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Summary

Human natural killer (NK) cells have distinct functions as NKtolerant,

NKcytotoxic and NKregulatory cells and can be divided into different subsets

based on the relative expression of the surface markers CD27 and CD11b.

CD27+ NK cells, which are abundant cytokine producers, are numerically

in the minority in human peripheral blood but constitute the large popu-

lation of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent

data suggest that these NK cells may have immunoregulatory properties

under certain conditions. In this review, we will focus on these new NK

cell subsets and discuss how regulatory NK cells may serve as rheostats or

sentinels in controlling inflammation and maintaining immune homeosta-

sis in various organs.
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Introduction

For a long time, natural killer (NK) cells were regarded

only as killers but now they are thought not only to have

key roles in innate immunity but also to have important

functions that shape and influence adaptive immune

responses and play immunoregulatory roles. However,

NK cells are not a homogeneous cell population and the

diversity of NK cells has been demonstrated by the diver-

sity of NK cell receptors and functions. In human periph-

eral blood, the CD56+ CD3� NK cell subpopulations can

be defined on the basis of the relative expression of the

markers CD16 and CD56. CD56dim CD16+ NK cells are

found predominantly in the peripheral blood and can

spontaneously lyse targeted tumour cells, yet

CD56bright CD16� NK cells are found mostly in the lym-

phoid organs and can produce abundant amounts of

cytokines but have little ability to kill tumour cell tar-

gets.1–3 Recent studies have also reported that CD27 of

the tumour necrosis factor receptor family is an impor-

tant marker for distinguishing between NK cell subsets.4,5

The surface density of CD27 and CD11b divides both

human and murine NK cells into four subsets and

denotes their level of maturation.6,7

The local microenvironment and unique cellular inter-

actions provide important signals to shape the properties

of NK cells. In the microenvironment of a pathological

process, NK cells persistently and progressively access

local inflammatory factors to induce programmed differen-

tiation and proliferation, ultimately generating NKtolerant,

NKcytotoxic and NKregulatory cells. Moreover, recent

research highlights the fact that natural killer cells act not

only as killers towards tumour or virus-infected cells, but

also as regulatory cells to affect the adaptive immune

response.8 Here, we review the recent advances mainly

concerning human regulatory NK cells and present some

data obtained in our laboratory. We will focus on the

new NK cell subsets and discuss how regulatory NK cells

may be involved in controlling inflammation and main-

taining immune homeostasis in different organs.

Human NK subsets divided in phenotype and
function

In 1983, Lewis Lanier was the first to divide NK cells into

subsets.9 Now, it is widely accepted that human mature

NK cells have two subsets: CD56dim NK and CD56bright

NK.1,10 However, mouse NK cells do not express the

CD56 antigen; hence, translating the biological informa-

tion in mouse NK cells to human NK cells is problematic.

Meanwhile, the development of mouse NK cells has been

widely studied using the precursors. The integrin CD11b
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(Mac-1) has been regarded as a mature marker of both

