictionary vectors
used in forming the data vectors is variable, and some variability
in the representation error must also be allowed. Therefore, the
sparse nature of the solution must be controlled so that a tradeoff
between quality of fit and sparsity is made. In particular, this
formulation of the problem is applicable to dictionary/frame
learning [10]. From our development above, this translates to
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finding a regularization parameter that makes a compromise be-
tween minimizing the norm and the error in the represen-
tation . The use of such an approach was first
suggested in [4]. The -curve was introduced in [8] and [9]
as a method for finding the parameterin the regularization
problem

(19)

The regularization problem encountered in (15) can easily be
translated to this form.

As is increased, one obtains regularized solutions
whose norms vary continuously and decrease monotonically. If

is varied from 0 to , decreases monotonically from
to zero, and increases mono-

tonically. The theory of the -curve proposes that a plot of
versus for different values of be shaped like
an and that a good choice of value foris the one corre-
sponding to the corner in the. Furthermore, it is suggested
that the corner of the -shaped curve can be found by finding
the maximum curvature [8], [9], [28]. The plot of versus

can be shown to be convex [9], and the point
of maximum curvature represents a tradeoff point between spar-
sity and accuracy. The curvature can be computed by means of
the formula

(20)

where, in our problem, ,
, and and denote the first and second derivatives re-

spectively. Alternatively, as in [9] and [28], the curvature com-
putation may be done in the log–log scale, that is,

, . The argument made
for the adoption of this scale in [9] is that the corner is found
to be more distinct in the log–log scale. However, a problem
pointed out in [29] is that the -curve in the log–log scale is, in
general, no longer convex. In [30], a linear scale-curve is used,
and in [31], both linear and log–log scale-curves are men-
tioned. In fact, experiments have shown that the log–log curve
often has several corners, and finding the maximum curvature
in this scale does not necessarily correspond to awith a good
tradeoff between sparsity and accuracy.

We implemented our procedure in both the linear and the
log–log scales and found that for this application, the log–log
scale does not give good results. In fact, the algorithm ended up
emphasizing the quality of fit at the expense of the sparsity of the
solution. -curve experiments using the linear scale showed that
the regularized FOCUSS algorithm can perform better in noise
than greedy algorithms such as the OMP, but it failed completely
for some data vectors. The variance of the error was found to be
large, which indicates that the procedure is not very robust. Fur-
ther exploration of the results showed that the-curve approach
failed because the data doesnot produce an -curve in each it-
eration of the FOCUSS algorithm.

This led us to develop a novel solution to the regularization
problem that uses a combination of the discrepancy principle
and the linear scale-curve method. We call this themodified

-curve method. When using the basic-curve method to de-

termine , there is neither direct control of how many vectors
are selected (i.e., the sparsity of the solution) nor a limit on the
representation error. The-curve method seeks the value of
that best minimizesboththese terms, i.e., it finds the best trade
off between accuracy and sparsity. In our proposed modified

-curve method, we assume that we have some knowledge of
the variance of the noise or, alternatively, an approximate target
SNR that a representation must satisfy. From this knowledge
an upper and a lower target can be set on the residual norm

. Then, for every iteration in FOCUSS, the
upper and lower targets for are used to find upper and lower
bounds on the value of that are denoted by and , re-
spectively. The -curve parameter corresponding to the max-
imum curvature in the linear scale is also calculated in every
FOCUSS iteration. is then compared with the limits estab-
lished, and if , then is used, and if ,
then is used. Otherwise, the calculated value ofmay
be used.This adjustment of the value ofensures that will
always produce an acceptable representation even if there is no
distinct corner in the -curve.

VI. EXPERIMENTS AND RESULTS

We now conduct a series of simulations where we examine
the different methods of choosing the regularization parameter
that we have outlined in Section V.

The matrix is generated as a 2030 matrix. The entries
are first chosen randomly from a standard normal distribution,
and then, each column is normalized to give the matrix. Each
vector , as given in (5), is obtained as a linear combination of

vectors from the matrix , and the vectors are randomly se-
lected and are equiprobable. In our experiments,is set to 7, and
the coefficients associated with these vectors are drawn from a
standard normal distribution. The vectoris then normalized,
and finally, a noise vector is added to to produce the final
data vector . The noise vector is generated from a Gaussian dis-
tribution with zero mean and variance determined by the SNR
of the experiment. Two values of SNR (10 and 20 dB) are used
in the experiments. Each experiment is carried out using 100
different data vectors.

