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Abstract

1 Active Appearance Models (AAM) is very powerful for
extracting objects, e.g. faces, from images. It is composed of
two parts: the AAM subspace model and the AAM search.
While these two parts are closely correlated, existing ef-
forts treated them separately and had not considered how
to optimize them overall. In this paper, an approach is pro-
posed to optimize the subspace model while considering the
search procedure. We first perform a subspace error analy-
sis, and then to minimize the AAM error we propose an ap-
proach which optimizes the subspace model according to
the search procedure. For the subspace error analysis, we
decomposed the subspace error into two parts, which are
introduced by the subspace model and the search proce-
dure respectively. This decomposition shows that the opti-
mal results of AAM can be achieved only by optimizing both
of them jointly rather than separately. Furthermore, based
on this error decomposition, we develop a method to find
the optimal subspace model according to the search proce-
dure by considering both the two decomposed errors. Ex-
perimental results demonstrate that our method can find the
optimal AAM subspace model rapidly and improve the per-
formance of AAM significantly.

1. Introduction

Accurate alignment of faces is very important for extrac-
tion of good facial features for success of applications such
as face recognition, expression analysis and face animation.
Active Shape Models (ASM) [7] and Active Appearance
Models (AAM) [3, 8, 6] are two successful methods for face
alignment. ASM uses the local appearance model, which
represents the local statistics around each landmark to ef-
ficiently find the target landmarks. And the solution space

1 This paper is supported by National Natural Science Foundation of
China (60203013).

is constrained by the properly trained global shape model.
AAM combines constraints on both the shape and texture.
The result shape is extracted by minimizing the texture re-
construction error. According to the different optimization
criteria, ASM performs more accurately in shape localiza-
tion while AAM gives a better match to image texture. In
this paper, we will concentrate on AAM.

AAM is composed of two parts: the AAM subspace
model and the AAM search, which are treated separately
in its original form. The subspace model is trained with-
out considering the search procedure while the search is
performed using this subspace model without considering
how it is trained. However, we find that these two parts are
closely interrelated and the performance depends on both of
them. Unfortunately, this relationship is often neglected by
previous works. Most efforts [2, 5, 10, 4] only attempted to
improve the search procedure without considering the sub-
space model. Stegmannet al [14] attempted to optimize the
subspace model, but he did not consider the search proce-
dure. In this paper, we try to optimize the subspace model
according to the search procedure.

Because of neglecting the correlation, the dimensionali-
ties of the subspaces in the AAM subspace model are usu-
ally chosen to explain as high as 95%∼98% [3, 6,?, 4] of
the variations. The underlying assumption is that if the sub-
space reconstruction errors are small, the overall AAM error
will be small too. This underlying assumption was taken for
granted by previous works without any justification. How-
ever, our analysis of AAM subspace errors shows that this
is incorrect. To minimize the AAM overall error, we should
not only consider the subspace model, but also the search
procedure.

In this paper, we present an analysis of AAM subspace
errors, and propose an approach for optimizing the param-
eterization of the AAM subspace model according to the
search procedure. First, we identify that the dimensionali-
ties of the subspaces in AAM subspace model significantly
affect the performance of AAM. Then, we decompose the
subspace error into one of subspace reconstruction and one



of AAM search. This decomposition shows that the best re-
sult can only be achieved by optimizing both of them. Fi-
nally, we develop a method to optimize the AAM subspace
model based on the subspace error decomposition. In this
method, we use a new criterion to select the eigenvectors
for the subspaces considering both the subspace model and
the search procedure, and propose a practical method to im-
plement it, which is proven to be rapid and accurate. By
optimizing the subspaces in AAM, we can get more accu-
rate and faster results. What’s more, it can be used to op-
timize other alignment algorithms, such as ASM and AAA
[1].

The rest of the paper is arranged as follows. An overview
of AAM is described in Section 2. Section 3 discusses the
problem of optimizing the subspaces in AAM. In Section 4,
we present the decomposition and analysis of the AAM sub-
space errors. And section 5 gives the method to find the op-
timal subspaces. Experimental results are provided in Sec-
tion 6 before conclusions are drawn in Section 7.

2. AAM Modelling and Search

The AAM algorithm contains two parts: the AAM sub-
space model and the AAM search. The AAM subspace
model is composed of three subspaces: the shape, texture
and appearance subspace. The AAM search uses learned
prediction matrices to find target appearances in images.

