
Fort Hays State University Fort Hays State University 

FHSU Scholars Repository FHSU Scholars Repository 

Chemistry Faculty Publications Chemistry 

11-20-1999 

Subsidence, mixing, and denitrification of Arctic polar vortex air Subsidence, mixing, and denitrification of Arctic polar vortex air 

measured during POLARIS measured during POLARIS 

M. Rex 
Jet Propulsion Laboratory 

R. J. Salawitch 
Jet Propulsion Laboratory 

G. C. Toon 
Jet Propulsion Laboratory 

B. Sen 
Jet Propulsion Laboratory 

J. J. Margitan 
Jet Propulsion Laboratory 

See next page for additional authors 

Follow this and additional works at: https://scholars.fhsu.edu/chemistry_facpubs 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 

Rex, M., et al. (1999), Subsidence, mixing, and denitrification of Arctic polar vortex air measured during 

POLARIS, J. Geophys. Res., 104( D21), 26611– 26623, doi:10.1029/1999JD900463. 

This Article is brought to you for free and open access by the Chemistry at FHSU Scholars Repository. It has been 
accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of FHSU Scholars 
Repository. 

https://scholars.fhsu.edu/
https://scholars.fhsu.edu/chemistry_facpubs
https://scholars.fhsu.edu/chemistry
https://scholars.fhsu.edu/chemistry_facpubs?utm_source=scholars.fhsu.edu%2Fchemistry_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=scholars.fhsu.edu%2Fchemistry_facpubs%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
M. Rex, R. J. Salawitch, G. C. Toon, B. Sen, J. J. Margitan, G. B. Osterman, J. F. Blavier, R. S. Gao, S. 
Donnelly, E. Keim, J. Neuman, D. W. Fahey, C. R. Webster, D. C. Scott, R. L. Herman, R. D. May, E. J. Moyer, 
M. R. Gunson, F. W. Irion, A. Y. Chang, C. P. Rinsland, and T. P. Bui 

This article is available at FHSU Scholars Repository: https://scholars.fhsu.edu/chemistry_facpubs/15 

https://scholars.fhsu.edu/chemistry_facpubs/15


JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D21, PAGES 26,611-26,623, NOVEMBER 20, 1999 

Subsidence, mixing, and denitrification of Arctic polar vortex air 

measured During POLARIS 

M. Rex •, R. J. Salawitch •, G. C. Toon l, B. Sen l, J. J. Margitan l, G. B. Osterman l, 

J.-F. Blavier l, R. S. Gao l, S. Donnelly 2, E. Keim 2, J. Neuman 2, D. W. Fahey 2, 

C. R. Webster •, D.C. Scott l, R. L. Herman l, R. D. May •, E. J. Moyer l, 
M. R. Gunson l, F. W. Irion •, A. Y. Chang l, C. P. Rinsland 3, and T. P. Bui 4 

Abstract. We determine the degree of denitrification that occurred during the 1996-1997 Arctic 

winter using a technique that is based on balloon and aircraft borne measurements of NO,, N20, and 

CH 4. The NOy/N20 relation can undergo significant change due to isentropic mixing oilsubsided 
vortex air masses with extravortex air due to the high nonlinearity of the relation. These transport 

related reductions in NOy can be difficult to distinguish from the effects of denitrification caused by 
sedimentation of condensed HNO 3. In this study, high-altitude balloon measurements are used to de- 
fine the properties of air masses that later descend in the polar vortex to altitudes sampled by the 
ER-2 aircraft (i.e., -20 km) and mix isentropically with extravortex air. Observed correlations of 

CH 4 and N20 are used to quantify the degree of subsidence and mixing for individual air masses. 

On the basis of these results the expected mixing ratio of NOy resulting from subsidence and mixing, 
defined here as NOy**, is calculated and compared with the measured mixing ratio of NOy. Values 
of NO and NOy** agree well during most parts of the flights A slight deficit of NOy versus NOy** y ß 

is found only for a limited region during the ER-2 flight on April 26, 1997. This deficit is interpreted 
as indication for weak denitrification (-2-3 ppbv) in that air mass. The small degree of denitrification 
is consistent with the general synoptic-scale temperature history of the sampled air masses, which 
did not encounter temperatures below the frostpoint and had relatively brief encounters with temper- 
atures below the nitric acid trihydrate equilibrium temperature. Much larger degrees of denitrifica- 
tion would have been inferred if mixing effects had been ignored, which is the traditional approach 
to diagnose denitrification. Our analysis emphasizes the importance of using other correlations of 

conserved species to be able to accurately interpret changes in the NOy/N20 relation with respect to 
denitrification. 

1. Introduction 

Rapid loss of ozone in the Arctic vortex during winter and 

spring is caused by catalytic cycles driven by active chlorine spe- 

cies (CIO x = CI, C10, C1202) [e.g., Salawitch et al., 1990; Waters 

et al., 1993]. Elevated levels of CIO x result from heterogeneous re- 

actions of HC1 and C1ONO 2 on polar stratospheric cloud (PSC) 

particles, which form at low temperatures during winter in the Arc- 

tic region [e.g., Brune et al., 1990; Webster et al., 1993; Notholt et 

al., 1995]. Following the evaporation of PSCs, the lifetime of ele- 

vated C10 x, and hence the time period of rapid ozone loss, is main- 

ly controlled by the amount of NO 2 in the vortex [e.g., Brune et al., 

1991; Salawitch et al., 1993]. Levels of NO 2 are quite small during 

the Arctic winter due to heterogeneous conversion of NO x (NO, 
NO2) to HNO 3 [e.g., Kawa et al., 1992]. In spring, the production 

rate of NO 2 from the photolysis of HNO 3 rises due to the increase 

in the intensity of solar UV irradiance in the lower stratosphere. 
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The released NO 2 reacts rapidly with C10 to form the passive res- 

ervoir species CIONO 2 [e.g., Toon et al., 1992; Roche et al., 1994]. 

This mechanism effectively slows down the Arctic ozone loss rate 

in spring and limits the overall loss of ozone in the Arctic vortex 

[e.g., Brune et al., 1991; Salawitch et al., 1993]. 

Denitrification, the permanent removal of NO v (total reactive 
nitrogen) by the sedimentation of HNO3-bearing PSC particles, 

leads to reduced production of NO 2 during spring [Toon et al., 
1986]. Widespread severe denitrification is common in the Antarc- 

tic [e.g., Toon et al., 1989; Fahey et al., 1990; Santee et al., 1995] 

because of the extremely low wintertime temperatures. In the 

warmer Arctic. patches of denitrified air have also been observed 

after exceptionally cold winters [e.g., Fahey et al., 1990; Huebier 

et al., 1990; Oelhaf et al., 1996; Arnold et al., 1998; Hintsa et al., 

1998]. For the Arctic winter of 1995-1996, the coldest on record, 

the period of ozone destruction was so prolonged by denitrification 

that the overall ozone loss reached record values in the layer of air 

that experienced the longest period of cold conditions (favorable 

for denitrification) [Rex et al., 1997]. Recent model calculations 

have shown that higher degrees of Arctic denitrification in the fu- 

ture, related perhaps to stratospheric cooling due to the build-up of 

greenhouse gases, would lead to larger seasonal ozone depletion 

despite the projected decline in inorganic chlorine [Waibel et al., 

1999]. 