Two error measures were utilized in evaluating the success of
the different algorithms. The first error measure compares the
representation obtained using the algorithm, which is given by

, to the data vector and is denoted by

This measures the representation error and is the most impor-
tant measure when we are concerned with representing the data
vector without trying to denoise the signal (as is the case in the
compression of data signals). However, in the case of interest
here, we are trying to get to the underlying (denoised) signal;
therefore, an error measure that comparesto the underlying in-
formation signal in the data vector(i.e., the signal uncorrupted
by noise) is more informative. The error measure we consider is

Of course, in practice, this measure is not readily computable,
but in the artificial simulations of Section VI-A, we know the
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TABLE I
r = 7: RESULTSOBTAINED USING THEDISCREPANCYPRINCIPLE IN THE FOCUSS (F) ALGORITHM AND THE RESULTSFROM THE OMP (O) ALGORITHM

denoised signal. Therefore, we can evaluate this measure that
will then indicate how the algorithm will perform using more
realistic data.

The three methods of choosing the regularization parameter
that have been discussed in Section V were experimented with,
and the results are given in Sections VI-A and B. In addition,
results were obtained using the OMP algorithm [12], [13] on the
same data sets so that the performance of this algorithm could
be compared with that of the regularized FOCUSS algorithm.

A. Discrepancy Principle and Sparsity Criterion

We first evaluate the performance of the discrepancy principle
and sparsity criterion on a generated data set. In using the dis-
crepancy principle to select a value for, we assume that we
know something about the variance of the noise. This allows us
to set a bound on the norm of the representation error as a func-
tion of the noise variance. Letting the variance of each noise
component , be , , the
error bound is set to , where is a parameter chosen in
the experiment. When using this approach the number of vec-
tors chosen from the matrix to approximate a data vector
will vary for different data vectors. In order to compare the re-
sults obtained using FOCUSS with those obtained using OMP,
we have to either fix the error and compare the number of vec-
tors used or fix the number of vectors used and compare the
error for each trial. It is not possible to obtain exactly the same
error using regularized FOCUSS and OMP. However, we can
run an experiment in which the number of vectors selected by
each algorithm is the same. The FOCUSS algorithm is run with
an upper bound set for the representation error, and the number
of vectors selected is found. Then, the OMP algorithm is
run, which selects vectors sequentially from. This algorithm
is terminated once vectors have been chosen. Thus, each
algorithm has chosen the same number of vectors to represent
the data vector, and the representation errors can be compared.

When the sparsity criterion is used in determining the regular-
ization parameter, the number of vectors used in representing
the data vector is fixed, i.e., the number of nonzero entries in
the solution vector that determines the representation
is fixed. In this experiment, we assume that the number of vec-
tors used in forming the data vectoris known to be . The
goal is to find the best possible approximation as measured by
the error using a linear combination of columns from the
matrix . Unfortunately, it is not trivial to control the number

of vectors selected by the FOCUSS algorithm, but we now de-
scribe the method we used to do this. For a given data vector,
the OMP algorithm is first run, and the number of vectors used in
approximating is easily controlled so that the algorithm is ter-
minated after vectors have been selected. The representation
error is calculated and used as the upper bound on the error
for the FOCUSS algorithm. Once the representation error falls
below this bound, the number of vectors used by the FOCUSS
algorithm is obtained. If , the representation is
pruned down to by using OMP to selectof the vectors.
If , extra vectors are added using OMP until a total of

vectors are again used in the representation. This means that
each algorithm will have a representation that utilizesvectors
from the matrix .

Results:
Description of Table Parameters:The results obtained

using the discrepancy principle and sparsity criterion are tab-
ulated in Tables I and II for different values of SNR. In these
tables, is an additional factor used in the FOCUSS algorithm
as given in (14) and can be used to trade off convergence speed
against sparsity [4], [5]. is the user chosen factor that deter-
mines the error bound used when running FOCUSS and using
the discrepancy principle to determine. The column headed by
# gives the average number of vectors selected in representing
the data vectors, whereas gives the average number of vec-
tors selected for representingthat are identical to the vectors
used in generating. The mean values obtained for the errors

and using FOCUSS(F) and OMP(O) are tabulated. In ad-
dition, and give the percentage of trials in which FO-
CUSS performs better than OMP or vice-versa (note that the
total is not 100% as there are some trials in which the algorithms
perform identically, as measured to an accuracy of 10).

