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Abstract
We study the exact time complexity of the Subset Sum problem. Our focus is on instances that
lack additive structure in the sense that the sums one can form from the subsets of the given
integers are not strongly concentrated on any particular integer value. We present a randomized
algorithm that runs in O

(
20.3399nB4) time on instances with the property that no value can arise

as a sum of more than B different subsets of the n given integers.
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1 Introduction

Given integers a1, a2, . . . , an ∈ Z and a target integer t ∈ Z as input, the NP-complete
Subset Sum problem asks whether there exists a subset S ⊆ [n] with

∑
j∈S aj = t. Despite

the apparent simplicity of the problem statement, to date there has been modest progress on
exact algorithms [11] for Subset Sum. Indeed, from a worst-case performance perspective
the fastest known algorithm runs in O∗(2n/2) time1 and dates back to the 1974 work of
Horowitz and Sahni [13]. Improving the worst-case running time is a well-established open
problem [28, §53].

Improved algorithms are known in special cases where one assumes control on the ad-
ditive structure in the steps2 a1, a2, . . . , an. In particular this is the case if we assume

1 The O∗(·) notation suppresses a multiplicative factor polynomial in the input size.
2 The term step originates from the study of the Littlewood–Offord problem in additive combinatorics,
see e.g. Tao and Vu [26] and [25, §7]. In this context the integers a = (a1, a2, . . . , an) define the
step-lengths of an n-step random walk on Z given by the random variable S(a) =

∑n

i=1 aiεi, where
the values ε1, ε2, . . . , εn ∈ {−1, 1} are selected independently and uniformly at random. (The Subset
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that the possible sums that one can form out of the steps are supported by a small set of
values. Assuming such additive structure is available, a number of algorithmic techniques
exist to improve upon the Horowitz–Sahni bound, ranging from Bellman’s classical dynamic
programming [5] to algebraization [16, 18] and to parameterized techniques [9].

Given that additive structure enables improved algorithms, it would thus be natural to
expect, a priori, that the worst-case instances are the ones that lack any additive struc-
ture. In a cryptographic context such instances are frequently assumed to be random. Yet,
recently Howgrave-Graham and Joux [14] made a breakthrough by showing that random
instances can in fact be solved in O∗(20.337n) time; a correct derivation of this bound and
an improvement to O∗(20.291n) are given by Becker, Coron, and Joux [4].

The results of Joux et al. raise a number of intriguing combinatorial and algorithmic
questions. Given that improved algorithms exist for random instances, precisely what types
of hard instances remain from a worst-case analysis perspective? What are the combinatorial
properties that the hard instances must have? Conversely, from an algorithms standpoint one
would like to narrow down precisely what intrinsic property of the steps a1, a2, . . . , an enables
algorithm designs such as the Joux et al. results. Such a quest for intrinsic control is further
motivated by the relatively recent identification of a large number of natural dichotomies
between structure and randomness in combinatorics (cf. Tao [22, 23, 24], Trevisan [27], and
Bibak [6]). Do there exist algorithm designs that capitalize on pseudorandomness (absence
of structure) to improve over the worst-case performance?

In this paper we seek to take algorithmic advantage of the absence of additive structure in
instances of Subset Sum. A prerequisite to such a goal is to have a combinatorial parameter
that measures the extent of additive structure in an instance. The close relationship between
the Subset Sum problem and the Littlewood–Offord problem in additive combinatorics [25,
§7] suggests that one should study measures of additive structure in the context of the latter.

We show that such transfer is indeed possible, and leads to improved exact algorithms
for pseudorandom instances of Subset Sum. Our measure of choice for pseudorandomness
is the concentration probability employed, for example, by Tao and Vu [26] in the context of
inverse theorems in Littlewood–Offord theory. We use an equivalent but fully combinatorial
definition that will be more convenient in the context of Subset Sum. Define the set
function a : 2[n] → Z for all X ⊆ [n] by a(X) =

∑
j∈X aj . We now assume that we have

a uniform upper bound on the size of the preimages a−1(u) = {X ⊆ [n] : a(X) = u} for
u ∈ Z. For B ≥ 1 we say that the instance a1, a2, . . . , an has B-bounded concentration if
for all u ∈ Z it holds that |a−1(u)| ≤ B.3 That is, no value u ∈ Z may occur as a sum
a(X) = u for more than B different subsets X ⊆ [n]. The extreme case B = 1 captures the
notion of additive independence or dissociativity in additive combinatorics [25, §4.32]. The
other extreme case B = 2n is achieved by a1 = a2 = . . . = an = 0, and more generally, an
instance of high density (see §1.2) automatically has high concentration.