The degree of denitrification in a given air mass has been typi- 

cally estimated by comparison of measured mixing ratios of NO v 

with the expected abundance of NOy (defined as NO•,*) calculated 
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from simultaneous observations of N20 and well-established cor- 

relations between the mixing ratios of NO v and N20 [e.g., Toon et 
al., 1989' Fahey et al., 1990; Rinsland et al., 1999]. This method 

is based on the assumption that the mixing ratios of two long-lived 

tracers (i.e., chemical lifetime long compared to mixing lifetime) 

develop a compact relationship independent of altitude and latitude 

[Plumb and Ko, 1992]. Severe denitrification is common through- 

out the Antarctic vortex and can be inferred in a straightforward 

manner by examination of the NO v versus N20 relation [e.g., Fa- 
hey et al., 1990]. This method can also be used in the Arctic pro- 

vided that mixing does not change the tracer relations prior to 

denitrification. For instance, the observation of a patchy structure 

of severe NO v deficits and the nearby presence of air masses with 

the established NOy/N20 correlation indicates that mixing did not 
change the NO.JN20 relation prior to the onset of denitrification 
for the winter of 1988-1989 [Fahey et al., 1990]. 

In contrast to the picture of well-preserved tracer/tracer rela- 

tionships that can be changed only by chemistry or denitrification, 

Waugh et al. [1997], Michelsen et al. [1998] and Kondo et al. 

[1999] have recently shown that mixing of subsided innervortex 

with extravortex air masses can lead to substantial changes in the 

NOJN20 relationship without denitrification. Michelsen et al. 
[1998] and Kondo et al. [1999] have also suggested that dynami- 

cally induced changes in the NOy/N20 correlation can be mistaken 
for denitrification. The NO r versus N20 relation is highly nonlin- 

ear, making it particularly sensitive to changes induced by descent 

and mixing [Waugh et al., 1997' Michelsen et al., 1998' Kondo et 

aL, 1999] (discussed in more detail in section 3.1.). Waugh et al. 

[1997] has noted more generally that the unique tracer/tracer rela- 

tionships in the Plumb and Ko [ 1992] framework are not preserved 

under the special conditions of the polar vortices where redistribu- 

tion of tracers by vertical transport is comparably fast to isentropic 

(quasi-horizontal) mixing. Waugh et al. [1997] showed examples 

of a change in the relationship of several pairs of long-lived tracers 

that was connected with mixing processes in the vicinity of the po- 

lar vortex. In the Arctic vortex, severe denitrification is rare [e.g., 

Santee et al., 1995' Rinsland et al., 1999], and changes in the 

NO•dN20 relationship caused by descent and isentropic mixing 
can easily mask changes caused by moderate denitrification. 

The focus of this paper is to account for changes in the 

NOJN20 relationship due to descent and isentropic mixing so that 
the degree of denitrification can be accurately quantified. The trac- 

efttracer relationship of a pair of long-lived tracers that does not in- 

clude NO r is first examined to quantify the dynamically induced 
changes that affect the measured airmasses. The selected pair of 

tracers should have a long chemical lifetime in the stratosphere. 

Dynamically induced changes can only be quantified if the trac- 

efttracer relationship prior to isentropic mixing are nonlinear. 

Michelsen et al. [1998] and Kondo et al. [1999] have shown that 

the CH4/N20 relationship can be used to assess the influence of de- 

scent and mixing because,the extravortex correlation of these gases 
exhibits significant curvature [Herman et al., 1998; Michelsen et 

al., 1998] and because both gases are long-lived (the lifetime of 

CH 4 is longer than I year below 40 l•m and -250 days at 50 km, 
the lifetime of N20 is longer than 1 year below 35 km, -200 days 
at 40 km and -2 months at 50-55 km; the lifetimes have been esti- 

mated for 60øN during mid-October, using the model described by 

Osterman et al. [ 1997]. During the Photochemistry of Ozone Loss 

in the Arctic Region in Summer (POLARIS) campaign measure- 

ments of CH 4 and N20 gases have been obtained by instruments 

onboard the ER-2 as well as by the balloon-borne MklV and 

ALIAS II instruments at high latitude. 

As will be shown in sections 3.2. and 3.7., the in situ observa- 

tions obtained during POLARIS clearly show distinct "mixing 

lines" in the CH4/N20 relationship on individual isentropic surfac- 

es. A mixing line refers to the tracer/tracer correlation pattern that 

results from various mixtures of two air masses, at the same poten- 

tial temperature level, with distinctly different composition result- 

ing from their dynamical histories (e.g. a midlatitude air parcel 

with high values of N20 and CH 4 and a vortex air parcel with low 

values of N20 and CH4). Our approach for estimating denitrifica- 

tion differs somewhat from the method used by Michelsen et al. 

[1998] in which mixing lines in tracer/tracer plots were assembled 

over a wide range of potential temperatures from points along a 

vertical profile. The end points of these lines cannot be interpreted 

as end-members of isentropic mixing processes because they have 

not been at similar potential temperatures at any time during the 

winter. Recently, R. A. Plumb et al. (The effects of mixing on trac- 

er relationships in the polar vortices, submitted to Journal of Geo- 

physical Research, 1999) (hereinafter referred to as Plumb et al., 

submitted manuscript, 1999) have shown that relatively straight 

lines can evolve in profile measurements of tracer/tracer relation- 

ships that cover a wide range of potential temperatures if there is 

continuous mixing into the polar vortex concurrent with descent 

inside the vortex. Quantification of the influence of mixing under 

these circumstances remains difficult. In this paper, however, we 

show how changes in the NOJN20 relationship due to mixing can 
be accurately quantified, given that isentropic mixing lines (rather 

than lines covering a wide range of potential temperatures) can be 

identified from the CH4/N20 relation. Our quantitative results are 

contingent on the assumption that the change in the tracer/tracer re- 

lations due to mixing took place following the bulk of the descent 

inside the polar vortex. The validity of this assumption is discussed 
in sections 3.4 and 4. 

2. Data Sets 

In this work, we utilize observations obtained by instruments 
aboard the NASA ER-2 aircraft and several balloon borne instru- 

ments during the POLARIS mission. Instruments aboard the ER-2 

provided in situ measurements of many important stratospheric 

gases for a wide range of latitudes and altitudes near 20 km. During 

POLARIS, balloon-borne observations complemented the ER-2 

measurements by providing vertical profiles of stratospheric gas 

concentrations using both in situ and remote sensing techniques. 

Measurements aboard the ER-2 of N20 and CH 4 were made by 

the Aircraft Laser Infrared Absorption Spectrometer (ALIAS). 

ALIAS is a scanning tunable diode laser spectrometer that mea- 

sures CH 4, N20, HCI, and CO using high-resolution laser absorp- 

tion in the 3-8 }am wavelength region [Webster et al., 1994]. 

ALIAS II provided in situ measurements of CH 4 and N20 from the 

Observations from the Middle Stratosphere (OMS) in situ balloon 

gondola. ALIAS and ALIAS II measure N20 and CH 4 with an es- 

timated 5% accuracy and precisions of 1% and 5%, respectively 

[Herman et al., 19981. ER-2 measurements of NO v were made by 

the National Oceanic and Atmospheric Administration (NOAA) 

Aeronomy Laboratory reactive nitrogen instrument. The instru- 

ment measures total nitrogen by catalytically reducing NO¾ to NO 

then detecting NO through chemiluminescent reaction with 03. 