Comment on and Results: From Tables I and II, we
find that mean is lower in all cases for the FOCUSS algo-
rithm than the OMP algorithm. This is in keeping with the theory
that we have presented since FOCUSS tries to denoise the data
vector, whereas OMP does not. Looking at the figures given for

, we note that again, FOCUSS performs better than OMP,
as measured by the number of trials in which it achieves a lower
value of . In some cases, there is a very noticeable difference,
as observed in the first line of Table I. However, meanis in
general a better indication of performance.

Examining the results for mean, we see that with SNR
dB, the FOCUSS algorithm does better than OMP. This is

despite the fact that the OMP does better in most trials than FO-
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TABLE II
r = 7: RESULTSOBTAINED USING THESPARSITY CRITERION IN THE REGULARIZED FOCUSS (F) ALGORITHM AND THE RESULTSFROM THE OMP (O) ALGORITHM

CUSS as measured by . The reason for this is explained
by Fig. 2, which shows a histogram of corre-
sponding to the data used in generating the first two rows of
Table I, where the discrepancy principle is used in choosing,
and SNR dB, , , and in (a) and (b)

. From the skewed nature of the plots in Fig. 2(a) and
(b), it is noted that when OMP performs better, it only performs
marginallybetter, but when FOCUSS performs better, it some-
times performssignificantlybetter. Thus, the mean values of,
which are given in Table I, favor the FOCUSS algorithm. A sim-
ilar assessment can be made of the results presented in Table II.

When the SNR is reduced to 10 dB, as given in Tables I and
II, the FOCUSS algorithm still does better than the OMP algo-
rithm, as measured by mean. However, it no longer gives a
lower value for mean . This is expected since the regularized
FOCUSS is acting to denoise the data vector and represent the
underlying denoised vector, whereas the OMP does nothing
to remove noise and represents the data vector. This is also
reflected in the figures given for and .

Comment on Results: Finally, we look at the results
given in the column of each of the tables. In Table I (discrep-
ancy principle) and Table II (sparsity criterion), it is observed
that the values for FOCUSS are better in all cases than those
for OMP. This shows that the regularized FOCUSS algorithm is
more successfully selecting the true underlying generating vec-
tors than the OMP.

B. Modified -Curve Method

The modified -curve method requires some knowledge of
the noise level or the target SNR for the representation that is
then used to find and , as described in Section V-C.
The values of , , and are found in each FOCUSS
iteration.

The noise vector has Gaussian random entries, and
each component of the vector has variance. has a
distribution, and the limits on are chosen such that

for some threshold , which
was set to 0.1 in these experiments. The values ofare obtained
by using the SNR values, and for SNR dB, the limits on

are found to be and . These
limits are increased by a factor of 10 for SNR dB. If the
true SNR of the data is unknown, targets for the SNR can be used
to decide the error limits. If the desired SNR is approximately

dB, an upper error limit can be set using dB as an

Fig. 2. Histogram of� � � with SNR= 20 dB, r = 7, p = 0. (a)
C = 0:8. (b) C = 1:2.

SNR target and a lower limit using dB leading to the
limits

(21)

(22)

For each data vector, the FOCUSS algorithm is first run, and
is found. Then, the OMP algorithm is run on the same data

vector and is terminated after it has selected vectors.
Results: In the first simulations, the SNR is set to known

values of 10 and 20 dB, and the algorithm haspreciseknowledge
of the SNR. In contrast, in the second simulation, although the
true SNR is 20 dB, we assume thata priori we are only able to
put upper and lower bounds on the SNR; the lower limit is set to
15 dB and the upper limit to 25 dB from which values of
and can be obtained. For each case, 100 different data
vectors were generated, and the results are given in Tables III
and IV, respectively.