Our main result is that all instances without strong additive structure (without expo-
nential concentration of sums) can be solved faster than the Horowitz–Sahni time bound
O∗(2n/2). A quantitative claim is as follows.4

Sum problem is equivalent to asking whether the outcome S(a) = s has positive probability for s =
2t−

∑n

j=1 aj .)
3 In terms of the Littlewood–Offord random walk, B-bounded concentration is equivalent to the assertion
that for all u ∈ Z the probability of the outcome S(a) = u is at most B/2n.

4 The running time versus the concentration bound in Theorem 1 can be sharpened somewhat; our
subsequent analysis enables a more precise smooth tradeoff curve between the concentration bound B
and the running time of the algorithm captured by Equation (5) in what follows. When the instance
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50 Subset Sum in the Absence of Concentration

I Theorem 1. There exists a randomized algorithm for Subset Sum that with probability
1− o(1) solves instances with B-bounded concentration in time O∗

(
20.3399nB4).

Theorem 1 shows that we can afford quite considerable additive structure (exponen-
tial concentration of sums) in an instance, and still remain below the Horowitz–Sahni
O∗(2n/2) worst-case upper bound. Here we should note that we do not show how to decide
whether a given instance has B-bounded concentration. Yet, by invoking our algorithm
with B = 1, 2, 4, . . . we can conclude within the time bound in Theorem 1 that we have de-
cided the instance correctly with high probability or the instance does not have B-bounded
concentration. Thus, we are left with a dichotomy of possibilities from the perspective of
worst-case algorithm design:

Either worst-case instances must have considerable additive structure (and the Horo-
witz–Sahni bound thus remains uncontested), or Subset Sum has improved worst-
case algorithms.

1.1 Methodology and Contributions
Our main challenge is to show that having control only on the concentration parameter B
enables algorithmic implications. Here our approach is to alleviate the randomness assump-
tions on one of the aforementioned Joux et al. algorithm designs by injecting extra entropy
into the algorithm.

In particular, we view the choice of the moduli in the algorithm as defining a family of
hash functions. We show that control only on B suffices for probabilistic control on the
extent to which a fixed solution is witnessed in the codomain of a random hash function.
Thus, we obtain an algorithm design by (i) selecting a random hash function, (ii) selecting
a random element in the codomain, and (iii) searching the preimage for solutions.

The Howgrave-Graham–Joux two-level design. To highlight our contribution in more
detail, let us begin with a high-level review of a Howgrave-Graham–Joux [14] design, adapted
from the careful presentation by Becker [3, §4.2], that we then proceed to analyze and
instrument in what follows. The algorithm searches for a solution S by building the solution
from four disjoint parts

S = S1 ∪ S2 ∪ S3 ∪ S4 with |S1| = |S2| = |S3| = |S4| = |S|/4 . (1)

The search is executed along what can be viewed as a two-level recursion tree, which is best
analyzed from a top-down perspective. (The actual algorithm will operate in the reverse
direction from the bottom up when searching for S.) The first level splits S into two halves
T and S \T for some T ∈

(
S
|S|/2

)
. The second level then splits T and S \T into halves. That

is, T splits to L and T \ L for some L ∈
(

T
|S|/4

)
, and S \ T splits to R and (S \ T ) \ R for

some R ∈
(
S\T
|S|/4

)
. The triple (T, L,R) now naturally splits S into four parts

S1 = L , S2 = T \ L , S3 = R , S4 = (S \ T ) \R . (2)

The advantage of the tree-like design over a flat design (1) is that subtrees at T and S \ T
are (essentially) independent and the T -component of the three-tuple (T, L,R) gives direct
control on what happens at nodes T and S\T in the tree. The design now controls the size of

does not have B-bounded concentration, the algorithm will run in the claimed time in the parameters
n and B, but in this case the algorithm is not guaranteed to find a solution with high probability.
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the search space by fixing two |S|/2-bit coprime moduli, M1 and M2, and then constraining
uniformly at random the congruence classes of the values a(T ), a(L), and a(R), which are
constrained modulo M1M2, M1, and M1, respectively.5 A clever application of a theorem
of Nguyen, Shparlinski, and Stern [19, Theorem 3.2] on the distribution of modular sums
across the ensemble of all instances a1, a2, . . . , an then enables Howgrave-Graham and Joux
to control on the size of the search space on all but an exponentially negligible fraction of
instances to obtain O∗(20.337n) running time on random instances. This is the starting point
of our present work.

Our contributions. In contrast to the Howgrave-Graham–Joux analysis, our objective is
to localize the ensemble analysis to individual instances with control only on the instance-
specific additive structure captured by B. Our central observation is that we can obtain
further probabilistic control on the algorithm by studying how the selection of the moduli
M1 and M2 affects the search space. In particular it makes sense to treat the selection of
M1 and M2 as the task of selecting a hash function from a formal family of hash functions
hM1,M2 with

hM1,M2(T, L,R) =
(
a(T ) mod M1M2, a(L) mod M1, a(R) mod M1

)
∈ ZM1M2×ZM1×ZM1 .

