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Abstract 12 

The Santas Justa and Rufina gothic church (XIV century) has suffered several physical, 13 

mechanical, chemical and biochemical types of pathologies along its history: rock alveolization, 14 

efflorencescences, biologic activity and capillary ascent of ground water. However, during last 15 

two decades a new phenomenon has seriously affected the church, the ground subsidence 16 

caused by aquifer overexploitation. Subsidence is a process that affects the whole Vega Baja of 17 

the Segura River basin and consists on the gradual sinking of ground surface caused by soil 18 

consolidation due to a pore pressure decrease. This phenomenon has been studied by means 19 

of Differential SAR Interferometry (DInSAR) techniques providing settlements up to 100 mm for 20 

the 1993-2009 period for the whole Orihuela city. Although no DInSAR information is available 21 

for the church due to the loss of interferometric coherence, a spatial analysis of the 22 

deformations affecting the neighbour areas jointly to field reported information has allowed to 23 

better understand the mechanisms that affect the Santas Justa and Rufina church, showing the 24 

potential interest of these remote sensing techniques for supporting building forensic analyses. 25 
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1. Introduction 35 

Subsidence due to water level withdrawal is a well-known phenomenon that implies the ground 36 

settlement due to an increase in soil effective stresses caused by piezometric level decrease. 37 

This phenomenon is not spatially uniform due to changes in soil properties and spatial variation 38 

of deformable soil thickness and piezometric levels, causing differential settlements and 39 

distortions affecting buildings founded on ground surface. The measurement of evolution and 40 

distribution of these settlements is necessary in order to adopt the appropriate actions to be 41 

corrected or minimised. During last years, Differential SAR interferometry (DInSAR) has 42 

become a very useful tool for subsidence study. This technique has been specifically useful for 43 

study urban areas as México city (Osmanoğlu et al., 2010), Rome (Stramondo et al., 2008), 44 

Lisbon (Heleno et al., 2011), París (Fruneau et al., 2005) among others. Furthermore, a more 45 

specific monitoring of structures affected by ground subsidence has been performed by Herrera 46 

et al. (2010) and Bru et al. (2010) in the city of Murcia (Spain) affected by subsidence, allowing 47 

to successfully understand deformational behavior of some structures. In this work, a forensic 48 

analysis of the Santas Justa and Rufina church (Figures 1 and 2), located in Orihuela (Alicante 49 

province, Spain, Figure 3) using DInSAR is performed jointly with in situ observations data. The 50 

Santas Justa and Rufina church was built in the Gothic style in the XIV century and was 51 

declared a Spanish National Monument in 1971. Throughout its history, the structure has been 52 

repaired several times after suffering the results of seismic movements, fires, etc. In the last two 53 

decades, a new phenomenon has appeared that could affect the building’s structural integrity. A 54 

series of long-term droughts in South-East Spain jointly with the aquifer overexploitation has 55 

caused a high piezometric level descent that has increased the soil effective stresses causing a 56 

consolidation process that is manifested on ground surface as settlements. These settlements 57 

have affected the Santas Justa and Rufina church causing several damages. The field data, 58 

mainly geotechnical data and in situ observations, jointly with DInSAR data has allowed to 59 

diagnose the problems affecting the church. 60 

The paper is organized as follows. Section 2 describes Santas Justa and Rufina church 61 

principal structure characteristics. Available information and previous works conducted in the 62 

church are briefly described in Section 3. Section 4 is devoted to define the geological and 63 

geotechnical setting of the study area. Section 5 includes an explanation of damages observed 64 

during field works in the church and section 6 is dedicated to subsidence measurements 65 

obtained using DInSAR. Then, a diagnosis is performed in section 7 using all previously 66 

described information. Finally, section 8 presents the main conclusions.  67 

  68 

2. Description of the gothic church 69 

The Santas Justa and Rufina church, declared a Spanish National Monument in 1971, is 70 

located in Orihuela (Alicante province, Spain)(Figure 1). It is a Catholic church built in the XIV 71 

century and reformed in the XVI and XVIII centuries, presenting both Gothic and Baroque 72 
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influences. It consists of a main body with lateral chapels located between the counterforts 73 