mouse and human NK cells.11,12 CD27 has been indicated

as a marker to divide mature NK cells into two subsets.4

NK cells from CD27-deficient mice show normal NK cell

differentiation but impaired function upon stimulation.13

Subsequently, the heterogeneity of mature murine NK

cells was ultimately represented by four subsets on the

basis of CD27 and CD11b.7 These new NK subsets have

quickly attracted much attention because human NK cells

have also been shown to express CD27, making compara-

tive interpretations of the functionality of the subsets

more straightforward.4,5 In the mouse, NK cells can be

divided into CD27lo CD11blo, CD27hi CD11blo,

CD27hi CD11bhi and CD27lo CD11bhi stages. The differ-

entiation of NK cells has been shown to proceed from

CD27hi CD11blo through CD27hi CD11bhi to

CD27lo CD11bhi.7 In humans, it has been indicated that

approximately 6% of peripheral blood NK cells express

CD27, 14% of CD27+ NK cells exist in bone marrow,

and > 30% of CD27+ NK cells exist in the spleen and

tonsils.5 Our group has characterized four novel popula-

tions defined by CD11b and CD27, which can represent

the distinct stages of human NK cells from different tis-

sues. More than 90% of NK cells from peripheral blood

are of the CD11b+ CD27� population, whereas NK cells

from cord blood have populations that are 80%

CD11b+ CD27� and 20% CD11b+ CD27+. Compared

with these two types of NK cells, decidual NK cells are

more immature, having nearly 60% CD11b� CD27� NK

cells and > 20% CD27+ NK cells. The NK cells from

tumour-infiltrating tissues also showed large populations

of the CD11b� CD27� subset,14 indicating the heteroge-

neity of NK cells (Fig. 1). Each population could be char-

acterized by unique functional and phenotypic attributes:

CD11b� CD27+ and CD11b+ CD27+ NK cells show the

best ability to secrete cytokines, CD11b+ CD27� NK cells

exhibit high cytolytic function, and CD11b� CD27� NK

cells display an immature phenotype, expressing high per-

centages of NKG2A.15

Affected by various microenvironments and signals, NK

cells can be divided into three functional subsets: NKtolerant

(NK cells with dominant inhibitory signals), NKcytotoxic

(NK cells with dominant activating signals, target cells

with a high expression of pressure stimulus-induced

ligand) and NKregulatory (NK cells with dominant activat-

ing signals, target cells with a high expression of inflam-

matory molecules) (Fig. 2). From the phenotype, the

NKcytotoxic subset is mainly CD56dim NK cells or

CD11b+ CD27� NK cells defined on the basis of the rela-

tive expression of the markers CD11b and CD27. The

NKtolerant subset is mainly CD56bright NK cells or

CD27� CD11b� NK cells. The NKregulatory subset is

mainly CD56bright NK cells or CD27+ NK cells. Further-

more, these different NK subsets exist in a variety of tis-

sues or organs, reflecting their functional diversity.16 For

example, liver NK cells can mediate immune tolerance or

immune injury,17–19 decidual NK cells can mediate mater-

nal–fetal immune regulation or vascular remodelling,20

and tumour-infiltrating NK (TINK) cells can mediate

tumour immune escape or direct killing.21

dNK

cNK pNK

TINK

CD11b+SP DP CD27+SP DN

Figure 1. Four natural killer (NK) subsets defined by CD11b and

CD27 in humans. Human NK cells can be divided into four subsets

on the basis of the relative expressions of the markers CD11b and

CD27, including CD11b+ CD27� (CD11b+ SP), CD11b+ CD27+

(DP), CD11b� CD27+ (CD27+ SP) and CD11b� CD27� (DN).

More than 90% of NK cells from peripheral blood (pNK) are of the

CD11b+ CD27� population, whereas NK cells from cord blood

(cNK) have 80% CD11b+ CD27� and 20% CD11b+ CD27+ subset.

Decidual NK cells (dNK) are nearly 60% CD11b� CD27� and

> 20% CD27+ subset. NK cells from tumour-infiltrating tissues

(TINK) also show a large population of the CD11b�CD27� subset.

CD27–CD11b–NK: CD11b+NK: CD27+NK:

NKtolerant

DN NK

CD27–CD11b–NK: CD11b+NK: CD27+NK:

CD27+
CD56bright

CD11b+/–CD11b+
CD27–
CD56dim

CD27–

CD11b–

CD56bright

SP NK SP NK/DP NK

NKcytotoxic NKregulatory

Figure 2. Human natural killer (NK) subsets presented according to

phenotype and function. Human NK cells can be divided into three

functional subsets: NKtolerant, which is mainly CD56bright NK cells or

CD27� CD11b� NK cells; NKcytotoxic, which is mainly CD56dim NK

cells or CD11b+ CD27� NK cells; NKregulatory, which is mainly

CD56bright NK cells or CD27+ NK cells.
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The main checkpoint in the differentiation of NK
subsets

The differentiation of NK cells depends on extrinsic regu-

lation within the physiological microenvironment and the

pathological microenvironment in addition to intrinsic

regulation by various transcription factors.