NO v is measured with a total 1 o uncertainty of <15% [Fahey et al., 
1989]. Here we examine ER-2 observations obtained on the two 

poleward flights from Fairbanks, Alaska (65øN, 148øW), that en- 

countered polar vortex air (April 26 and June 30, 1997) and the 

OMS observations obtained on June 30, 1997, from a balloon flight 
over Fairbanks. 

The MklV Fourier Transform Infra-Red (FFIR) spectrometer 

[Toon, 1991] obtains remote measurements of the composition of 

the atmosphere using the solar occultation technique. The bright- 
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Plate 1. NO•/N20 correlations measured during the MklV flight 
on May 8, 1997 and during the ER-2 flight on April 26, 1997. The 
MklV data represent a vertical profile between 8 and 38 km alti- 
tude. The potential temperatures of some data points are indicated 
in the plot. The spacing between points is I km. The error bars de- 
note the 1(• precision of the MklV measurements. The red line is a 

composed polynomial fit to the MklV data (4th-order fit for N20 
volume mixing ratios (vmrs) < 125 ppbv, linear fit for N20 vmrs > 
125 ppbv). All ER-2 data points have been measured between po- 
tential temperatures of 500 and 510 K. The ER-2 NO v measure- 

. 

ments were obtained by the NOAA chemiluminescent instrument 
with a 1(• total uncertainty of better than 10%; the ER-2 N20 mea- 
surements were made by the ALIAS diode laser instrument with a 
1 (• total uncertainty of 5% (1% precision). The dashed, dotted, and 

dash-dotted lines illustrate scenarios with different degrees of den- 
itrification and descent that could explain the low mixing ratios of 

NO v observed by the ER-2 at mixing ratios of N20 below 100 pp- 
by. 
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Plate 3. CH4/N20 correlation measured by the MklV on May 8, 
1997, and the ER-2 ALIAS instrument on the same flight as in 

Plate 1. The 1(• total uncertainty of both the ALIAS CH 4 and N20 
measurements is 5% (1% precision). The error bars for the MklV 
measurement denote the 1• precision. The mixing line for the 
ER-2 measurements is indicated by the dotted line. The regions 
where the mixing line intersects the extravortex reference correla- 

tion denote the air masses that have mixed to produce the proper- 
ties observed by the ER-2 along the mixing line. The innervortex 
and extravortex mixing end-members are indicated. The altitudes 

and potential temperatures of the MklV measurements in these re- 
gions are shown. 

0 50 100 150 200 250 300 

N20 ppbv 

Plate 2. As in Plate 1, but for ER-2 data measured during an early 

winter and a mid-winter flight during the Airborne Arctic Strato- 
spheric Experiment (AASE) in 1989. The ER-2 data has not been 
filtered by {9. The ER-2 observations of N20 were obtained by the 
ATLAS instrument with a l c• total uncertainty of 3%. They were 

obtained for temperatures above TNA T (see text for an explanation 
of TNAT). However, the average temperature near 20 km during 
January 1989 was lower than observed during the 26 years prior to 
1989 and the minimum temperature in the vortex was persistently 

below TNA T and reached the frostpoint during late January 1989. 
Fits to ER-2 observations in northern midlatitudes in various years 
and seasons [Keim et al., 1997] are also shown (black lines). The 

ER-2 data was normalized to 1997, assuming an increasing trend 

in the N20 and NO r mixing ratios of 0.2% per year. 

ness and stability of the Sun allow high signal-to-noise ratio spec- 

tra with broad coverage (650-5650 cm -l) to be obtained at 
high-spectral resolution (0.01 cm-i), allowing the abundances of a 
large number of gases to be measured simultaneously. The retriev- 

al algorithm, spectroscopic parameters, and measurement uncer- 

tainties are discussed by Sen et al. [1996, 1998]. Gases measured 

by MklV relevant to this work include 0 3, N20 and CH 4. The 

MklV instrument also provides a complete determination of NO v 

by measuring NO, NO 2, HNO 3, HNO 4, N205 and CIONO 2 indi- 

vidually. The measurement of CH 4 and N20 have an accuracy and 

precision of 5%. The precision of NO v for 20 km is -5% with an 
accuracy of 15%, values which are confirmed by the comparison• 

between MklV balloon and ER-2 measurements [Toon eta!., this 

issue]. Here we examine profiles obtained by the MklV instrument 

on the May 8, 1997, balloon flight near Fairbanks. 

3. Data Analysis and Results 

3.1. NOy/N20 Relationship 

Plate I shows the NOv/N20 relationship measured at high lati- 
tude during POLARIS by the MklV infrared spectrometer between 

8 and 38 km at a vertical resolution of-2 km on May 8, 1997 and 

by the NO v and ALIAS instruments on board the ER-2 on an isen- 
tropic level (500-510 K) near 20 km on April 26, 1997. Potential 

vorticity analyses and the relation between N20 and potential tem- 

perature (e.g. N20= 200 ppbv at 500 K: typical values of N20 in- 
side the vortex at 500 K are much lower) indicate that the MklV 

profile was obtained outside of the polar vortex. 

In Plate 2 we compare the MklV measurements to other 

(non-POLARIS) ER-2 NO•/N20 measurements [Loewenstein et 
al., 1993] to demonstrate that the differences shown in Plate I are 
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I 

Figure 1. Illustration of the large scale descent in the polar vortex, which brings air masses from high altitudes to low 
potential temperature levels where they can mix with extravortex air mainly during the late vortex and vortex break 
up period. The descended innervortex mixing member is marked by an "i" and the extravortex mixing member is 
marked by an "e". To predict the properties of the mixed air masses, the original level of the air mass "i" has to be 
estimated. 

not platform or instrument related. The MklV measurements of 

NOy and N20 are similar to the well established reference relation- 
ship between these tracers at mid-latitudes [e.g., Chang et al., 

1996; Sen et al., 1998; Keim et al., 1997 (black lines in Plate 2)] 

and agree well with earlier measurements obtained by ER-2 instru- 

ments at similar latitudes during the Arctic winter (e.g. the flight on 

January 3, 1989, green points in Plate 2). For mixing ratios of N20 

below -100 ppbv, the relation between NOy/N20 is highly nonlin- 
ear and exhibits a peak near 30 km due to rapid loss of NO•, at high 
altitudes due to the reaction N+NO [e.g., Russell et al., 1988; Nev- 

ison and Holland, 1997]. The NOy/N20 relationship measured by 
MkIV (Plate 1) is used in this work to represent the conditions in 

the vortex prior to denitrification, descent, and isentropic mixing. 

Compared with this reference relation, severe NO v deficits were 
observed in the Arctic during a number of ER-2 flights in February 

1989 (e.g. the flights on February 7, 1989, magenta points in Plate 
2). In contrast, the ER-2 observations obtained inside the Arctic 

vortex on April 26, 1997 during POLARIS show only moderate 

deficits of NOy compared to the reference NOv/N20 relationship 
for air with mixing ratios of N20 below *-200 ppbv (Plate 1). 