2.1. AAM Subspace Modelling

Assume that the training set is given as{(S0, T0)}where
a shapeS0 = ((x1, y1), . . . , (xK , yK)) ∈ R2K is a se-
quence ofK points in the 2D image plane, and a texture
T0 is the patch of image pixels enclosed byS0.

Shapes{S0} are aligned to the tangent shape space{S}
in a common co-ordinate frame with the Procrustes Analy-
sis [9]. The AAM shape subspace is trained by PCA analy-
sis on the tangent shape space

S = S̄ + Pss (1)

wherePs is the matrix of thek principal orthogonal modes
of variation in{S}. Any shape in the AAM shape subspace,
denotedSs ⊂ Rk , is represented as a vectors = PT

s (S −
S̄).

After deforming each training shapeS0 to the mean
shape, the corresponding textureT0 is warped and normal-
ized toT . Then all of them are aligned to the tangent space
{T} of the mean texturēT by using an iterative approach as
described in [3]. The AAM texture subspace is obtained by
PCA analysis

T = T̄ + Ptt (2)

wherePt is the matrix consisting ofl principal orthogonal
modes of variation in{T}. Any texture in the AAM texture

subspace, denotedSt ⊂ Rl , is represented as a vectort =
PT

t (T − T̄ )
Since there may be correlations between the shape and

texture variations, the AAM appearance subspace is built
from Ss andSt. The appearance of each example is a con-
catenated vector

A =
(

Λs

t

)
(3)

whereΛ is a diagonal matrix of weights for the shape pa-
rameters allowing for the difference in units between the
shape and texture variation. Again, the AAM appearance
subspace is obtained by PCA analysis

A = Paa (4)

wherePa is the matrix consisting ofm principal orthogo-
nal modes of variation in{A}. Any appearance in the AAM
appearance subspace, denotedSa ⊂ Rm, is represented as
a vectora = PT

a A

2.2. AAM Search

In AAM, the search is guided by minimizing the differ-
enceδT between the normalized textureTim in the image
patch and the textureTa reconstructed from the current ap-
pearance parameters.

The AAM assumes that parameter displacements of the
appearancea, and the shape transformationv (translation,
scale and rotation) and the texture normalizationu (scale
and offset) are linearly correlated toδT . It predicts the dis-
placements as

δp = −Rr(p), R =

(
∂r
∂p

T ∂r
∂p

)−1
∂r
∂p

T

(5)

wherer(p) = δT , pT = (aT |vT |uT ).

3. Subspace Selection Problem for AAM

Typically, the subspaces of shape, texture and appear-
ance in AAM are selected so that each explains a given pro-
portion,α, of the total variance. We call this proportion,α,
the (subspace)explanation proportion. Since the variance
along theith principal axis is equal to the corresponding
eigenvalue,λi, this is easily carried out. To retain a given
proportionα of the variation,t modes can be chosen satis-
fying

∑t
i=1 λi ≥ α

∑
λi.

How to estimate the explanation proportion of the sub-
space can be treated as a model selection problem. The goal
of traditional model selection is to select the model which
gives the highest generalization performance. If we choose
too simple a model, it is likely to incur a high error on both
the training data and the test data. On the other hand, if we
choose too complex a model, it is likely to be poor due to



over-fitting. There are two basic categories of techniques for
model selection: complexity penalization and hold-out test-
ing (e.g. cross-validation and bootstrapping) [11].

However, there is a little difference between model selec-
tion and the estimation of explanation proportions in AAM.
As for traditional model selection problem, it is usually the
case that the more complex the model, the lower training
error. However, for estimating the explanation proportion
of the subspace for AAM, there are cases that the more
complex the subspace, the higher training error. The reason
is that this estimation involves a search procedure - AAM
search. So, to the estimation of the subspace explanation
proportion, we must consider not only AAM subspaces, but
also AAM search. Complexity penalization techniques can
hardly be used in this situation. Although cross-validation
can be used for this purpose, it is time-consuming and al-
most unpractical, for there are three subspaces to be se-
lected. To avoid this problem, Stegmannet al [14] used
parallel analysis (PA) as an alternative for cross-validation.
However, as parallel analysis only considered the subspaces
without considering the search procedure, the improvement
is very limited. In this paper, we will propose an efficient
and effective method based on the cross-validation analy-
sis for estimating the explanation proportions in AAM us-
ing the error decomposition in the next section.