Under the effect of early haematopoietic growth factors,

such as FLT-3 ligand and c-kit ligand, CD34+ haemato-

poietic stem cells (HSCs) up-regulate the expression of

interleukin-2 (IL-2)/IL-15Rb (CD122) and gradually dif-

ferentiate into the CD34+ CD122+ CD56� NK precursor

cells.22 Via the CD122 molecule, these NK precursor cells

obtain the ability to respond to IL-15, which is produced

mainly by bone marrow stromal cells and plays a key role

in the ultimate expression of CD56 to promote the for-

mation of mature CD3� CD56+ NK cells.23–25 However,

several observations also suggested that bone marrow is

not the only important site for NK cell development. One

clue is that NK cells can also develop from other second-

ary lymphoid tissue such as the lymph nodes and ton-

sils.26 Most of these haematopoietic precursor cells

become CD56bright NK cell subsets when stimulated by

IL-15 or IL-2 or activated lymph node T cells.27,28 In

human intestinal mucosa, CD34+ CD45RA+ NK precur-

sor cells expressing CD38, CD33, IL-2Ra and IL-7Ra,
with the abundant expression of Id2, PU.1 and SpiB1,

may differentiate into CD56+ c-kitdim cells during in vitro

culture.29,30 In addition to bone marrow, lymph nodes

and the small intestine, NK cells can also develop in the

liver, spleen and thymus.31

The main checkpoints that lead to the generation of

different NK subsets appear to depend on the pathologi-

cal microenvironment, local-specific chemokines and

cytokines, as well as unique cellular interactions. Natural

killer cells express a variety of chemokine receptors,

which are affected by the local tissue microenvironment.

CD56dim CD16+ NK cells at a resting state highly express

CXCR1, CXCR2, CXCR3, CXCR4 and CX3CR1, whereas

CD56bright CD16� NK cells highly express CCR5 and

CCR7. These receptors interact with their corresponding

chemokines and regulate the migration of NK cells to

various tissues, thereby playing different biological func-

tions.32 For example, during pregnancy, human

CD56bright CD16� NK cells in peripheral blood can be

recruited by chemokine CXCL12 and migrate to the

uterus.33 In B16 metastatic melanoma, CX3CR1 plays an

important role for DX5+ CD3� cells accumulating in the

lung.34 Moreover, CXCL16, constitutively presented by

the liver endothelium, plays an important role in main-

taining the CXCR6+ NK subset in the liver.35

Cytokines from accessory cells in the microenviron-

ment have been revealed to have an important impact on

the maturation and function of NK cells. In patients with

systemic lupus erythematosus, interferon-a (IFN-a) pro-

duced by plasmacytoid dendritic cells mediate the activa-

tion-induced cell death of NK cells.36 In persistent

hepatitis B virus liver infection, transforming growth fac-

tor-b1 (TGF-b1) exhibits an important role in reducing

the expression of NKG2D/DAP10 and 2B4/SAP to impair

NK cell function and induce tolerant NK cells.37 It has

been indicated that CD56bright NK cells are present in

human lymph nodes and are co-stimulated by CD4+

T-cell-derived IL-2 to secrete IFN-c.28 In the tumour

microenvironment, regulatory T cells can effectively

suppress NK cell-mediated tumour rejection via a TGF-

b-dependent mechanism.38,39 Interfering with such a

negative impact, tumour-infiltrating NK cells induce a

substantial CD11b� CD27� NK cell population that

exhibits profound defects in degranulation and IFN-c
production in humans.14 Moreover, in the pathological

microenvironment of cancer, monocytes have been shown

to mediate the terminal differentiation of peripheral NK

cells and to sustain their transition from the

CD11b+ CD27+ to CD11b+ CD27� stage.40 Interestingly,

another study has further reported that members of the

commensal microbiota are necessary for the priming of

NK cells by mononuclear phagocytes.41 Mature neutroph-

ils have recently been shown to be required both in the

bone marrow and in the periphery for proper NK cell

development, and neutrophil deficiency impairs the mat-

uration of CD11b+ CD27+ NK to CD11b+ CD27� NK in

mice. The role of neutrophils as key regulators of NK cell

functions was confirmed in patients with severe congeni-

tal neutropenia and autoimmune neutropenia.42 Hence,

the pathological microenvironment including specific

cytokines, chemokines and several immune responses

shapes NK cells, emphasizing the plasticity and the adap-

tive nature of these innate immune cells.