The moderate deficit of NOy observed during POLARIS could 
be due to one of several processes: (1) denitrification, (2) descent 

followed by isentropic mixing, and (3) a combination of I and 2. 

Denitrification (process 1) is illustrated by the dot-dashed arrow in 

Plate 1: Starting from the MklV NOv/N20 reference correlation, 
this process could have reduced the NO r mixing ratio without 
changing the N20 mixing ratio. The process of descent followed 

by isentropic mixing (process 2) is illustrated schematically in Fig- 
ure 1. During winter large scale subsidence takes place inside the 

vortex, which is relatively well isolated from extravortex air [e.g., 

Abrams et al., 1996]. As the vortex weakens and finally breaks up 
during spring, vortex air masses irreversibly mix with air outside 

the vortex along surfaces of constant potential temperature [e.g., 

Waugh et al., 1997]. The effect of process 2 on the NO•]N20 cor- 
relation is illustrated by the dashed arrow in Plate 1. Mixing of two 

air masses at the same potential temperature in varying degrees 
(one air mass from inside the vortex, the other from outside) would 

lead to a linear relationship between NOy and N20. If the reference 
tracer/tracer relation is nonlinear, the mixing between these air 

masses can produce a new tracer/tracer relation quite different than 

the reference relation [Waugh et al., 1997; Herman et al., 1998; 

Michelsen et al., 1998; Kondo et al., 1999]. The combination of 

denitrification and mixing (process 3) is illustrated by the dotted 

arrow in Plate 1. In this scenario, denitrification first reduces the 

NOy mixing ratio at constant N20 (illustrated by the part of the dot- 
ted arrow that is parallel to the NOy axis). Subsequent mixing with 
extravortex air (illustrated by the rest of the dotted arrow) then 

would produce the observed air mass properties. Recently, Plumb 

et al. (submitted manuscript, 1999) have shown that continuous 

isentropic mixing during descent could lead to the development of 

anomalous tracer/tracer relationships inside the vortex. This possi- 

bility is also discussed. 

3.2. CH4/N20 Relationship 

Michelsen et al. [1998] and Herman et al. [1998] showed that 

mixing of subsided innervortex air with extravortex air tends to re- 

duce the curvature of the CH4/N20 relation. We use straight isen- 

tropic mixing lines in the CH4/N20 relation at specific potential 

temperature levels to quantify the amount of descent that has oc- 

curred inside the vortex and the degree of mixing between vortex 

and extravortex air for the regions sampled by the ER-2. MkIV 

measurements of the CH4/N20 correlation (red circles in Plate 3) 

obtained near 65 N on May 8, 1997, for extravortex air are used as 

the extravortex reference correlation. The MklV CH4/N20 corre- 

lation agrees well with that measured by ATMOS in November 

1994 between 40 ø and 50øN [Chang et al., 1996]. A pronounced 

curvature is visible in the extravortex CH4/N20 correlation for 

mixing ratios of N20 below 250 ppbv. In contrast, observations ob- 

tained on April 26, 1997 near 20 km by the ER-2 ALIAS instru- 

ment reveal a nearly linear correlation between CH 4 and N20 

(green dots in Plate 3) that deviates significantly from the extravor- 

tex correlation. The low mixing ratios of N20 between 500 and 510 

K potential temperature indicate that subsided polar vortex air 

masses were sampled by the ER-2 during this flight. 

Since the correlation between the mixing ratios of these 

long-lived tracers cannot be changed by reversible transport or 

chemistry, the most obvious explanation for the ER-2 observations 

is mixing of extravortex air with polar vortex air that has subsided 

from higher altitudes [e.g., Waugh et al., 1997]. The two air masses 
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that must have mixed isentropically to produce the observed 

CH4/N20 relations along the linear mixing line are referred to as 
the "innervortex end-member" and the "extravortex end-member". 

It is reasonable to assume that the bulk of the mixing took place in 

spring, following the strongest descent within the vortex (this as- 

sumption is discussed in section 4). Therefore the composition of 

the extravortex end-member (the trapezoid marked in Plate 3) is 

defined by the ambient mixing ratios of CH 4 and N20 observed 

outside of the vortex by th.e ER-2 and by the MklV instrument at 

the same potential temperature level of the ER-2 flight. The com- 

position of the innervortex end-member is defined by the intersec- 

tion of the extrapolated ER-2 mixing line and the MklV reference 

correlation (oval region in Plate 3). Since the CH4/N20 relation is 

nearly linear between 15 and 40 ppbv N20, inhomogeneous de- 

scent inside the polar vortex (provided that the air masses originate 

from this near-linear region) followed by isentropic mixing of 

these vortex air masses with each other would not change the 

CH4/N20 relationship in the innervortex end-member consider- 
ably. The fractional contribution of the innervortex and the extra- 

vortex end-members to specific ER-2 observations along the 

CH4/N20 mixing line is determined from the relative distance of 

the observed N20 mixing ratio to that of both end-members. 

3.3. Calculation of NOy** 

We use the notation NOy** to refer to the mixing ratio of NOy 
that would have been present in the absence of denitrification, after 

accounting for the effects of descent and isentropic mixing. For the 

limit of unmixed air masses this quantity is identical to NOv* [Fa- 
hey et al., 1989] which is based only on the reference correlation 

and does not account for descent and mixing. The value of NOy** 
is calculated on a point-by-point basis along the flight track of the 

ER-2 by considering isentropic mixing between the innervortex 

and extravortex end-members derived from our analysis of simul- 

taneous measurements of CH 4 and N20. As described in section 

3.2, the mixing ratio of N20 associated with the innervortex 

end-member (here defined as [N20]i) was calculated based on the 

intersection with the reference relation of a straight line passing 

through two points: one defined by the measured mixing ratios of 

CH 4 and N20 and the other defined by the extravortex end-mem- 

ber. The composition of the extravortex end-member used for all 

ER-2 observations considered here, which were obtained for po- 

tential temperatures between 500 and 530 K, is defined by the trap- 

ezoid in Plate 3. The NOy mixing ratios of both end-members can 
be estimated from the respective mixing ratios of N20 and the 

NOy/N20 correlation measured by the MklV instrument on May 8, 
1997. Values of NOy** have been calculated from the NO v mixing 
ratios of both end-members and their fractional contribution to the 

mixed air mass: 

** [N20] - [N20] i 
= [NOy] + NOy [N20]e_ [N20] i e 

(1) 

[N20] - [N20]i ) (1- i • •-• • 2. [-•22 •)-• i ) [ N O y ] i 
where [N20] denotes the mixing ratio of N20 of the respective 

air mass and the variables with indices e and i denote the properties 

of the extravortex and innervortex mixing end-members, respec- 

tively. The uncertainties of the calculated parameters including 

NOy** have been estimated based on the uncertainty of the com- 
position of the extravortex end-member (indicated by the size of 

the trapezoid in Plate 3) and the precisions of the measurements. 