Our main contribution is now that, assuming control only on B, and letting M1 = p and
M2 = q to be distinct random primes, we find that any fixed solution S is extensively
witnessed in the codomain Zpq × Zp × Zp of a random hp,q (Lemma 3). Furthermore, we
show that the size of the search space traversed by (a minor instrumentation of) the two-
level Howgrave-Graham–Joux design is bounded with essentially the same running time
guarantee (Lemma 4).6 Here we stress that our main contribution is analytical (Lemma 3)
and in explicating the relevance of the hash family that enables us to inject entropy into the
algorithm to cope with control on B only. In essence, our contribution is in localizing the
outliers substantially deviating from the ensemble average (Nguyen et al. [19, Theorem 3.2])
to instances with substantial additive structure (exponential concentration of sums).

1.2 Related Work
The complexity of a Subset Sum instance is commonly measured by the density, defined
as n/(log2 maxi ai). From the perspective of worst-case guarantees, the Schroeppel–Shamir
algorithm [21] that uses O∗(2n/2) time and O∗(2n/4) space remains uncontested for instances
of density at most 2. However, improved space–time tradeoffs have been discovered recently
first for random instances by Dinur, Dunkelman, Keller, and Shamir [8], and then generalized
to worst-case instances by Austrin, Kaski, Koivisto, and Määttä [2]. For worst-case instances
with density greater than 2, Bellman’s classical dynamic programming algorithm [5] remains
the fastest. If allowed only polynomial space, improving the O∗(2n)-time exhaustive search

5 Because the set function a is modular and a solution satisfies a(S) = t, control on T,L,R gives control
on the corresponding right siblings S \T , T \L, (S \T )\R and hence gives control on the entire search.

6 Observe that our bound O∗(20.3399nB4) is worse than the O∗(20.337n) obtainable for random instances
with a corrected version of the original Howgrave-Graham and Joux [14] design (as described by Becker,
Coron, and Joux [4] and Becker [3, §4.2]). This results from the fact that we analyze only the two-
level design relative to control on B, whereas O∗(20.337n) time would require the analysis of a more
intricate three-level design for a gain in the third decimal digit of the exponent of the running time.
Our contribution in the present work should be viewed as not optimizing the base of the exponential
via increasingly careful constructions but rather showing that control on B alone is sufficient to go
below the Horowitz–Sahni bound by a slightly more refined analysis of the Howgrave-Graham–Joux
design.
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52 Subset Sum in the Absence of Concentration

algorithm for density at most 1 is an open problem, while for density 1 + Θ(1) there is an
improved algorithm by Lokshtanov and Nederlof [18].

Impagliazzo and Naor [15] show that, with respect to polynomial time solvability, ran-
dom instances are the hardest when the density is close to 1. As already mentioned, for
such instances the O∗(2n/2) time bound was recently improved to O∗(20.337n) [14] and sub-
sequently to O∗(20.291n) [4, 3]. Interestingly, almost all instances of density at most 0.94
can be reduced to the problem of finding shortest non-zero vectors in lattices (cf. Lagarias
and Odlyzko [17] and Coster et al. [7]). Flaxman and Przydatek’s algorithm [10] solves
random instances in expected polynomial time if the density is Ω(n/ log2 n), or equivalently,
log2 maxi ai = O((log2 n)2).

Random instances have been studied also for other NP-hard problems; see, for example,
Achlioptas’s survey on random satisfiability [1]. We are not aware of prior work on exact
algorithms that make use of pseudorandomness (absence of structure) and improve over the
worst case in such an explicit way as we do in the present work.

2 Preliminaries

This section makes a review of standard notation and results used in this paper.
We write [n] for the set {1, 2, . . . , n}. For a finite set U , we write 2U for the set of

all subsets of U and
(
U
k

)
for the set of all subsets of U of size k. For 0 ≤ σ ≤ 1 let

H(σ) = −σ log2 σ−(1−σ) log2 (1−σ) be the binary entropy function with H(0) = H(1) = 0.
For all integers n ≥ 1 and 0 ≤ σ ≤ 1 such that σn is an integer, we have by Stirling’s
formula [20] that

(
n
σn

)
≤ 2nH(σ).

We write Z for the set of integers and Z≥1 for the set of all positive integers. We will
need the following weak version of the Prime Number Theorem [12, p. 494, Eq. (22.19.3)].

I Lemma 2. For all large enough integers b it holds that there exist at least 2b/b prime
numbers p in the interval 2b < p < 2b+1.

For a modulus M ∈ Z≥1 and x, y ∈ Z, we write x ≡ y (mod M), or x ≡M y for short,
to indicate that M divides x− y.