4. Subspace Error Decomposition and Analy-
sis

The overall AAM error is determined by both the AAM
subspace model and the AAM search. But how? No answers
have been given in the previous works. Moreover, previ-
ous works only consider AAM subspace model and AAM
search separately. In this section, we endeavor to discover
the mechanism. When it is revealed, we are on the right
track to finding an optimized solution. We will first decom-
pose the AAM subspace error into the reconstruction error
and the search error, and then analyze both of them. Based
on this error analysis, we will develop a method to find the
optimal subspace model in the next section.

4.1. Subspace Error Decomposition

Let S denote the full eigen-space, which could be any
space of the shape, texture and appearance in AAM. By
ranking the eigenvectors w.r.t the eigenvalues and select-
ing the first principal components(eigenvectors), we form
an orthogonal decomposition ofS into two mutually exclu-
sive and complementary subspaces: the principal subspace
P-S, containing the principal components(eigenvectors) and
its orthogonal complement - the complement subspace C-S
containing the remaining eigenvectors . In AAM, the prin-
cipal subspace P-S could be the shape subspaceSs, the tex-

ture subspaceSt and the appearance subspaceSa. Accord-
ing to this decomposition,S is an orthogonal space. It can
be decomposed into two subspaces:S = P-S ⊕ C-S, which
means thatS is the direct sum of P-S and C-S. The axes of
P-S and C-S are the same asS.

Let x denote the target object inS, andx′ denote the pro-
jection ofx in P-S. Let y′ denote the search result in P-S.
The relationship between them is illustrated in Figure 1. Let
the coordinate ofx be(x1, x2, . . . , xn) in S, wheren is the
dimension ofS. Let the coordinate ofx′ be(x′1, x

′
2, . . . , x

′
t),

y′ be (y′1, y
′
2, . . . , y

′
t) in P-S, wheret is the dimension of

P-S.

 

Subspace  

Reconstruction Error 

x  

x  

x′  y′

Search Error 

Full Space 

Figure 1. The relationship between the AAM
error, the search error and the reconstruction
error.

As S = P-S ⊕ C-S, the axes of P-S are the firstt axes of
S. So we can have:

x′i = xi, y′i = yi (i = 1 . . . t) (6)

Furthermore, the coordinates of the projection ofx′ andy′

to C-S are zero, for P-S is orthogonal to C-TSS. So the co-
ordinates ofx′ andy′ in S are:

(x′1, x
′
2, . . . , x

′
t, 0, . . . , 0), (y′1, y

′
2, . . . , y

′
t, 0, . . . , 0) (7)

The subspace error is defined as the error between the
targetx and the search resulty′, i.e.

ERR(x) = ||x− y′||2 =
n∑

i=1

(xi − y′i)
2

=
t∑

i=1

(xi − y′i)
2 +

n∑

i=t+1

(xi − 0)2

=
t∑

i=1

(x′i − y′i)
2 +

n∑

i=t+1

(xi)2

From this formula we can see that the subspace error is com-
posed of two components.



The first component is the square distance betweenx′

andy′ as

t∑

i=1

(x′i−y′i)
2 =

t∑

i=1

(x′i−y′i)
2+

n∑

i=t+1

(0−0)2 = ||x′−y′||2

(8)
Suppose that if the search procedure is perfect, the search
result will bex′, for x′ is the point with smallest distance in
P-S from x. This error exists just because the search proce-
dure is not perfect. So we call the first component the search
error.

The second component is the square distance betweenx
andx′ as

n∑

i=t+1

(xi)2 =
t∑

i=1

(xi−x′i)
2 +

n∑

i=t+1

(xi− 0)2 = ||x−x′||2

(9)
Becausex′ is the projection ofx in P-S, we call this com-
ponent the reconstruction error.

4.2. Subspace Error Analysis

In AAM, the explanation proportions of the princi-
pal subspaces (Ss, St, Sa) are usually chosen as high
as 95%∼98% [3, 6, ?, 4]. The underlying assump-
tion is that if the reconstruction error is small, the overall
AAM error will be small too. This underlying assump-
tion was taken for granted by previous works without any
justification. However, in the light of the above error de-
composition, this assumption is not right. The reconstruc-
tion error is only part of the total error. To minimize the
total error, we should not only consider the reconstruc-
tion error, but also the search error.