3.4. Underlying Assumptions 

Two critical assumptions for our analysis are (1) the ability to 

directly combine remote (MklV) and in situ (ER-2 and OMS) ob- 

servations of NO v, CH 4, and N20 acquired by vastly different tech- 
niques without corrections for possible systematic differences and 

(2) the validity of using the NO,JN20 and CH4/N20 reference re- 
lations that have been measured outside the polar vortex to repre- 

sent the innervortex end-member for the mixing processes 

analyzed here. Assumption (1) is supported by the remarkably 

good agreement between the MklV reference correlation for 

NOv/N20 and the ER-2 observations obtained in the Arctic vortex 

during January and February 1989 (Plate 2). Comparisons of MklV 

and ER-2 observations of NO v and N20 obtained at mid-latitudes 
[Sen et al., 1998, Figure 2] and of ATMOS and ER-2 observations 

of NO v, CH 4, and N20 ([Chang et al., 1996, Figure 3] ATMOS ac- 
quires observations using solar occultation in a manner similar to 

the MkIV instrument) lend further confidence in the agreement of 

the different sources of data. Toon et al. [1999] conclude that the 

bias between the MklV and ALIAS measurements of N20 is only 

2%. Finally, the excellent agreement between the MklV CH4/N20 
reference relation and ALIAS II observations obtained at high lat- 

itude during POLARIS for extravortex air (discussed in section 

3.7) provides additional support for the validity of assumption (1). 

Furthermore, the NOv/N20 and CH4/N20 relations measured at 
northern mid-latitudes during November 1994 by ATMOS [Chang 

et al., 1996] agree well with the MklV reference relations used here 

(the agreement between MkIV and ATMOS measurements of CH 4 

and N20 is discussed further in section 3.7). 

Assumption (2) cannot be fully tested for the winter of 
1996-1997 since tracer measurements inside the Arctic vortex are 

not available during the different phases of the winter. Measure- 

ments of CH 4 and N20 obtained during February 1997 from two 

balloon flights over Kiruna, Sweden (68øN) [Kondo et al., 1999] 
represent conditions near the vortex edge and therefore can not 

properly be interpreted as being representative of the polar vortex. 

Recently, Plumb et al. (submitted manuscript, 1999) have suggest- 

ed that a small amount of continuous mixing across the vortex edge 

throughout the winter could lead to distinct innervortex tracer rela- 

tions that differ considerably from the extravortex relations or that 

compact relations might be lost inside the polar vortex. However, 

assuming the validity of assumption (1), the in situ observations of 

NOy and N20 obtained near 20 km during January and February 
1989 suggest that the MklV NOy/N20 reference correlation was 
valid inside the vortex during the initial phase of denitrification in 

1989 (Plate 2). We note that the remarkably good agreement be- 

tween the MklV and in situ observations of NO v and N20 supports 
the validity of both assumptions (1) and (2) because it would be 

highly unlikely that deviations from the assumptions would cancel 

in such a way to preserve the good agreement. However, it is not 

clear whether this agreement of innervortex and extravortex rela- 

tions in January and February holds at higher altitudes and for all 
winters and whether it holds until mid-March, when diabatic de- 

scent inside the polar vortex commonly gets sufficiently slow [Rex 

et al. , 1998; Knudsen et al., 1998; Rex et al., 1999] that any mixing 

occuring after this time would be well represented by our approach. 
The results of Michelsen et al. [1998] indicate that in mid-April 

1993 the innervortex tracer relations deviated considerably from 

the extravortex relations, but it is not clear when this discrepancy 

developed. The question of whether and when distinct innervortex 

tracer relations develop needs to be addressed by tracer measure- 

ments within the vortex throughout the winter. We note that our 

analysis is valid only under the assumption that for the 1996-1997 
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winter the bulk of the mixing across the vortex edge took place af- 

ter descent slowed down sufficiently (i.e., after approximately 

mid-March; estimations of diabatic descent rates based on ob- 

served temperatures and radiation transport calculations show that 

at 500 K the total descent after mid-March was of the order of only 

10 K [Knudsen et al., 1998]). In section 4 we will further discuss 

the validity of this assumption for the 1996-1997 winter in the light 
of our results. 

3.5. ER-2 Flight on April 26, 1997 

3.5.1. Descent and mixing. Plate 4b shows the mixing ratio of 

N20 calculated with the method described in section 3.3 for the in- 

nervortex end-members along the ER-2 flight track on April 26, 

1997. The mixing ratios of the innervortex end-member were 

found to be between 25 and 40 ppbv. The associated approximate 
altitudes from which the innervortex end-members subsided 

through the winter are -32-34 km (Plate 4c). The altitudes have 

been estimated using the mixing ratios of N20 measured by the 

ER-2 and the MKIV extravortex profile of N20. An overall subsid- 

ence of- 13 km for air masses ending near 500 K (-20 km) is sug- 

gested by our analysis. This value agrees well with the overall 

descent of 13.8 km for air ending at 20 km that was derived by 

Abrams et al. [1996] for the Arctic winter 1992-1993 from AT- 

MOS/ATLAS-2 data. Abrams eta!. [!996] showed that this de- 

scent is consistent with the theoretical results of Manney et al. 

[ 1994] and Rosenfield et al. [ 1994]. The ratio between innervortex 

air and extravortex air in the sampled air masses has been calculat- 
ed as described above and is shown in Plate 4d. For the observa- 

tions discussed here, this ratio varies between 0.3 and 0.6 with 

higher fractions of innervortex air present at higher latitudes. As 

expected, high fractions of innervortex air correlate with high val- 

ues of potential vorticity (Plate 4a). 

3.5.2. Denitrification. Plate 4e compares observations of NO v 
to NO•,* (NO•, based on the measured N20 and the reference cor- 

relation between N20 and NOv) and NOv** (NO r calculated from 
the reference correlation, allowing for descent and isentropic mix- 

ing). Large differences between observed NO•, and NOv* are ap- 

parent. In contrast, observations of NOy agree well with NO•** 
during most parts of the flight. This result suggests that most of the 

NO v deficit found along the ER-2 flight track was caused by de- 
scent followed by isentropic mixing. However, during the north- 

ernmost part of the ER-2 flight on April 26, 1997, the mixing ratios 

of NO r were smaller than NOv**, indicating that some denitrifica- 

tion had taken place. 

This is further illustrated in Plate 5, where the observed 

NOv/N20 correlation, the NOr**/N20 correlation, and the extra- 

vortex reference correlation are shown. Measured NO r agrees well 

with NOv** for N20 mixing ratios larger than 125 ppbv. For N20 

levels below 100 ppbv, a deficit of measured NO•, compared to 

NOv** is visible. We interpret this 1-2 ppbv deficit in NO,, as the 
result of weak irreversible denitrification that occurred earlier in 

the winter. Since the denitrification probably occurred before the 

bulk of the mixing, it is reasonable to suggest that the deficit of 

NO•, originally caused by denitrification was diluted by subsequent 

mixing. Back projection of the NO r deficit to pre-mixing condi- 
tions (dashed lines in Plate 5) shows that the original average de- 

gree of denitrification must have been approximately 2-3 ppbv 

(solid arrow in Plate 5) to cause the NO r deficit observed in !ate 
April. Most likely the denitrification inside the polar vortex was 

characterized by patchy regimes of higher denitrified areas and ar- 

eas without denitrification (as was observed on February 7, 1989: 

see Plate 2). In the weeks following the denitrification events, com- 

paratively fast mixing inside the vortex probably led to an averag- 

ing of the degree of denitrification throughout the vortex yielding 
the 2-3 ppbv value reported above. 