For a logical proposition P , we write [P ] to indicate a 1 if P is true and a 0 if P is false.

3 The Algorithm

This section proves Theorem 1. Suppose we are given an instance a1, a2, . . . , an, t ∈ Z as
input. We assume that the instance has B-bounded concentration.

3.1 Preprocessing and Parameters of the Input
By resorting to routine randomized preprocessing (detailed in the full version) and then
invoking the main algorithm (to be described) a polynomial (in the original input size)
number of times, we may assume that the input to the main algorithm has the following
structure:
(a) the input a1, a2, . . . , an, t consists of positive integers only,
(b) a1 + a2 + . . .+ an + t ≤ 2τn for τ > 0 a constant independent of n,
(c) the solution S ⊆ [n], if any, has size s = |S| that is known to us,
(d) n/100 ≤ s ≤ n/2,
(e) both n and s are multiples of 8, and
(f) the instance has B-bounded concentration.
Define σ = s/n. In particular, 1/100 ≤ σ ≤ 1/2.
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3.2 The Hash Functions
We are interested in discovering the set S (if such a set exists) by assembling it from four
equally-sized disjoint parts. Recalling our discussion in §1.1, we will follow a tree-based
design with domain

D(S) =
{

(T, L,R) : T ∈
(
S
s/2
)
, L ∈

(
T
s/4
)
, R ∈

(
S\T
s/4
)}
.

Since we are always analyzing a fixed arbitrary solution S, we suppress S and simply write
D . The following family of hash functions seeks to witness at least one split from D with
high probability. Towards this end, for p, q ∈ Z≥1 define the function

hp,q : D → Zpq × Zp × Zp

for all (T, L,R) ∈ D by

hp,q(T, L,R) =
(
a(T ) mod pq, a(L) mod p, a(R) mod p

)
. (3)

Our main lemma shows that D is indeed extensively witnessed in the codomain Zpq ×
Zp × Zp. The sizes of p and q will be judiciously chosen as follows. Let p∗ =

(
s/2
s/4
)
/B and

q∗ =
(
s
s/2
)
/(Bp∗).7 Let λ = log(p∗)/n ≈ σ/2− log(B)/n.

I Lemma 3. Let p and q be independently chosen random primes in the range [p∗, 2p∗]
and [q∗, 2q∗], respectively. Then with probability at least 1/2, it holds that |hp,q(D)| ≥
2−(19+3τ/λ)s−6p3q.

Observe in particular that the codomain has size p3q. We will prove Lemma 3 in §4.

3.3 The Search Subroutine
Once p and q have been fixed, we need a compatible search subroutine that carries out the
search in a random preimage of h−1

p,q. Towards this end, let us assume that p and q are fixed
and coprime.

The high-level structure of the search subroutine is captured in the following lemma.

I Lemma 4. Suppose that kT ∈ Zpq, kL ∈ Zp, and kR ∈ Zp have been chosen independently
and uniformly at random. Then, there exists a randomized algorithm that searches for
subsets S ∈

([n]
s

)
such that both of the following requirements hold:

(i) a(S) = t; and
(ii) there exist sets T ∈

(
S
s/2
)
, L ∈

(
S
s/4
)
, and R ∈

(
S\T
s/4
)
such that we have

a(T ) ≡ kT (mod pq) , a(L) ≡ kL (mod p) , and a(R) ≡ kR (mod p) .

For every choice of kT, kL, kR, and every subset S satisfying these conditions, the algorithm
finds S with probability at least 1/n2 (over the internal randomness of the algorithm).

The expected running time of the algorithm over the choice of (kT, kL, kR) is

O
(
n2 · 2 1

2H(σ/4) + n2 · 2H(σ/4)n/p+ n2B · 22H(σ/4)n/(p2q)
)
. (4)

The running time bound holds uniformly for all coprime choices of p and q.

The proof of this lemma is given in §5.

7 For completeness, we round p∗ to 1 if p∗ < 1. However, in this case the running time becomes
Ω
((

s/2
s/4

)4)
, rendering the algorithm slow and uninteresting.
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54 Subset Sum in the Absence of Concentration

3.4 Completing the Proof of Theorem 1
We now combine Lemma 3 and Lemma 4 to yield the algorithm design for Theorem 1.

The algorithm starts by selecting a random independent pair p, q of primes with p ∈
[p∗, 2p∗] and q ∈ [q∗, 2q∗] and then selects uniform and independent kT ∈ Zpq, kL ∈ Zp,
kR ∈ Zp. Then we run the algorithm of Lemma 4 with these parameters. If we find a
solution, the algorithm reports that solution. Otherwise the algorithm reports that the
instance has no solution.