(Figures 1b and 2). Among all lateral chapels there are two higher chapels, San José chapel, 74 

located at the NW of the church, and La Comunión chapel, placed at the SW. There are two 75 

doors, the main located at the west façade (Figures 1a and 2), and a lateral door (Evangelio 76 

door) placed at north façade (Figures 1c and 2). The sacristy, with a square plant, and the 77 

antesacristy, with a rectangular plant, are sited at the SE part of the church. Finally, the bell 78 

tower found at the north of the church reaches a height of 35.5 m (Figure 1a). The entire 79 

building is built of masonry with bricks and ashlars and is directly founded over silts and clays 80 

overlaying the church that will be described in detail on section 4. 81 

. 82 

.  83 
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Figure 1. Photograph of the Santas Justa and Rufina church: (a) North-west corner. Notice the 84 

main door and the bell tower. (b) Main body. Observe the main chapel. (c) North façade with the 85 

Evangelio door. See location of these elements on Figure 2. 86 

 87 

Figure 2. Cross sections and plant of the Santas Justa and Rufina church. 88 



This paper has to be cited as: Tomás, R., García-Barba, J., Cano, M., Sanabria, M.P., Ivorra, S., Duro, 

J. & Herrera, G. 2012. Subsidence damage assessment of a gothic church using Differential 

Interferometry and field data. Structural Health Monitoring, 11, 751-762. The final publication is 

available at SAGE journals via: http://shm.sagepub.com/content/11/6/751.abstract 

 89 

3. Available information and previous works 90 

The Vega Baja of the Segura River has suffered subsidence processes due to groundwater 91 

withdrawal, at least since first years of 90’s decade, as showed in several news related with 92 

important settlements on the west end of Orihuela city. Moreover, a lot of studies have been 93 

performed on this area in order to measure subsidence and its relationship with piezometric 94 

levels variation. Tomás et al., (2007) studied subsidence from 1993 to 2001 in the Vega Baja of 95 

the Segura River using DInSAR techniques measuring values up to 70 mm for the Orihuela city 96 

and up to 50 mm for the church neighbourhood. Tomás et al. (2010) contrasted subsidence 97 

data for 1993-2009 period obtained by means of DInSAR techniques with subsidence triggering 98 

and conditioning factors. Measured settlements for this period were up to 100 mm for the whole 99 

urban area and up to 80 mm for the Santas Justa and Rufina church vicinity. Ivorra et al., (2010) 100 

has studied the incidence of soil subsidence on the dynamic behaviour of a Santa Justa y 101 

Rufina bell tower. 102 

Historical information of the church is available on parochial archives since the church 103 

construction. They include a big amount of data about the church in great detail. However, most 104 

of the historical information provided by parochial archives is referred to the modifications and 105 

maintenance works performed along the time. Several geotechnical reports of the Orihuela city 106 

are available. Three of them are focused on the church under study, although unfortunately only 107 

one is available. The available geotechnical report was performed specifically for studying the 108 

church pathologies on 2007. This geotechnical report includes three boreholes and useful 109 

information about the lithology and the geotechnical properties of soil that are summarized in 110 

section 4.  111 

 112 

4. Geological and geotechnical characterization  113 

4.1. Geological setting 114 

The Vega Baja of the Segura River (VBSR) is located in the more oriental sector of the Betic 115 

Cordillera. The study area constitutes a monoclinal structure essentially controlled by the strike–116 

slip Crevillente Fault Zone at the N that represents the convergence of two main structures of 117 

the Betic Cordillera: the Cádiz–Alicante Fault System (Sanz de Galdeano, 1990) and the Trans-118 

Alborán Shear Zone (De Larouziére et al., 1988). 119 

The Mesozoic basement of the basin consists of carbonate and evaporitic rocks from the Betic 120 

External Zones protrude at the N and E area of the study zone (Delgado et al, 2002). The Bajo 121 

Segura Basin is filled by Neogene–Quaternary sediments (Figure 3). 122 

The valley filling is composed on Holocene sediments at the ground surface beyond Pleistocene 123 

sediments deposited by River Segura depositional activity, whereas the eastern zones towards 124 
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the Mediterranean Sea are occupied by littoral and lagoonal sediments (Delgado et al., 2002). 125 

Anthropic deposits can be also found at certain points in the valley generally related with urban 126 

areas. Recent sediments are the most compressible ones in the area and the most problematic 127 

from a geotechnical point of view.  128 

The study area belongs to the so-called “Guadalentín–Segura Quaternary aquifer System N° 129 