The differentiation and maturation of NK cells are

accompanied by the intrinsic signals from transcription

factors. Recent studies in mice have afforded great pro-

gress in our understanding of the transcription factors

involved in NK cell development.3 For example, PU.1,

E4pb4, Ikaros and Ets-1 are involved in the generation of

NK precursor cells.43–46 Although Id2 is expressed in pre-

pro-NK cells, its activity is required later during NK

development.47 T-bet expression is required for the main-

tenance and homeostasis of immature NK cells, whereas

the induction of Ly49 receptors and DX5 requires coop-

eration with Eomes.48 Later, GATA-3 plays an important

role in NK cell expression of the mature marker CD11b

and IFN-c production.49 The final maturation of NK cells

involves the reduction of CD27, and the proliferative

potential requires Blimp-1.50 These transcription factors

provide important intrinsic signals that impact the differ-

entiation of NK cells and shape the cytotoxicity or immu-

noregulatory effects of NK cell activation.
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In summary, the physiological microenvironment pro-

vides conditions for the development and differentiation

of NK cells, and the pathological microenvironment

induces NK cell activation, programmed proliferation and

function polarization, whereas transcription factors medi-

ate intrinsic signals for NK cell maturation and function

(Fig. 3). Although several cytokines, such as type I IFN,

IL-2, IL-12, IL-15, IL-18 and insulin-like growth factor-1,

are potent activators of the NK cell effector function,51–53

very limited information is available to demonstrate the

key threshold required to induce regulatory NK cells.

Nevertheless, several cytokines may have impacts on the

generation of regulatory NK cells. Transforming growth

factor-b has key impact on NK cells and promotes the

conversion of CD16+ peripheral blood NK cells into

CD56bright NK cells.54 Evidence has also shown that IL-7

is necessary for promoting the survival of the regulatory

CD56bright NK cell subset.55 The way of inducing regula-

tory NK cells and the mechanism involved remain to be

explored further.

Regulatory NK cells in organs

In the first trimester of pregnancy, nearly 70% of human

decidual lymphocytes are NK cells with a

CD56bright CD16� phenotype, making deciduas a typical

model to use when researching regulatory NK cell subsets.

These accumulated NK cells may migrate from the periph-

eral blood through a CXCR4- and CXCL12-dependent

mechanism33 or may develop in situ from CD34+ haemato-

poietic precursors56 or endometrial NK cells.57 We and

others have provided evidence that human decidual NK

cells comprise a large population of the CD27+ CD11b�

and CD27� CD11b� subset, express the activation markers

CD69 and killer cell immunoglobulin-like receptors and

are granulated but of low cytotoxicity.15,58 Decidual NK

cells, capable of producing IL-22, have been found to

resemble the unique early developmental stages of human

NK cell differentiation.59 Multiple tetraspanin family mem-

bers, such as CD9 and CD151, have also been found to be

exclusively expressed on decidual NK cells but not on

peripheral blood NK cells. Two secreted proteins, galectin-

1 and progestogen-associated protein 14, which are known

to have immunomodulatory functions, are selectively

expressed in decidual NK cells.58 These characteristics make

decidual NK cells a unique subset of NK cells with immu-

nomodulatory potential, sharing the properties of, but not

identical to, peripheral blood NK cells.