Let us now analyze the success probability and running time of the algorithm. The output
of the algorithm is always correct if the instance has no solution, so let us assume that the
instance has a solution S. Let α = 2−(19+3τ/λ)s−6, and note that α is inversely polynomial
in the input size. From Lemma 3 we have that with probability at least 1/2 we obtain a
pair of primes p, q such that |hp,q(D)| ≥ αp3q. Conditioning on this event, we have that
(kT, kL, kR) ∈ hp,q(D) with probability at least α. Conditioned on (kT, kL, kR) ∈ hp,q(D),
the algorithm of Lemma 4 finds the solution S with probability at least 1/n2. In total, the
probability that the algorithm finds a solution S is at least α′ := α/(2n2).

The algorithm runs in expected time

T = n2 ·O
(
2 1

2H(σ/4)n + 2H(σ/4)n/p+B · 22H(σ/4)n/(p2q)
)
.

By Markov’s inequality, with probability at most α′/2 it runs in time at most 2T/α′, so
even if we terminate it after 2T/α′ steps, it still has an α′/2 chance of finding S. To amplify
this to 1− o(1) we repeat the whole procedure n/α′ times, and the overall running time for
the algorithm is (suppressing terms polynomial in n)

2nT/(α′)2 = O∗
(
2 1

2H(σ/4)n + 2H(σ/4)n/p+B · 22H(σ/4)n/(p2q)
)

= O∗
(
2 1

2H(σ/4)n +B2(H(σ/4)−σ/2)n +B4 · 2(2H(σ/4)−3σ/2)n), (5)

where we used that p ≥ p∗ =
(
s/2
s/4
)
/B ≥ 2s/2/(Bs) and q ≥ q∗ =

(
s
s/2
)
/(Bp∗) ≥ 2s/2/(Bs).

The first two summands in (5) are maximized in the range 0 ≤ σ ≤ 1/2 when σ = 1/2
and are both bounded by B20.3n. The third summand is maximized when σ = 4/9 where it
is roughly B420.3399n, giving the claimed time bound in Theorem 1. The proof of Theorem 1
is now complete.

4 Analysis of the Hash Function

This section proves Lemma 3.

4.1 Size of the Image Under Bounded Collisions
Our first objective is to bound the size of the image hp,q(D) from below subject to the
assumption that the parameters p, q have “few collisions” in a sense to be made precise
under the assumptions in Lemma 5.

For a subset X ⊆ S, a modulus M ∈ Z≥1, and k ∈ ZM , let us count the number of
halves of X that land in the congruence class of k modulo M by

fM,k(X) =
∣∣{Y ∈ ( X

|X|/2
)

: a(Y ) ≡ k (mod M)
}∣∣ . (6)

Let us say that a set X ⊆ S is γ-well-spread relative to a modulus M ∈ Z if

CM (X) =
∑
k∈ZM

fM,k(X)2 ≤ γ

( |X|
|X|/2

)2

M
. (7)
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Note that if a(Y ) over Y ∈
(

X
|X|/2

)
is evenly distributed over all M modular classes, we

would have CM (X) =
(
s
s/2
)2
/M .

I Lemma 5. Let p, q ∈ Z≥1 be fixed so that
(i) S is γ-well-spread relative to the modulus pq, and
(ii) for at least half of all T ∈

(
S
s/2
)
, it holds that both T and S \T are γ-well-spread relative

to the modulus p.
Then |hp,q(D)| ≥ p3q/(2γ3).

Proof. Let Tp consist of all T ∈
(
S
s/2
)
such that both T and S \ T are γ-well-spread relative

to p. Let us write Dp for the subfamily of D consisting of all triples (T, L,R) ∈ D such that
T ∈ Tp. We thus have by assumption (ii) that

|Dp| ≥
1
2 |D | =

1
2

(
s

s/2

)(
s/2
s/4

)2
. (8)

It suffices to establish the conclusion for m = |hp,q(Dp)|. Towards this end, let us analyze
collisions of hp,q on Dp. Let Cp consist of all pairs (T1, L1, R1), (T2, L2, R2) ∈ Dp with
hp,q(T1, L1, R1) = hp,q(T2, L2, R2).

We start with a routine quadratic bound. Let c1, c2, . . . , cm be the sizes of preimages of
hp,q on Dp. We have |Cp| =

∑m
i=1 c

2
i and |Dp| =

∑m
i=1 ci. By the Cauchy–Schwarz inequality

we thus have

|hp,q(Dp)| = m ≥ |Dp|2/|Cp| . (9)

The claim thus follows by (8) and (9) if we can obtain sufficient control on |Cp|. Recalling
(3) and (6), we have

|Cp| =
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]
∑

L1∈( T1
s/4)

L2∈( T2
s/4)

[a(L1) ≡p a(L2)]
∑

R1∈(S\T1
s/4 )

R2∈(S\T2
s/4 )

[a(R1) ≡p a(R2)]

=
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]
∑
`∈Zp

fp,`(T1)fp,`(T2)
∑
`∈Zp

fp,`(S \ T1)fp,`(S \ T2)

≤
∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)]

︸ ︷︷ ︸
(a)

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(T1)fp,`(T2)

︸ ︷︷ ︸
(b)

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(S \ T1)fp,`(S \ T2)

︸ ︷︷ ︸
(c)

.