47” (IGME, 1986), an aquifer characterized by two units: a) a surface unconfined aquifer unit 130 

with a low conductivity composed by fine sand and silts deposited by the recent activity of the 131 

Segura River and coastal processes (towards the E of the zone) whose water table is found a 132 

few meters below the ground surface. b) A second unit formed by gravels, usually interbedded 133 

with marls that constitutes a confined aquifer with greater hydraulic conductivity than the 134 

superficial aquifer (DPA-ITGE, 1996). The upper aquifer is the most scarcely exploited. 135 

 136 

 137 

Figure 3. Location and geological setting of the city of Orihuela and the Santa Justa and Rufina 138 

Church.  139 

 140 
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4.2. Geotechnical setting 141 

Delgado et al. (2002) made a geological-geotechnical characterization of the Vega Baja of the 142 

Segura River basin based o stratigraphic and geotechnical information. This model shows that 143 

sedimentary rocks, that constitute the geotechnical substratum, outcrops on the edges of the 144 

valley and are also found at certain depths, varying between 0 to 45 m towards the west, where 145 

the town of Orihuela is located. Sediments located above this basement are characterized by 146 

moderate to high compressibility, with compression indexes (Cc) varying from 0.07 to 0.29 147 

(Delgado et al., 2002; Tomás et al., 2010) and with an average value of 0.18. These sediments 148 

are the most compressible ones in the zone and as a consequence the most problematic from a 149 

geotechnical point of view.  150 

 151 

 152 

Figure 4. Geotechnical boreholes performed in the Santas Justa and Rufina gothic church. 153 

GWL: Ground water level. 154 
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 155 

Three geotechnical boreholes have been drilled in the proximities of the church (Figure 4) in 156 

order to better know the substrate properties and the geometry under the church. Four different 157 

lithologies have been recognized (from top to bottom): a) Fillings; b) Silty clays and clayey silts; 158 

c) Silty sand; and d) Limestones and dolostones. 159 

The fillings have up to 2 m depth and present a low relative density with standard penetration 160 

test results lower than 5 blow counts. Next layer is composed by silty clays and clayey silts that 161 

present a slight improvement of the properties (standard penetration test up to 6 blow counts). 162 

The penetration values of this lithology increase notably with depth, reaching maximum values 163 

up to 15 blow counts on standard penetration test. Silty sands are intercalated among 164 

previously described layer. These sands have a higher penetration resistance than fillings and 165 

more surficial silty clays layer (11 blow counts). The geotechnical substrate is constituted by 166 

carbonatic rocks (Figure 4), limestones and dolostones with refusal values on standard 167 

penetration test and uniaxial compressive strength higher than 30 MPa. This layer appears at a 168 

depth higher than 16.0 m and is usually used for founding deep foundations due to the 169 

considerable improvement of its geotechnical properties. Notice that the depth of this layer 170 

changes in a few meters with slopes higher than 0.19 m per meter (>11º) in the church area. 171 

 172 

5. Damages description  173 

The Santas Justa and Rufina church has suffered several performances and maintenance 174 

works along its history. However, this work is focused on the damages that affected the church 175 

during last two decades. Although the more serious damages observed last years have been 176 

trigged by deformations induced by regional land subsidence, other kinds of damages (Figure 5) 177 

have affected the church: (a) Rock alveolization, (b) Efflorencescences, (c) Biologic activity and 178 

(d) Capillary ascent of ground water. 179 

Rock alveolization is observed in sandstones blocks of several elements of the church causing 180 

cluster of small cavities and an evident loss of resistance (Figure 5d). These holes can be the 181 

result of the stonework (stacking), biological activity (pits) or the action of salt in the irregular 182 

porous network of the marble (alveoli) (Chabas and Jeannette, 2001). The salts form 183 

efflorescence growing on rock surface (Figure 5c and f) composed of small crystals that can 184 

influence both weathering and disintegration (alveolization) of the rocks. Microorganisms (fungi, 185 

moho, lichens, etc.) and other organisms (birds, plants, etc.) can cause a wide range of 186 

pathologies that are out of the scope of this work. Due to the high water level and the proximity 187 

to the Segura River, capillarity ascent affects the lower part of the elements that are in contact 188 

with soil although humidity can affect higher elements (cupules, columns heads, etc.) when rain 189 

access through preexisting cracks (Figure 5f). Salts from ground water can be transported by 190 
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capillarity through the rock pore system causing salt crystallization, which is the origin of the 191 

previously mentioned efflorescence and alveolization processes. 192 

 193 

 194 

Figure 5. Pathologies observed in the Santas Justa y Rufina church: a) vertical cracks related 195 

with a rigidity change; b) cracks due to local effects of counterfort; c) cupola cracks due to 196 

differential movements of the base; d) Cluster of small cavities (alveoli); e) masonry cracks 197 

induced by differential movements. Notice, the installed plaster markers for crack monitoring f) 198 