Decidual NK cells exist at the unique maternal–fetal
interface, whereby a pregnant mother recognizes her semi-

allogeneic fetus, and her immune system has to retain tol-

erance and not reject the fetus. Recent studies have char-

acterized that decidual NK cells play a key role in this

adaptation. Croy and colleagues reported landmark

research in which decreased NK cells in mouse deciduas

led to the disordered adaption of blood vessels in the uter-

ine mucosa. Decidual NK cell-derived IFN-c is required

for vascular modifications to occur during pregnancy, and

it is now evident that NK cell depletion or disruption of

the IFN-c signal in mice results in altered vascular remod-

elling.60–62 Human decidual NK cells have also been

Physiological microenvironment

Pathological microenvironment

FLT3L

SCF

IL-7

TGF-β TGF-β

IL-10

IL-12

IGF-1

Smad2/3 T-bet
???Eomes

STAT3p15/p21

IL-15

IL-7

IL-15

CD34+HSC

NKG2Dlow

NKtolerant NKcytotoxic NKregulatory

GRNhi

IL-10IFN-γhi

IFN-γhi

2B4low

iNK

PU.1
E4BP4

Figure 3. The programmed differentiation of natural killer (NK)

cells and the generation of NKtolerant, NKcytotoxic and NKregulatory

cells. The programmed differentiation of NK cells can be divided

into three steps. First, NK cells predominantly develop from CD34+

haematopoietic stem cells (HSCs) in the physiological microenviron-

ment of bone marrow or lymph nodes, producing immature NK

(iNK) cells. Second, under the effect of chemokines, NK cells are

recruited into different pathological microenvironments, such as the

uterus and brain, and then develop under the control of specific

cytokines and transcription factors. Third, these differentiated NK

cells may act as NKtolerant, NKcytotoxic or NKregulatory cells. IFN-c,
interferon-c; IGF-1, insulin-like growth factor 1; IL-7, interleukin-7;

SCF, stem cell factor; STAT3, signal transducer and activator of tran-

scription 3; TGF-b, transforming growth factor-b. ??? refers to

unknown transcription factors that provide important intrinsic sig-

nals to impact the differentiation of regulatory NK cells.
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shown to control trophoblast invasion and vascular

remodelling through their ability to secrete an array of

angiogenesis-regulating molecules, cytokines and chemo-

kines, such as vascular endothelial growth factor, IL-8,

IFN-inducible protein-10 and placental growth factor.63

Hence, in addition to simply killing cells, a new paradigm

of NK cell function has emerged through the pregnancy

model, whereby these cells also promote the regulation of

tissue homeostasis.

Moreover, invasion from allogenic fetal cells or spiral

arteries may cause inflammation at the maternal–fetal
interface. Indeed, the prevention of strong inflammatory

responses is essential to ensure normal pregnancy.64 Our

group recently showed that CD56bright CD27+ decidual

NK cells function as key regulatory cells at the maternal–
fetal interface by suppressing T helper type 17-mediated

local inflammation via IFN-c-dependent pathways. This

NK cell-mediated regulatory response is lost in women

with recurrent spontaneous abortions, resulting in a

prominent T helper type 17 response, extensive local

inflammation and eventual loss of maternal–fetal toler-

ance.65 These findings provided evidence that decidual

NK cells act as sentinel cells to control local inflamma-

tion, which is clearly critical for maintaining tolerance at

the fetal–maternal interface. A recent study also demon-

strates that resident decidual NK cells have close contact

with particular myelomonocytic CD14+ cells, which

results in the induction of regulatory T cells.66 Interest-

ingly, seminal studies of human maternal and fetal geno-

types have suggested that the interactions between fetal

HLA-C molecules and killer cell immunoglobulin-like

receptors on uterine NK cells are important for reproduc-

tive success, showing that the regulation of NK cell acti-

vation is crucial for normal placentation and hence a

successful pregnancy.67 Hence, both mouse and human

studies suggest that decidual NK cells act as key regula-

tory cells at the maternal–fetal interface by regulating tro-

phoblast invasion and vascular remodelling, promoting

tolerogenic DCs and monocytes and suppressing T helper

type 17-mediated local inflammation (Fig. 4).