Using (6) we can bound (a) from above by∑
T1∈Tp

T2∈Tp

[a(T1) ≡pq a(T2)] ≤
∑
k∈Zpq

fpq,k(S)2 = Cpq(S) .

Using the Cauchy–Schwarz inequality we can bound (b) from above by

max
T1∈Tp

T2∈Tp

∑
`∈Zp

fp,`(T1)fp,`(T2) ≤ max
T∈Tp

∑
`∈Zp

fp,`(T )2 = max
T∈Tp

Cp(T ) .

This bound on (b) applies also to (c) because we have T ∈ Tp if and only if S \ T ∈ Tp.
Combining the bounds on (a)–(c) and then using the conditions of S and every T ∈ Tp being
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γ-well-spread, we conclude that

|Cp| ≤ Cpq(S) ·
(

max
T∈Tp

Cp(T )
)2
≤ γ

(
s
s/2
)

pq

(
γ

(
s/2
s/4
)

p

)2

= γ3|D |
p3q

. (10)

The lemma follows now follows from (8), (9), and (10). J

4.2 Bounded Collisions Happen with High Probability
This section shows that well-spread moduli are a high-probability event for p, q ∈ Z≥1
selected from an appropriate random ensemble.

Besides control on collisions over a modulus (7), we require control on collisions over the
integers. This control is available via bounded concentration. For all X ⊆ S define

C∞(X) =
∑

Y1,Y2∈
(

X
|X|/2

)[a(Y1) = a(Y2)] . (11)

I Lemma 6. For all X ⊆ S we have C∞(X) ≤
( |X|
|X|/2

)
B.

Proof. From (11) we have that there are at most
( |X|
|X|/2

)
ways to select Y1. By B-bounded

concentration, there are at most B ways to select an Y2 ∈ a−1(a(Y1)). J

For the next lemma, we recall the parameter τ from §3.1, satisfying a1+. . .+an+t ≤ 2τn.

I Lemma 7. Let M be a nonempty set of integers each of which has all prime factors at
least 2λn for some λ > 0. Suppose that we select an M ∈M uniformly at random. Then,
for any T ⊆ S it holds that

EM∈M

[
CM (T )

]
≤
(
|T |
|T |/2

)
B +

( |T |
|T |/2

)2

|M |
· 2τ/λ .

Proof. Fix a nonempty T ⊆ S. For an arbitrary M ∈M we have from (7) and (6) that

CM (T ) =
∑

L1,L2∈( T
|T |/2)

[a(L1) ≡M a(L2)] =
∑

L1,L2∈( T
|T |/2)

[M divides a(L1)− a(L2)] .

By linearity of expectation thus

EM∈M

[
CM (T )

]
=

∑
L1,L2∈( T

|T |/2)
Pr

M∈M

[
M divides a(L1)− a(L2)

]
. (12)

The terms in the sum (12) split into two cases. If a(L1) = a(L2), then M divides a(L1) −
a(L2) with probability 1. From (11) we observe that the sum of these terms is exactly
C∞(T ). Apply Lemma 6 to bound C∞(T ) from above. If a(L1) 6= a(L2), then we observe
that, by virtue of preprocessing, |a(L1) − a(L2)| ≤ 2τn. This implies that a(L1) − a(L2)
has at most τ/λ prime factors (with repetition) of size at least 2λn. Any M that divides
a(L1) − a(L2) must be created from these τ/λ factors and hence there are at most 2τ/λ
possible values for M . J

For the next lemma, recall that p∗ =
(
s/2
s/4
)
/B and q∗ =

(
s
s/2
)
/(Bp∗).

I Lemma 8. With probability at least 1/2, a random independent pair (p, q) of primes from
[p∗, 2p∗]×[q∗, 2q∗] satisfies the assumptions of Lemma 5 with γ = 26+τ/λs2, where λ = log p∗

n .
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Proof. Let us start with assumption (ii) in Lemma 5. Take M to be the set of primes p in
the interval [p∗, 2p∗]. Define Z(p) = ET∈( S

s/2)
[
Cp(T )

]
. We then have

Ep∈M [Z(p)] = Ep∈M

[
ET∈( S

s/2)
[
Cp(T )

]]
= ET∈( S

s/2)
[
Ep∈M

[
Cp(T )

]]
≤
(
s/2
s/4

)
B +

(
s/2
s/4
)2

|M |
· 2τ/λ =

(
s/2
s/4

)2( 1
p∗

+ 2τ/λ

|M |

)
,

where the inequality is Lemma 7. Applying Markov’s inequality and |M | ≥ p∗/ log(p∗) (due
to Lemma 2), we conclude that with probability ≥ 3/4 over a random p ∈M it holds that

Z(p) ≤ 4
(
s/2
s/4

)2
· 1 + log(p∗)

p∗
2τ/λ ≤ 8s2τ/λ

(
s/2
s/4
)2

p
.