As the residual energy of a PCA subspace is linearly re-
lated to the percentage of energy retained, the reconstruc-
tion error is linearly related to the explanation proportion ,
i.e. ERRREC = (1 − α)

∑
λi. However, the search er-

ror is rather more complex. It is determined both by the
search algorithm and the noise distribution on the data: first,
the AAM search algorithm with the prediction matrices is
not accurate; second, noise on the data can also disturb the
search procedure. Due to its complexity, a practical way is
to learn it from the data as done in the following sections.

5. Optimizing Subspaces in AAM

Now we will use the error decomposition to find the opti-
mal subspaces in AAM. We first develop a new criterion for
selecting eigenvectors for any subspace, and then present
a method to implement it. Finally, another method is pro-
posed to find all the optimal subspaces in AAM.

5.1. Criterion for Selecting Eigenvectors

To obtain the optimal P-S, we try to find out what crite-
rion should be met for the eigenvectors in P-S. In order that
the P-S containing the firstt eigenvectors are optimal, we
should have:

{
ERRt

(x) < ERRt−1
(x)

ERRt
(x) < ERRt+1

(x)

(10)

That is: {
(x′t − y′t)2 < (xt)2

(x′t+1 − y′t+1)
2 > (xt+1)2

(11)

For all the target objects, we will have:
{

E[(x′t − y′t)
2] < E[(xt)2]

E[(x′t+1 − y′t+1)
2] > E[(xt+1)2]

(12)

Note that we do not assume any order about the eigenvec-
tors in this derivation. The firstt eigenvectors do not have to
be the ones with the firstt biggest eigenvalues. So it means
that for the optimal P-S, any eigenvectori in P-S should sat-
isfy:

E[(x′i − y′i)
2] < E[(xi)2] (13)

And any eigenvectorj in the C-S should satisfy:

E[(x′j − y′j)
2] > E[(xj)2] (14)

In other words, any eigenvectori belongs to the optimal P-S
if and only if it satisfies:

E[(x′i − y′i)
2] < E[(xi)2] (15)

5.2. Practical Method for Selecting Eigenvectors
for One Subspace

According to the selection criterion of the eigenvectors
for the optimal P-S, Equation (15), the ideal way is to test
all the possible combinations of the eigenvectors and select
the optimal combination as the optimal P-S. But the num-
ber of all the possible combinations is too big to do all the
tests. For example, for the shape space with 87 points, the
number of the possible combinations of the eigenvectors is∑170

i=1

(
170
i

)
= 2170 − 1.

In this paper, we propose a practical method, which is
both efficient and effective, to select the eigenvectors. This
method is based on the observation that the search error
distribution for each eigenvector is fairly steady and does
not vary too much with different combinations of the eigen-
vectors. Therefore, we can use the error distribution of the
model containing all the eigenvectors to approximate any
combination of them. This method works as follows:

1. First, use the P-S with a high proportion (e.g. 0.99) of
all the eigenvectors for searching.



2. Then, select eigenvectors belonging to the optimal P-S
according to the criterion Equation (15).

In practice, after getting the optimal P-S, we can still use a
slightly higher explanation proportion than the optimal one
to test for the final optimal P-S.

5.3. Optimizing All the Subspaces in AAM

There are three subspaces in AAM, i.e. the shape sub-
spaceSs, the texture subspaceSt and the appearance sub-
spaceSa. To find the optimal subspaces is to find three ex-
planation proportions:αs for Ss, αt for St andαa for Sa.
The optimal subspaces are a combination of (αs, αt, αa).
This is a three parameter optimization problem, traditional
cross-validation is hard to be implemented. But with the
method in the above subsection, the optimal subspaces can
be found in the following way:

1. First, use the above method to find the optimal sub-
spaces for the shape and texture.

2. Then, use the above method to find the optimal appear-
ance subspace constructed from the optimal subspaces
of shape and texture.

6. EXPERIMENTS

The database used consists of 200 face images from the
FERET [13], the AR [12] databases and other collections.
87 landmarks are labelled on each face. We randomly se-
lect 100 images as the training and the other 100 images as
the testing images. Our AAM implementation is based on
AAM-API 2 [14].