The weak denitrification reported here is consistent with the 

temperature structure of the 1996-1997 winter. PSC particles must 

grow to large sizes (of the order of 1-2 gm) to sediment with ap- 

preciable velocities [e.g., Salawitch et al., 1989]. Particle forma- 

tion and growth models show that PSC particles reach sizes large 

enough to cause rapid denitrification once temperature falls below 

the frostpoint, due to efficient uptake of water [e.g., Drdla and Tur- 

co, 1991]. Differential growth may also lead to large particles for 

temperatures that are above the frostpoint but below the NAT (ni- 

tric acid trihydrate) equilibrium temperature (TNAT) [Salawitch et 

al., 1989]. However, Santee et al. [1998] show that the phase 

change required to initiate differential growth most likely requires 

suppression of temperature below TNA T continuously for a period 
of at least several days. In the Arctic the cold temperature region is 

normally displaced from the center of the vortex. As air masses cir- 

culate in the vortex, they alternately pass through cold (T < TNAT) 

and warm regions every few days, so that severe denitrification in 

the Arctic may require the minimum temperature to drop below the 

frost•oint. Temperature analysis from the European Centre for 

Medium Range Weather Forecast shows that the synoptic temper- 

atures dropped below the frostpoint (assuming 4.6 ppmv H20 ) 

only in limited areas (largest area >2x ! 06 km 2 --- ! 0% of the vortex 
area) and only for two short periods, both only a couple of days 

long during mid and late February. The potential for formation of 

water ice PSCs during 1996-1997 was much smaller than in the 

winters of 1988-1989 and 1995-1996. Furthermore, in 1996-1997 

the areas cold enough for synoptic water ice PSC formation were 

mainly at the 450 K level, which is below the air masses sampled 

by the ER-2 during its vortex flight. Considering some diabatic 

cooling during the late winter period, the air masses sampled by the 

ER-2 in late April at 500 K would have been even somewhat above 

500 K during the cold periods in February. From vortex averaged 

radiative cooling rates calculated from the Universities' Global At- 

mospheric Modeling Programme (UGAMP), it was estimated that 

the subsidence between the coldest period and the April ER-2 

flight was between 5-10 K potential temperature. 

Our analyses have been based on ER-2 measurements of N20 

obtained by the ALIAS instrument. In situ measurements of the 

mixing ratio of N20 are also obtained by the Airborne Tunable La- 

ser Absorption Spectrometer (ATLAS) instrument for each ER-2 

flight. There are slight differences between the ATLAS and 

ALIAS measurements of N20 during limited segments of the two 
ER-2 flights considered here. However, we have repeated our en- 

tire analyses using the ATLAS measurements of N20, and we note 
that our overall conclusions are independent of which measure- 

ment of N20 is used. 

3.6. ER-2 Flight on June 30, 1997 

During the ER-2 flight on June 30, 1997 remnants of the polar 
vortex were found at 510-530 K potential temperature, i.e., at 

slightly higher isentropic levels than during the flight of April 26. 
Plate 6 shows the CH4/N2 ¸ relation measured during this flight. 
The innervortex end-members that contributed to the air mass 

probed by the ER-2 had fairly constant N20 mixing ratios of about 
15-20 ppbv (Plate 7a). The associated initial altitude is ~37 km 
(Plate 7b), so that the overall descent for air masses ending at 
around 520 K in June is estimated to be ~16 km. Plate 7c shows 

that the fraction of innervortex air in the probed air masses varied 

between 20 and 70% for the air masses discussed here. The 
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Plate 4. Measured and calculated quantities along the northbound track of the ER-2 flight on April 26, 1997. The gray 

shaded areas give an estimate of the uncertainty based on the errors in the measurements and the uncertainty in defin- 
ing the properties of the extravortex mixing end-member. (a) Potential vorticity (1 Potential Vorticity Unit (PVU) = 
10 -6 K m 2 s -l kg-l), (b) calculated mixing ratio of N20 for the innervortex mixing end-member, (c) corresponding 
approximate early winter altitude of the innervortex air, (d) fraction of innervortex air versus extravortex air in the 

mixed sample, (e) NOv* which would have been predicted from the N20 vmrs without considering mixing (blue), 
NOv** predicted with •:onsideration of mixing (red), and NO r measured by the NOAA chemiluminescence instrument 
abo'ard the ER-2 (green). 
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Plate 5, MklV and ER-2 measurements as in Plate 1. The NOr** 
predicted for the air masses sampled by the ER-2 (red) and its un- 

certainty (gray, c.f. Plate 4) are compared with the measured NO v 
(green). NO,,.** was calculated from the degree of descent and mix'- 
ing derived i•rom the CH4/N20 correlation. The NO r versus NO•.** 
deficit at low N20 levels is interpreted as a signatur• of irreversible 
denitrification. The premixing degree of denitrification in the air 
masses is estimated by a backprojection of the measured properties 

of the mixed sample to the properties of the innervortex mixing 
end-member (dashed lines). The estimated average premixing de- 

gree of denitrification in the sampled air masses is indicated by the 
arrow. Since the air masses inside the vortex are rapidly mixed and 

the denitrification typically occurs inhomogeneously, this degree 
of denitrification is likely the result of mixing of more heavily den- 
itrified air masses with less or nondenitrified innervortex air. 

observations agree very well with NOr** throughout the flight 

(Plate 8). This analysis reveals that the large deficits of NO•. com- 

pared with the extravortex reference can be explained entirely by 

descent and mixing. No indication for &nitrification was found. 

The vortex air masses sampled during the June 30, 1997, ER-2 

flight were at higher potential temperature levels than those en- 

countered during the April 26, 1997, flight. These air masses were 

well above the cold temperature region in February, and synoptic 

temperatures never dropped below the frostpoint in these air mass- 

es for the entire winter. Our finding that these air masses have not 

been significantly denitrified is consistent with the temperature 
structure of the 1996-1997 winter. 

3.7. OMS Flight on June 30, 1997 

On the same day as the latter ER-2 flight, the OMS balloon 

borne platform measured a profile of several trace species and en- 

countered polar vortex remnants in two altitude regions around 

500-520 K and 615-637 K potential temperature [Herman eta!., 

1998]. The measured CH4/N20 mixing ratios obtained during the 
balloon descent are plotted in Plate 9 together with the extravortex 

reference measured by the MklV instrument. The ALIAS II obser- 

vations are grouped into potential temperature ranges that are 
shown in different colors. 

The mixing ratios of CH 4 and N20 found in the vortex air mass- 

es around 495-520 K (blue points in Plate 9) lie along a mixing line 

very similar to that formed by the ER-2 observations obtained on 

the same day. The measurements of CH 4 and N20 in air masses 

that have not been influenced by the polar vortex (black points in 

Plate 9) agree remarkably well with measurements made by the 

0 50 100 150 200 250 300 350 

N20 ppbv 

Plate 6. As Plate 3, but for the portion of the ER-2 flight at poten- 
tial temperatures of 510-530 K near 65øN on June 30. 

MklV instrument on May 8, 1997 [see, also, Herman et al., 1998]. 

These observations strongly support the assumption that the mea- 

surements from the different platforms may be compared directly 
without bias. 