Conditioning on such a p, at least a 3/4 fraction of T ∈
(
S
s/2
)

satisfies Cp(T ) ≤

32s2τ/λ
(
s/2
s/4
)2
/p. Since T ∈

(
S
s/2
)
if and only if S \ T ∈

(
S
s/2
)
, we get by the union bound

that half of all T ∈
(
S
s/2
)
satisfy

Cp(T ) ≤ 32s2τ/λ
(
s/2
s/4

)2
/p , Cp(S \ T ) ≤ 32s2τ/λ

(
s/2
s/4

)2
/p . (13)

We thus conclude that that assumption (ii) in Lemma 5 holds with probability at least 3/4
over p ∈M .

Next let us consider assumption (i) in Lemma 5. We now take M to be the set of
products pq of primes p in the interval [p∗, 2p∗] and primes q in the interval [q∗, 2q∗]. By
Lemma 2, we have |M | ≥ p∗q∗

log(p∗) log(q∗) ≥ p∗q∗/s
2, so Lemma 7 implies

Epq∈M

[
Cpq(S)

]
≤
(
s

s/2

)
B +

(
s

s/2

)2
s22τ/λ

p∗q∗
=
(
s

s/2

)2( 1
p∗q∗

+ s22τ/λ

p∗q∗

)
.

Markov’s inequality then implies that with probability at least 3/4 over pq ∈M , we have

Cpq(S) ≤ 64s22τ/λ
(
s
s/2
)2

pq
. (14)

Taking the union bound, we conclude that with probability at least 1/2 over the choice
of p, q both assumptions (i) and (ii) in Lemma 5 hold, with γ = 64s22τ/λ. J

4.3 Combining the Two Parts
By Lemma 8, we have for a random independent pair p, q that S is γ-well-spread relative
to the modulus pq, and for at least half of all T ∈

(
S
s/2
)
, it holds that both T and S \ T

are γ-well-spread relative to the modulus p, with γ = 26+τ/λs2. Then Lemma 5 gives that
|hp,q(D)| ≥ p3q/(2(26+τ/λs2)3) = 2−(19+3τ/λ)s−6p3q.

5 The Search Subroutine

Our goal in this section is to build the search subroutine in Lemma 4. We build the sub-
routine from the bottom up, starting in §5.1 from subroutines that build bottom-level can-
didate partial solutions of size s/4, then in §5.2 proceeding to the mid-level subroutines that
assemble the candidate partial solutions of size s/2, and finally arrive in §5.3 at root-level
node that assembles all the sets S of size s required by Lemma 4.
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5.1 Subroutine for Bottom-Level Nodes
Let p ∈ Z≥1 be fixed. The following subroutine is executed in the four bottom-level nodes.

I Lemma 9. There is a randomized algorithm for listing solutions Z ∈
( [n]
s/4
)
to a(Z) ≡ k

(mod p) with the following properties:
(i) For every fixed k, every solution Z gets listed by the algorithm with probability at least

1/
√
n (over the internal randomness of the algorithm).

(ii) If k is picked uniformly at random, the expected running time of the algorithm over the
choice of k is O

(
n2(n/2

s/8
)

+ n2(n/2
s/8
)2
/p
)
and the expected number of solutions found is

at most
(
n/2
s/8
)2
/p.

Proof. The algorithm starts by picking a random subset N ∈
( [n]
n/2
)
.

Next, we construct L =
(

N
s/8
)
, R =

([n]\N
s/8

)
, the subsets of N and [n] \N of size s/8.

For each X ∈ L ∪ R we compute the residue of a(X) modulo p and sort the two lists in
increasing order of residue.

Initialize S to an empty list. Using the sorted lists, for each j ∈ Zp do the following.
Iterate over all X ∈ L such that a(X) ≡ j (mod p) and over all Y ∈ R such that a(Y ) ≡
k − j (mod p). (Note that we do this implicitly by simultaneously scanning the two lists,
not with an explicit loop that considers each j in turn.) For each such pair we append X∪Y
to S .