Comment on and Results: From Table III, we note
that the mean value of obtained using the FOCUSS algorithm
is lower in every instance than the value obtained using the OMP
algorithm. This result is further emphasized by the values of

: For instance, with , FOCUSS gives a lower value
of in over 70% of the trials. In addition, it is noted that is
greater for FOCUSS than OMP in all rows of the table, which
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TABLE III
SNR IS ASSUMEDKNOWN AND r = 7: RESULTSOBTAINED USING THE MODIFIED L-CURVE CRITERION IN REGULARIZED FOCUSS (F) WITH PRECISE

KNOWLEDGE OFSNRAND OMP (O) ALGORITHMS

TABLE IV
TRUE SNR IS 20 DB AND r = 7: RESULTS OBTAINED USING THE MODIFIED L-CURVE CRITERION, WHERE THE TARGET SNR IS TAKEN

TO BE BETWEEN 15 AND 25 DB

shows that we are correctly identifying more of the generating
vectors using FOCUSS rather than OMP. In common with the
results of Section VI-A, with SNR dB, mean obtained
for FOCUSS is lower than that obtained for OMP. However,
with SNR dB, the OMP achieves a lower value. As we
have previously stated, this is due to the fact that the regularized
FOCUSS tries to represent the underlying denoised signal
rather than the data signal.

In Table IV, mean and mean are both lower for FOCUSS
than OMP. However, the gap is not as large as that observed
in the top half of Table III. This can be attributed to the less
accuratea priori knowledge in these simulations. The achieved
SNR can be calculated from mean. For , SNR
is 16.8 dB, and for , it is 17.6 dB. The results give
a lower SNR than the true SNR, but the number of selected
vectors is approximately 5.5, whereas vectors were used
in generating the data vectors.

Comment on versus Number of Selected Vectors:In
Fig. 3(a), we provide a plot of the number of vectors selected in
each trial (the average over 100 trials gives # in the table); this
is found to vary between 3 and 11. We plot the corresponding
value of obtained in each trial in Fig. 3(b). First, it is seen
that the variance in the error is small, and this means that the
variance in the approximation quality for the different trials is
also small. The achieved SNR for each trial varies between 15
and 25 dB, which corresponds to the predetermined limits on the
SNR. Comparing Fig. 3(a) and (b), it can be seen that the error
is, in general, not smaller for the trials where the number of se-
lected vectors is large. This observation, together with the small
variance of , indicates that the method we have developed of
combining the target SNR with the linear scale-curve works
well. The problem in the original -curve method that made no
attempt to control the quality of the representation and often led
to the choice of a regularization parameter that overemphasized
either sparsity or representation error has been remedied by our
algorithm, which produces more robust results.

Fig. 3. ModifiedL-curve FOCUSS algorithm for simulated data with true
SNR = 20 dB and the target SNR bounds set to 15 and 25 dB. (a) Number
of selected vectors in each trial. (b)� for each trial.

VII. CONCLUSION

In this paper, we have tackled the problem of subset selec-
tion in noisy environments. A formal methodology was devel-
oped using a Bayesian framework that led to the derivation of a
regularized FOCUSS algorithm to solve this problem. The con-
vergence of the regularized FOCUSS algorithm is established,
and it is shown that the stable fixed points of the algorithm are
sparse. We then considered the practical implementation of the
algorithm that involves the choice of the regularization param-
eter. Motivated by different applications, three methods were
examined for setting this parameter: The discrepancy principle
assures a certain quality of fit in the representation, the sparsity
criterion enforces a certain subset size, and the-curve crite-
rion seeks a tradeoff between representation error and the size
of the selection subset. We proposed a novel modified-curve
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procedure, incorporating a target SNR, to determine the regu-
larization parameter that was able to overcome the robustness
problems we encountered in applying the-curve method di-
rectly to our application.

Through simulations, we showed that the regularized FO-
CUSS algorithm can better identify the generating vectors than
an algorithm based on a forward sequential selection of vectors
such as OMP. It must be stated that the OMP performance is still
good and is adequate for many applications. The much greater
complexity of the regularized FOCUSS algorithm means that
it is not suitable for real-time processing; therefore, the OMP
algorithm would be preferred. However, when the detection of
the true underlying vectors is of foremost importance rather than
the processing time, especially as encountered in some medical
applications, the improved detection ability of the regularized
FOCUSS algorithm makes the utilization of the regularized FO-
CUSS algorithm developed here attractive.
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