Efflorescences due to rain infiltration; g) Capillary ascent of water.  199 

 200 
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Although the above mentioned problems can cause long-term damages,  the more dangerous 201 

pathologies are affecting structural elements, i.e. walls and columns. Santas Justa and Rufina 202 

church is affected by a regional process of subsidence due to water level descend. As is has 203 

been previously explained in section 3, accumulated settlements up to 100 mm have been 204 

measured in the Orihuela city from 1993 to 2009. The magnitude of these settlements depends 205 

on the thickness of the deformable soil, the deformability of the soft soil and the increase of the 206 

effective stresses which depends on the piezometric level fall.  207 

 208 

Figure 6. Gypsum plaster markers, geotechnical boreholes location and structural improvement 209 

actions performed on the church. Notice that the plaster markers control period was November 210 

2006-June 2008. See geotechnical boreholes lithological description on Figure 4. 211 

 212 

The eastern wall that closes the principal chapel suffered an important tilt in 70s decade. The 213 

problem was solved by means of the construction of two reinforced concrete counterforts 214 

(Figures 5b a 6). After that, deformations affecting the church have occurred in two different 215 

phases. In the ninety decade of the last century, important settlements affected the San José 216 

chapel zone (Southwest area of the church, Figure 6). Unfortunately no in situ observations are 217 
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available for this period. As a consequence, the foundation was reinforced in 2002 with 218 

micropiles. On a second stage (first decade of present century), deformations affected the 219 

whole north zone of the church and the principal chapel area. Ground settlements were visible 220 

at the floor of the antesacristy, the sacristy and La Comunión chapel. Multiple cracks where 221 

identified in the north, west and east walls, affecting as well La Comunión cupola (Figures 5b, c 222 

and e), the sacristy and the antesacristy. Several plaster markers were placed in the cracks in 223 

2006 and controlled in 2008 coinciding with the higher piezometric level fall never known in the 224 

Vega Baja of the Segura River basin (Figure 7). Figure 6 shows that multiple cracks grew up for 225 

this period as a consequence of the sinking of the walls foundation caused by ground 226 

subsidence. This affected zone of the church has been recently repaired in 2010 using 227 

micropiles (Figure 6).  228 

 229 

 230 

 231 

Figure 7. Piezometric level evolution of several piezometers located in the Vega Baja of the 232 

Segura river superposed to DInSAR deformation time series of 2 PSs located in the vicinity of 233 

the Santas Justa and Rufina church (see A, B, C and D PSs location in Figure 9 and 1, 2, 3 and 234 
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4 piezometers location in Figure 3). Notice that PS time series of both DInSAR processed 235 

periods has been jointed for neighborhood PSs in order to have complete temporal series for 236 

1995-2008.  237 

 238 

6. DInSAR survey 239 

The forensic analysis of the Santas Justa and Rufina church has been supported by DInSAR 240 

data. Specifically, in this work ground subsidence measurements have been obtained using a 241 

Persistent Scatterer Interferometry (PSI) technique called Stable Point Network (SPN). A in 242 

depth description of this technique can be found in Arnaud et al. (2003) and Duro et al. (2005) 243 

but a summary is included here for the sake of completeness. 244 

The SPN algorithm uses the DIAPASON (Differential Interferometric Automated Process 245 

Applied to Survey Of Nature) interferometric software for all SAR data handling, e.g. co-246 

registration work and interferograms generation. The SPN method generates three main 247 

products from a set of Single Look Complex (SLC) SAR images (Duro et al., 2005): (a) the 248 

displacement rate (average deformation velocity) measured along line of sight (LOS) of single 249 