6.1. Optimizing Subspaces for AAM

On each test image, we initialize AAM with displace-
ments from the true position by±10 pixels in both x
andy (4 initializations). Note that different initializations
may cause different optimal explanation proportions as their
noise distributions are different. We choose this initializa-
tion so that most of the searches will converge to the target.
Our task is to find the optimal combination of(αs, αt, αa)

We first train the AAM model with the combination of
(0.99, 0.99, 0.99) to find optimal values forαs andαt. We
plot E[(xi)2]− E[(x′i − y′i)

2] for all the explanation pro-
portions of the shape and texture eigenvectors in Figure
2(a), in which solid line denotes the shape subspace and
dotted line denotes the texture subspace. According the se-
lection criteria, Equation (15), we should choose the eigen-
vectors withE[(xi)2]− E[(x′i − y′i)

2] > 0, corresponding
to the curve points above zero. So the optimal values for

2 Available: http://www.imm.dtu.dk/∼aam/

αs andαt are(0.66, 0.59) corresponding to the first 5 and
13 eigenvectors in the shape and texture space respectively.
Then we train the AAM model with(0.66, 0.59, 0.99) to
find the optimal value forαa. E[(xi)2]− E[(x′i − y′i)

2] for
all the explanation proportions is shown in Figure 2(b) with
dotted line and the optimal value forαa is 0.86, correspond-
ing to the first 9 eigenvectors in the appearance space. Note
that there are some burrs or noises on the curves. But they
are not much enough to disturb the results.

To test the robustness of estimatingαs, αt, we also
trained the AAM model with (0.98, 0.98, 0.98) and
(0.95, 0.95, 0.95). They give the same results as ex-
cept that there are more burrs for the latter. To test the ro-
bustness of estimatingαa, we train the AAM model
with (0.66, 0.59, 0.98) and (0.66, 0.59, 0.95). The for-
mer gives the same results as(0.66, 0.59, 0.99), but the
latter gives (0.66, 0.59, 0.88), which is shown in Fig-
ure 2(b) with solid line.
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(a) Shape and Texture
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(b) Appearance

Figure 2. E[(xi)2] − E[(x′i − y′i)
2] for different

explanation proportion of the shape, texture
and appearance subspaces

6.2. Performance Comparison for different Sub-
spaces

Initializations are the same as the previous subsec-
tion. The searching results are compared with the la-
belled shapes. We use point-to-point error(Pt-Pt), point-
to-boundary error(Pt-Crv) (the distance from the found
points to the labelled boundaries) as the comparison mea-
sures. The comparison results are shown in Table 1. The
results of parallel analysis (PA)[14] are also given. PA ex-
planation proportions correspond to the first 7, 21 and 4
eigenvectors in the shape, texture and appearance space re-
spectively. We can see that even if the optimal explana-
tion proportion is not the best, it is very near to the best
results. One typical searching example is given in Fig-
ure 3. We can see that the model with the explanations
of 0.98 is too flexible so that it is easy to be stuck in lo-



cal minimum(mouth and nose). However, the model with
PA explanations is too strict so that it can not fit accu-
rately to the target.

αs αt αa Pt-Pt Pt-Crv Time
(Pixels) (Pixels) (ms)

0.66 0.59 0.86 2.71 1.62 631
0.66 0.59 0.88 2.69 1.60 726
0.66 0.62 0.86 2.69 1.59 737
0.70 0.59 0.86 2.69 1.59 710
0.95 0.95 0.95 3.23 1.75 2327
0.98 0.98 0.98 3.38 1.81 3371
0.73 0.70 0.55 3.15 1.88 414
(PA) (PA) (PA)

Table 1. Comparative performance of differ-
ent subspaces

 

(a) Initialization

 

(b) Optimal subspaces

 

(c) PA subspaces

 

(d) 0.98 subspaces

Figure 3. Example for AAM with different sub-
spaces

7. Conclusion and Future Work

In this paper, we presented an error analysis of the Ac-
tive Appearance Models (AAM) by decomposing the AAM
subspace errors into the reconstruction errors and the search
errors, and then devised a method to find the optimal AAM
subspace model with respect to the search procedure. This

method considered both the subspace model and the search
procedure. This method can be used to optimize other align-
ment algorithms, such as ASM and AAA [1]. Future work
includes applying this method to variations of AAM and
other alignment algorithms.
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