We now focus on the air masses probed between 615 and 637 K 

potential temperature (green in Plate 9). The CH4/N20 relation of 

these air masses form a mixing line with a steeper slope than those 

indicated by the ER-2 and OMS measurements at lower altitudes 

The mixing line meets the CH4/N20 reference correlation at mix- 

ing ratios that correspond to the MklV measurement obtained at 

615 K potential temperature. This level coincides well with the po- 

tential temperature range probed by the OMS platform for the mix- 

ing line. The slope of the mixing line indicates that the innervortex 

end-member originated from well above the altitude region sam- 

pled by the MklV instrument (dashed arrow in Plate 9). We used 

data from ATMOS/ATLAS-3 obtained during November of 1994 

to identify the intersection of the extended mixing line with the ref- 

erence correlation of CH4/N20 (Plate 10). The intersection of the 
dashed line in Plate 10 with the extravortex reference indicates that 

the innervortex mixing member originated at an extremely low 

mixing ratio of N20 and at a CH 4 mixing ratio of -200 ppbv. Plate 

11 shows that in autumn such low CH 4 levels are found between 

40 and 60 km altitude, depending on latitude. Since the descending 

motion inside the vortex is coupled with a poleward motion at 

higher altitudes, it is not clear at which latitude and altitude the vor- 

tex air masses have been in autumn. According to Plate 11, it is 

possible that the vortex remnants at 615-637 K originated in the 

mesosphere. 

The NO•JCH 4 correlation measured by ATMOS/ATLAS-3 be- 

tween 40 and 50 ø N (Plate 12, 50øN is the highest latitude sampled 

by the ATMOS instrument during the ATLAS-3 mission) has been 

used to calculate NOr** from the estimated CH 4 mixing ratios of 
the innervortex end-member for the air masses probed by the OMS 

platform between 615 and 637 K potential temperatures (Plate 13). 

At 60øN, the lifetime of NO v is sufficiently long (during mid-Oc- 
tober longer than 2 years below -55 km; the lifetime has been es- 

timated using the model described by Osterman et al. [1997] that 

probably no significant loss of NO v during the descent occurred). 

However, the lifetime of N20 at 50-55 km is only about 2 months 
(compare section 1) so that the quantitative results of this calcula- 

tion might be slightly influenced by possible chemical changes of 
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Plate 7. As Plate 4, but for the portion of the ER-2 [light at potential temperatures of 510-530 K near 65øN on June 30. 

N20 during the initial phase of the descent. Plate 13 shows that 

above 600 K, quite low NO•/N20 ratios can be produced purely by 
mixing processes between subsided mesospheric air masses with 

extravortex air. This result supports the hypothesis of Kondo et al. 

[ 1999] that for altitudes above 20 km, very low values of NO•, can 
easily be mistaken for severe denitrification if dynamical processes 
are neglected. 

4. "Continuous Mixing" Versus "Late Mixing" 

Plumb et al. (submitted manuscript, 1999) presented a theoreti- 

cal study of the evolution of tracer relationships inside the polar 
vortex in the presence of continuous weak mixing across the vortex 

edge. Their results show that if mixing across the vortex edge dur- 

ing the main phase of descent is strong enough to change the inn- 

ervortex tracer relations, then the approach used here would not be 

applicable in a quantitative manner. The critical aspect is the time 

at which mixing across the vortex edge first changes the tracer re- 

lations inside the polar vortex. If mixing changes the innervortex 

tracer relations during the main phase of the descent (approximate- 

ly until early March), the results of Plumb et al. (submitted manu- 

script, 1999) demonstrate that transport properties inferred from 

one set of tracer relations should not be applied to a different set of 

tracer relations. If, however, the change in the tracer relations in- 

side the vortex first occurs after descent has slowed sufficiently 

(i.e., after approximately mid-March), our approach is applicable, 

regardless of the precise nature of the isentropic mixing (i.e., 

whether it occurs as a single mixing event, a succession of a num- 

ber of mixing events, or as continuous mixing after mid-March). 

We will refer to the latter scenario as "late mixing" and to the other 

scenario as "continuous mixing". In the following we discuss data 
from two winters to address whether indications for continuous 

mixing can be identified in the real atmosphere. 

4.1. Winter 1992-1993 

The representation of ATMOS data from the ATLAS-2 mission 

(April 8-16, 1993) by Michelsen et al. [1998] suggests that over a 

broad range of potential temperatures, single, distinct, and near lin- 

ear relations between NO r and N20 and between CH 4 and N20 ex- 
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Plate 8. As in Plate 5, but for the ER-2 flight on June 30, 1997. 
The vortex remnants were encountered, while the ER-2 was be- 

tween potential temperatures of 510 and 530 K: only ER-2 mea- 
surements between these levels have been plotted. No indication 

for denitrification is apparent. 

isted inside the Arctic vortex during that winter. The existence of 

distinct compact innervortex tracer relations over a broad range of 

potential temperatures would suggest that continuous mixing had 
occurred (Plumb et al., submitted manuscript, 1999). However, in 

Michelsen et al. [1998] the large number of ATMOS measure- 

ments of individual NO•, species were averaged on a number of 

vertical levels, and the NO•. mixing ratio at each level was calcu- 

lated to give an innervortex profile. This binning and averaging 
procedure may mask individual isentropic mixing lines. Isentropic 
mixing lines in tracer/tracer plots are formed by various individual 

measurements obtained on one potential temperature level. Statis- 
tically some of these individual measurements occur in air masses 

that contain a larger fraction of end-member A (e.g. innervortex 

air), others in air masses with larger fractions of end-member B 
(e.g. extravortex air). The statistical scatter of measurements at one 

isentropic level is needed to identify mixing lines in tracer/tracer 
plots. 

If our approach of analyzing isentropic mixing lines is applied 
to the ATMOS/ATLAS-2 data, various distinct isentropic mixing 
lines in the NO•./N20 relation are apparent. The isentropic analysis 
also reveals distinct mixing lines in the CH4/N20 relation that are 

not apparent as given in Michelsen et al. [1998, Plate 2] because 

their analysis focusses solely on a few number of measurements 

obtained deep inside the Arctic vortex. The CH4/N20 and 

NO¾/N20 mixing lines we identify have slopes that rise with in- 
creasing potential temperature and intersect with the extravortex 

relation in a manner similar to the mixing lines shown in Plate 9. 

This picture is compatible with the late mixing scenario but does 

not rule out continuous mixing either. A comprehensive analysis of 

the ATMOS data from 1992 to 1993 using the approach of isen- 

tropic mixing lines will be the subject of a future publication. 

4.2. Winter 1996-1997 

As mentioned in section 3.4, we currently cannot completely 

rule out the possibility that continuous mixing during descent in- 

side the 1996-1997 vortex changed the innervortex tracer relations 

in a way that would hamper our approach. However, the good 

agreement between NOr** and the measured NO• shown in Plate 

Plate 9. CH4/N20 correlation observed by the ALIAS II instru- 
ment during the descent portion of the OMS balloon flight on June 
30, 1997, compared to the MklV measurements on May 8, 1997. 
The ALIAS II OMS data has been grouped into extravortex sam- 

ples (black) and measurements obtained during the penetration of 
two distinct layers of vortex air remnants (green: 615-637 K, blue: 
495-520 K). The observations within the vortex remnants reveal 

distinct mixing lines (dashed) for both potential temperature re- 

gions. The MklV measurements on May 8, 1997, are given in red. 
The potential temperatures of the MklV data points at the intersec- 
tions with the OMS mixing lines are indicated. 