Let us now analyze success probability and running time.
For success probability, note that any fixed solution Z ∈

( [n]
s/4
)
gets split perfectly by N

(i.e., |N ∩Z| = s/8) with probability
(
n/2
s/8
)2
/
(
n
s/4
)
≥ 1/

√
n over the choice of N . Whenever

this happens, the algorithm finds Z.
For the running time, constructing the lists L and R can be done with brute force in

O
(
n2(n/2

s/8
))

time and space.8 The running time of the merge step is bounded by O(n2) times

the number of solutions, which on average over a random k ∈ Zp is
(
n/2
s/8
)2
/p (since the total

number of solutions over all k ∈ Zp is simply |L | · |R|). J

5.2 Subroutine for Mid-Level Nodes
We now proceed to the subroutine executed by the two mid-level nodes. Let M = pq for
two distinct primes p, q.

I Lemma 10. There is a randomized algorithm for listing solutions (X,Y ) ∈
( [n]
s/4
)2

to
a(X) + a(Y ) ≡ kM (mod M) and a(X) ≡ kp (mod p) with X ∩ Y = ∅, with the following
properties:
(i) For every fixed kM , kp, every solution (X,Y ) gets listed by the algorithm with probability

at least 1/n (over the internal randomness of the algorithm).
(ii) If kM , kp are picked uniformly at random from ZM and Zp, respectively, the expected

running time of the algorithm over the choice of kM , kp is O
(
n2(n/2

s/8
)

+ n2(n/2
s/8
)2
/p +

n2(n/2
s/8
)4
/(Mp)

)
and the expected number of solutions found is at most

(
n/2
s/8
)4
/(Mp).

Proof. The algorithm starts by picking kp ∈ Zp uniformly at random. It then executes the
algorithm of Lemma 9 twice, with parameters k = kp and k = (kM − kp) mod p, yielding

8 We are sorting 2Ω(n) items and comparing each pair of items takes Ω(n) time.
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two lists L (of solutions Z ∈
(
n
s/8
)
to a(Z) ≡ kp (mod p)) and R (of solutions Z ∈

(
n
s/8
)
to

a(Z) ≡ kM − kp (mod p)).
We now merge these in a similar way as the proof of Lemma 9, except that we filter out

all (X,Y ) which are not disjoint and simply don’t add them to the result.
The success probability follows because the two calls to the bottom-level algorithm are

independent in terms of the internal randomness used by the calls.
For the running time, note that the two parameters kp and (kM − kp) mod p to the

bottom-level algorithm are both uniformly random so that the expected sizes (over kp and
kM ) of L and R are at most

(
n/2
s/8
)2
/p. Furthermore, since p divides M , kM mod p is

uniformly random and the two parameters are independent, implying that the expectation
of |L | · |R| is at most

(
n/2
s/8
)4
/p2.

By the Chinese Remainder Theorem, kM mod q is independent of kM mod p, so con-
ditioned on kp, kM mod p, L and R, the expected running time of the merge step is
O(|L | · |R|/q). Thus in overall expectation over the choice of kp and kM , the running time
is
(
n/2
s/8
)4
/(p2q). J

5.3 The Root-Level Node

We are now ready to complete the proof of Lemma 4.

Proof of Lemma 4. Apply the algorithm of Lemma 10 twice, first with parameters
(kM , kp) = (kT, kL), then with parameters (kM , kp) = ((t − kT) mod M,kR). Thus we
get a list L of solutions (X,Y ) ∈

( [n]
s/4
)2

such that X ∩Y = ∅, a(X) + a(Y ) ≡ kM (mod M)

and a(X) = kp (mod p). Similarly we have a list R of solutions (Z,W ) ∈
( [n]
s/4
)2

such that
Z ∩W = ∅, a(Z) + a(W ) ≡ t− kM (mod M), a(Z) ≡ kR (mod p).

We now merge these lists to construct solutions (X,Y, Z,W ) ∈
([n]
s

)
to a(X) + a(Y ) +

a(Z) + a(W ) = t, and if (X ∪ Y ) ∩ (Z ∪W ) = ∅, we output the solution X ∪ Y ∪ Z ∪W .
For every fixed choice of (kT, kL, kR) and solution X ∪ Y ∪ Z ∪W , the probability that

we find the solution is at least 1/n2 by independence of the internal randomness employed
by the two applications of Lemma 10.

By B-bounded concentration, for any choice a(X) + a(Y ) from L , there are at most B
solutions (Z,W ) from R to a(Z) + a(W ) = t − a(X) − a(Y ). This implies that the merge
step runs in time O(n2(|L | + |R|)B). Since in expectation over the targets k· the sizes of
L and R are bounded by

(
n/2
s/8
)4
/(Mp), it follows that the merge step runs in expected time

O
(
n2(n/2

s/8
)4
B/(Mp)

)
.

Substituting s = σn and and bounding the binomial coefficients from above with Stirl-
ing’s formula [20], we obtain the desired running time bound (4) required by Lemma 4. This
completes the proof of Lemma 4. J
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