Persistent Scatterer (PS); (b) a map of height error; and (c) the LOS displacement time series of 250 

individual PS (as a function of time). 251 

129 images acquired by the European Space Agency (ESA) ERS-1/2 and Envisat ASAR 252 

sensors covering two periods July 1995–December 2005 and January 2004–December 2008 253 

have been used in this work for the deformation study. From all the pairs of images 254 

combinations, only interferometric pairs with a perpendicular spatial baseline smaller than 800 255 

m and a temporal baseline shorter than 6 and 3 years for 1995–2005 and 2004–2008 periods 256 

respectively, and a relative Doppler centroid difference below 400 Hz have been selected. 257 

The DEM used Digital Elevation Model used for processing has been Shuttle Radar 258 

Topography Mission (SRTM) ones. The pixel selection for the estimation of displacements was 259 

based on a combination of several quality parameters including low amplitude standard 260 

deviation and high model coherence. Coherence is an indicator of the degree of correlation 261 

between two SAR images. So, this parameter is used as a measure of the quality of an 262 

interferogram. Coherence values near 1 indicate a good correlation although 0 indicates no 263 

correlation. 264 

Results of subsidence in the city of Orihuela for both periods (1995-2005 and 2004-2008) are 265 

shown in Figure 8. As it can be seen in figure 8a and b, the higher density of PSs corresponds 266 

to the urban area of Orihuela. In the Santas Justa y Rufina church neighborhood deformation 267 

rates up to -2.1 and -9.5 mm/year for 1995-2005 and 2004-2008 periods respectively have been 268 

measured by means of DInSAR (Figure 8a to 8d). Notice that subsidence measured for 2004-269 

2008 period in the vicinity of the church is higher than the measured deformation for the 270 
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previous period (1995-2005) due to the previously mentioned high piezometric level drop that 271 

affected the area because of the aquifer overexploitation. Unfortunately, no PSs are available 272 

for both periods for Santas Justa and Rufina church. This is due to the loss of coherence, which 273 

is associated to the reforms performed in the cover and façades of the church in 1998 and 274 

2002, just during the period comprised by processing. However, several PSs are available for 275 

the nearby areas of the church. 276 

Figure 8g represents N-S cross section of the study area. As it can be noticed, Holocene 277 

sediments from the flood plain of the Segura River increase their thickness from the north 278 

towards south (from the Sierra de Orihuela relief towards the center of the basin). Subsidence 279 

follows a similar trend. The Santas Justa and Rufina church is just located near the Sierra de 280 

Orihuela that is composed of carbonatic rocks (dolostones and limestones). This relief deepens 281 

under Holocene sediments with high slopes causing important changes in substratum depth as 282 

it has been observed in the available boreholes performed in the church perimeter (Figure 4). 283 

These substratum changes favor differential settlements occurrence. Differential settlements 284 

affecting the church have been computed interpolating the available data for both study periods 285 

(Figure 9). The maximum differential settlements have been calculated considering the highest 286 

and the lowest subsidence values contained in an area composed by the church and a buffer 287 

ring of 14 m providing 12.5 and 24.46 mm for 95-06 and 04-08 periods respectively. The 288 

angular distortion has been obtained dividing differential settlement by the distance between the 289 

two points that provides the maximum and minimum subsidence value. Computed distortion 290 

values for both periods are 1.5 x 10-4 m/m and 3.4 x 10-4 m/m. 291 

 292 
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 293 

Figure 8. Subsidence measured by means of DInSAR for 1995–2005 and 2004–2008 periods: 294 

a) and b) for the whole study area; c) and d) in Orihuela city; e) and f) in the vicinity of the 295 

church; g) Geological simplified and subsidence N-S cross section along Orihuela city.  296 

 297 

 298 
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7. Diagnosis 299 

In this section the causes of observed structural pathologies are analysed. Although other 300 

pathologies previously described (alveolization, humidity, etc.) affect the Santas Justa and 301 

Rufina church, this work is focused on the pathologies caused by ground subsidence.  302 

From a geotechnical point of view, the church is founded over deformable Holocene clays and 303 

silts with an intercalated sandy silt layer. All of them present a low bearing capacity with very 304 

low values of standard penetration (lower than 15 blow counts). Geotechnical substratum, 305 

composed by dolostones and limestones with a high bearing capacity, is placed beneath the 306 

previously described layer. The geotechnical substratum depth varies from -14 m in borehole 307 