8 indicates that this is probably not the case. Plumb et al. (submit- 

ted manuscript, 1999) demonstrated that if mixing during the main 

phase of descent had changed the innervortex tracer relations, the 

mixing lines observed in a NO•JN20 plot and in a CH4/N20 plot 
would intersect with the respective extravortex relations at differ- 
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Plate 10. CH4/N20 correlation for the OMS encounter of vortex 
remnants at 615 - 637 K potential temperature (green) compared 
with an extravortex reference correlation established by AT- 
MOS/ATLAS-3 measurements obtained between 40 ø and 50øN in 

early November 1994 (blue dots, a fit to the data is plotted as blue 
line). The MklV reference correlation from May 8, 1997, is shown 
in red. 
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Plate 11. CH 4 profiles measured during September-October 1996 
by the Halogen Occultation Experiment (HALOE)(data version 

19) on the Upper Atmosphere Research Satellite between 40 ø and 
70øN. The individual profiles were sorted into different latitude 
bands and were averaged into +1.5 km vertical bins. The error bars 
reflect the lo variability. The vertical line denotes the mixing ratio 
of CH 4 of the innervortex end-member for the OMS mixing line 
observed at 615-637 K potential temperature. 

ent mixing ratios of N20. In contrast to that scenario, the success 

of our approach to precisely reproduce measured NO•. as shown in 

Plate 8 demonstrates that the N20 levels derived from both tracer 

plots agree very well. Given the temperature history of the air 

masses shown in Plate 8, it is unlikely that NO v in these air masses 

was influenced by denitrification (compare section 3.6). It is highly 
unlikely that even if denitrification cannot be ruled out completely, 

the effect of denitrification would precisely cancel the effect of 

continuous early winter mixing to produce the good agreement be- 

tween NOv** and measured NO v shown in Plate 8. 
Measurements of CH 4 and N20 from two balloon flights at 

68øN on February 11 and 22, 1997, show a near linear relationship 

[Kondo eta!., 1999], which indicates considerably mixing early in 

the winter. However, these observations were obtained near the 

edge of the vortex and therefore may not be representative of con- 

ditions throughout the vortex. 

We note that although our analysis indicates that any continuous 

mixing during the main phase of descent was probably not effec- 

tive enough to influence the innervortex tracer relations in 

1996-1997, this does not necessarily mean that such mixing could 

not influence the innervortex tracer relationships during other win- 

ters. The timing of mixing in a given winter is closely connected 

with the level of wave activity in the Northern Hemisphere during 

the respective winter. The temporal development of the wave ac- 

tivity throughout an Arctic winter varies tremendously from year 

to year, so that the tracer relationships inside the Arctic polar vor- 

tex may well be different from year to year. Plumb et al. (submitted 

manuscript, 1999) demonstrated the importance of detailed knowl- 

edge about the timing of any relevant mixing. The development of 

tracer/tracer relationships inside the Arctic polar vortex under a va- 

riety of meteorological conditions needs further research. 

5. Conclusions 

Mixing processes between subsided air masses from the polar 

vortex and midlatitude air can considerably alter otherwise 

well-established tracer correlations if their relationship is nonlin- 

ear. The combined measurements of NO w N20, and CH 4 obtained 

by the NOAA NO• and the ALIAS instrument aboard the ER-2, the 
MklV balloon-borne FTIR-spectrometer and the ALIAS II balloon 

borne tunable diode laser instrument during the POLARIS cam- 

paign provide detailed in situ tracer data in the mixed air masses as 

well as concurrently measured reference correlations for extravor- 
tex air. 

A technique based on near linear isentropic mixing lines in the 

otherwise nonlinear correlation between CH 4 and N20 has been 
used to quantify dynamically induced changes in the tracer rela- 

tionships. The mixing lines at increasing potential temperature lev- 

els show an increasing slope and intersect with the reference 

correlation at their respective potential temperature. The informa- 
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Plate 12. NOv/CH 4 reference correlation measured by AT- 
MOS/ATLAS-3 between 40 ø and 50øN in early November 1994. 
The fit to the data has been used to estimate the mixing ratio of NO•. 
of the innervortex mixing end-member based on the estimated 

mixing ratio of CH 4 of that air mass (compare Plate 9). 

2O 

15 

10 

o 

o 

O MklV 

ß NOy** 

o 

o 50 1 oo 150 200 250 ,300 

N20 ppbv 

Plate 13. The NOv**/N20 correlation calculated for the air mass- 
es measured by OMS between 615 and 637 K on June 30 based on 
the degree of subsidence and mixing inferred from the CH 4 versus 
N20 correlation. No denitrification has been assumed. MklV data 
are the same as in Plate 1. 
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tion extracted from the CH4/N20 correlation has been used to cal- 

culate the abundance of NO¾** (the expected mixing ratio of NO r 
accounting for descent and isentropic mixing) for the mixed air 

masses. The degree of denitrification has been derived by compar- 

ing observed NO v with NOv**. This approach is an extension of 

the approach of comparing NO r with NOv* [Fahey et al., 1990] to 
situations where the air masses have been subject to mixing across 

the vortex edge. Our analysis reveals evidence for only a small de- 

gree of denitrification in a limited region of the Arctic vortex sam- 

pled by the ER-2 flight on April 26, 1997, and no indication for 

denitrification for vortex air sampled at higher potential tempera- 

ture levels during a flight on June 30, 1997. These findings are con- 

sistent with the synoptic-scale temperature history of the sampled 

air masses throughout the winter. The considerable deficit of NOy 
compared with NOr* (the mixing ratio of NO¾ derived from the 
abundance of N20 without considering mixing) during both 

flights, which would have been incorrectly interpreted as the result 

of denitrification in the 'traditional' approach, is actually mainly 

the result of descent and end-member mixing. 

Our analysis supports the conclusions of Waugh et al. [1997], 

Kondo et al. [ 1999], and Michelsen et al. [ 1998] that it is important 

to use measurements of additional conserved species to accurately 

interpret changes in the NOv/N20 relation with respect to denitri- 
fication. The main uncertainty in our work lies in the definition of 

the innervortex tracer/tracer reference correlations that represent 

the composition of the innervortex end-members of the isentropic 

mixing process. We assume that tracer/tracer relations measured 

outside of the vortex also represent the composition of the inner- 

vortex end-members. Recent results from Plumb et al. (submitted 

manuscript, 1999) suggest that even weak continuous entrainment 

of extravortex air into the polar vortex during the main phase of de- 

scent could lead to innervortex tracer relationships that differ con- 

siderably from extravortex relations. We present data obtained 

inside the vortex near 20 km during POLARIS and a previous win- 

ter to support the validity of our assumptions concerning the inner- 
vortex tracer relations. However, it is not clear whether this result 

holds for other winters because wave activity that could lead to 

mixing across the vortex edge is quite variable from year to year. 

Measurements of tracer profiles inside the vortex during different 

phases of winter, as are planned for the upcoming NASA SAGE III 

Ozone Loss and Validation Expedition (SOLVE), will largely re- 

duce the uncertainty of this type of analysis. 
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