In other organs, regulatory NK cells can also inhibit

immune reactions. In the central nervous system (CNS),

depletion of NK cells from Lewis rats, SJL mice and

C57BL/6 mice exacerbated demyelination in different

experimental autoimmune encephalomyelitis models.68–70

Importantly, the effects of NK cells on CNS pathology are

dependent on the activity of CNS-resident but not

peripheral NK cells,69,71 demonstrating that CNS-specific

Decidual stromal cells
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KIRs

IL-10

dNK
VEGF,PIGF,IL-8,

CDL5,IFN-γ

IFN-γ

IFN-γ IFN-γ
IL-10

Monocytes

TGF-β,IL-15,SCF

ID
O

,TG
F-β

TGF-β,IL-10,IDOTGF-β,Galactin-1,

IL-10,IF
N-γ

SCDF-1,M
IP-1α

MIC-1,SCF,IL-15

Figure 4. Key pathways of the regulatory decidual natural killer (dNK) cells involved in immune tolerance during the first trimester of human

pregnancy. Decidual NK cells with a CD56bright CD16� phenotype can control trophoblast invasion and vascular remodelling, inhibit inflamma-

tory T helper type 17 cells, promote the generation of indoleamine 2,3-dioxygenase (IDO) -producing monocytes and regulatory T cells and

induce the apoptosis of effector T cells. Meanwhile, dNK cells are maintained and educated by the decidual microenvironment including stromal

cells, trophoblast cells and hormones such as progesterone. IFN-c, interferon-c; IL, interleukin; MIC-1, macrophage inhibitory cytokine-1; MIP-

1a, macrophage inflammatory protein-1a; PlGF, placental growth factor; SCDF-1, stromal cell-derived factor-1; SCF, stem cell factor; TGF-b,
transforming growth factor-b; VEGF, vascular endothelial growth factor.
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NK cells control inflammation during experimental auto-

immune encephalomyelitis in mice. In humans, the

administration of daclizumab, a humanized monoclonal

antibody against the IL-2 receptor a-chain (CD25), con-

sistently reduces CNS lesions and inflammation in multi-

ple sclerosis patients.72–74 Daclizumab therapy was

associated with a significant expansion of regulatory

CD56bright NK cells in vivo and a gradual decline in circu-

lating CD4+ and CD8+ T cells, providing supporting evi-

dence for the existence of an immunoregulatory pathway

through which activated CD56bright NK cells inhibit T-cell

survival.75 Defined by the differential expression of a

combination of CD27 and CD11b, analysis of NK cell

subsets indicated that the immature subset was dominant

in the liver and that the immature CD27+ CD11b� hepa-

tic NK cell subset was protective against liver metastasis,76

indicating that the liver maintains a special local immune

tolerogenic microenvironment and educates NKtolerant

cells.77

Concluding remarks

Herein, we review the NK subsets and the regulatory

effect of NK cells, and provide examples of how these

cells may serve as rheostats or sentinels in controlling

inflammation and in maintaining immune homeostasis in

different organs. We also discuss the three differentiated

functions of NK cells in different microenvironments:

NKtolerant, NKcytotoxic and NKregulatory cells. It is interesting

that regulatory CD56bright CD16� NK cells predominate

in extensive disease models, such as in deciduas during

pregnancy,65 rheumatoid arthritis joints,78 the CNS after

daclizumab treatment75 and patients with hepatitis B

virus after pegylated IFN-a therapy.79 However, many

aspects of regulatory NK cells remain to be unveiled. The

persisting questions include the following. Which subpop-

ulation of NK cells plays the key role as regulatory NK

cells? What is the relationship between CD56bright NK

and CD27+ NK cells? How does the organ-specific patho-

logical microenvironment direct NK cells into different

directions? Which transcription factors are involved in

the regulatory effect of NK cells? Additionally, few studies

have been undertaken to explore regulatory NK cells in

humans. Although many observations and the mecha-

nisms involved remain to be explored, the regulatory abil-

ity of NK cells deserves further attention, as the improved

understanding of regulatory NK cells may pave the way

for new immunotherapeutic approaches for alleviating or

preventing many diseases.
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