S1 to more than -23.1 m in borehole 2. This means that  an important spatial variation of 308 

deformable soil thickness is expected in the church subsoil that favours the occurrence of 309 

differential settlements of the structure. 310 

 311 

 312 

Figure 9. Interpolated DInSAR subsidence in the vicinity of the Santas Justa and Rufina church 313 

and computation of differential settlements and maximum deformation gradients for 1995-2006 314 

and 2004-08 periods. Notice that the arrow indicates the direction of maximum deformation 315 

gradient.  316 

 317 

DInSAR results (Figure 8) show that the whole Orihuela city has suffered subsidence due to 318 

water withdrawal at least since 1995 with sinking values up to 100 mm. This subsidence has 319 
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been proved to be closely related with piezometric level changes (Figure 7) suffering an 320 

important acceleration when the piezometric level dropped drastically from 2004 to 2008. 321 

Although no PSs are available for the Santas Justa and Rufina church due to the loss of 322 

coherence derived from the maintenance works performed in its cover, subsidence rate values 323 

up to -21 and -95 mm per year have been measured for 1995-2006 and 2004-2008 periods, 324 

respectively, in the nearby areas of the church (Figures 7 and 9). Computed differential 325 

settlements using interpolated maps provide maximum differential settlements affecting the 326 

church of 12.5 and 24.5 mm for 1995-2006 and 2004-2008 periods, respectively. As it can be 327 

notice, these values are lower than the general rule of 25.4 mm (equals to 1”; Terzaghi et al., 328 

1996) of acceptable maximum differential settlement, although during the second period 329 

deformations are very close to it. Computed angular distortions reached values of 1.5 x 10-4 330 

m/m and 3.4 x 10-4 m/m that are also lower than the ones generally accepted of (1/1000 331 

m/m).However, the 1995-2008 differential settlement probably got over this value.  332 

The interpolated subsidence values of subsidence also allow interpreting the deformational 333 

evolution of the church. As it was explained in section 5, in the ninety decade, high settlements 334 

affected the San José chapel zone. Figure 9a shows that the maximum settlements for 1995-335 

2006 period were concentrated on the NW corner of the church, just coinciding with the 336 

mentioned area. Also notice that the computed angular distortion (blue arrow) is oriented from E 337 

towards W coinciding with the San José chapel zone. The foundation was repaired in 2002 338 

using micropiles. More recent damages are concentrated in the SE zones (La Comunión 339 

chapel, antesacristy and sacristy; Figures 6). As it was explained in section 5 field work has 340 

been performed in order to identify the damages affecting this area. Observed damages consist 341 

principally on floor settlements (pavement irregularities are easily recognized) and wall cracks 342 

that can affect other elements. Figure 9b shows that maximum interpolated settlements for the 343 

2004-2008 period are concentrated on the SW corner of the church with a maximum angular 344 

distortion direction NE-SW (the church has undergone a tilt towards the SW) in agreement with 345 

field observations.  346 

 347 

8. Conclusions 348 

The gothic church of Santas Justa and Rufina, located in Orihuela (SE, Spain) has suffered 349 

several damages due to regional subsidence processes, scarcely related with piezometric level 350 

oscillations. The church subsoil is favourable for subsidence occurrence. It is composed of 351 

fillings and Holocene fine materials (silts and clays) with some coarse intercalations (silty sand) 352 

that reach thickness higher than 23.1 m at the E of the church. Field works have allowed to 353 

identify the more affected zones of the church providing detailed data about the kinds of 354 

pathologies affecting the church. Moreover, DInSAR data have permitted to perform a global 355 

interpretation of the deformations affecting the church. Although, no PS are available for the 356 

church due to the loss of interferometric coherence caused by the maintenance works 357 
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performed in the church cover, settlement values up to -9.5 mm/year for 2004-2008 have been 358 

measured by means of DInSAR in the vicinity of the church. Furthermore, the analysis of the 359 

interpolated DInSAR data has allowed estimating differential settlements of 24.5 mm and 360 

angular distortions of 3.4 x 10-4 m/m for the 2004-2008 periods affecting the church. Although 361 

the computed values of differential settlements for both independent periods are lower than 362 

allowable settlement (<25.4 mm equals to 1”) probably, the values corresponding to the whole 363 

subsidence temporal period (1995-2008) exceed this tolerable settlement. These data are 364 

consistent with in situ data and field observations proving that DInSAR is a powerful tool that 365 

can be very useful for performing buildings forensic analysis jointly with in situ data.  366 
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