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1. INTRODUCTION

Framework

Detecting and localizing damages for monitoring the in-
tegrity of structural and mechanical systems is a topic of
growing interest, due to the aging of many engineering
constructions and machines and to increased safety norms.
Many current approaches still rely on visual inspections or
local nondestructive evaluations performed manually, for
example acoustic, ultrasonic, radiographic or eddy-current
methods. These experimental approaches assume an a pri-
ori knowledge and the accessibility of a neighborhood of the
damage location. Automatic global vibration-based monitor-
ing techniques have been recognized to be useful alternatives
to those local evaluations [1–5].

Many structures to be monitored (e.g., civil engineering
structures subject to wind and earthquakes, aircrafts subject
to turbulence) are subject to both fast and unmeasured vari-
ations in their environment and small slow variations in their
modal (vibrating) properties. While any change in the exci-
tation is meaningless, damages or fatigues on the structure
are of interest. But the available measurements (e.g., from ac-
celerometers) do not separate the effects of the external forces
from the effect of the structure. Moreover the changes of in-
terest (1% in eigenfrequencies) neither are visible on the sig-
nals nor on their spectra. A global health monitoring method
must rather rely on amodel which will help in discriminating

between the two mixed causes of the changes that are con-
tained in the data.

Most classical modal analysis and vibration monitoring
methods basically process data registered either on test beds
or under specific excitation or rotation speed conditions.
However a need has been recognized for vibration monitor-
ing algorithms devoted to the processing of data recorded in-
operation, namely, during the actual functioning of the con-
sidered structure or machine, without artificial excitation,
speeding down or stopping [6, 7].

In this framework, covariance-driven input/output and
output-only subspace-based algorithms have been developed
for the purpose of structural identification, damage detection
and diagnosis, and merging sensor data from multiple mea-
surements setups registered at different periods of time. The
purpose of this paper is to present an overview of the theory
and practice of these algorithms.

Paper outline

The paper is organized as follows. In Section 2 we recall
the main features of the output-only covariance-driven
subspace-based identification algorithm. We exhibit a key
factorization property and introduce the parameter estimat-
ing function associated with this algorithm. We elaborate
further on the factorization property in Sections 3, 4, and
5 and on the estimating function in Sections 6 and 7.
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We explain in Section 3 how the joint use of the factor-
ization property and various projections helps handling both
known inputs and unknown excitations; in Section 4 how the
factorization property helps extending the covariance-driven
subspace algorithm to the joint processing of data frommul-
tiple measurements setups recorded under nonstationary ex-
citation; and in Section 5 the role of the factorization prop-
erty in the analysis of the consistency of these identification
algorithms under nonstationary excitation.

Section 6 is devoted to a batch-wise change detection
algorithm built on the covariance-driven subspace-based
estimating function and the statistical local approach to
the design of change/fault/damage detection algorithms. In
Section 7, another asymptotic for this estimating function is
used for designing a sample-wise recursive CUSUM detec-
tion algorithm.

Some typical application examples are discussed in
Section 8. Finally comments on ongoing research and con-
clusions are drawn in Section 9.

2. OUTPUT-ONLY EIGENSTRUCTURE IDENTIFICATION

It is well established [8–11] that the vibration-based struc-
tural analysis and health monitoring problems translate into
the identification and monitoring of the eigenstructure of
the state transition matrix F of a linear dynamical state-
space system excited by a zero-mean Gaussian white noise
sequence (Vk):

Xk+1 = FXk +Vk+1,

Yk = HXk,
(1)

namely, the (λ,ϕλ) defined by

det(F − λI) = 0, (F − λI)φλ = 0, ϕλ
Δ= Hφλ. (2)

The associated parameter vector is

θ
Δ=
(

Λ

vecΦ

)
, (3)

where Λ is the vector whose elements are the eigenvalues λ,
Φ is the matrix whose columns are the ϕλ’s, and vec is the
column stacking operator. This parameter is canonical, that
is invariant with respect to a change in the state space basis.

Subspace-based methods are the generic name for linear
systems identification algorithms based on either time do-
main measurements or output covariance matrices, in which
different subspaces of Gaussian random vectors play a key
role. Subspace fitting estimates take advantage of the orthog-
onality between the range (or left kernel) spaces of certain
matrix-valued statistics. During the last fifteen years, there
has been a growing interest in these methods [12–14], their
connection to instrumental variables [15] and maximum
likelihood [16] approaches, and their invariance properties
[17]. They are actually well suited for identifying the system
eigenstructure.

Processing output covariance matrices is of interest for
long samples of multisensor measurements, which can be

mandatory for in-operation structural analysis under non-
stationary natural or ambient excitation. The difference be-
tween the covariance-driven form of subspace algorithms
which is described here and the usual data-driven form [12]
is minor, at least for eigenstructure identification [11].

Covariance-driven subspace identification

Let Ri
Δ= (Yk YT

k−i) and

Hp+1,q
Δ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0 R1

... Rq−1

R1 R2

... Rq

...
...

...
...

Rp Rp+1

... Rp+q−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ= Hank
(
Ri
)

(4)

be the output covariance and Hankel matrices, respectively;
and let

G
Δ=
(
Xk YT

k

)
. (5)

Direct computations of the Ri’s from (1) lead to the well-
known key factorizations [18]:

Ri = HFiG, (6)

Hp+1,q = Op+1(H ,F)Cq(F,G), (7)

where

Op+1(H ,F)
Δ=

⎛
⎜⎜⎜⎜⎜⎝

H

HF
...

HFp

⎞
⎟⎟⎟⎟⎟⎠ ,

Cq(F,G)
Δ=
(
G FG · · · Fq−1 G

)
(8)

are the observability and controllability matrices, respec-
tively. In factorization (7), the left factor O only depends on
the pair (H ,F), and thus on the system eigenstructure of the
system in (1), whereas the excitation Vk only affects the right
factor C through the cross-covariance matrix G.

The observationmatrixH is then found in the first block-
row of the observability matrix O. The state-transition ma-
trix F is obtained from the shift invariance property of O:

O↑
p(H ,F) = Op(H ,F)F, where O↑

p(H ,F)
Δ=

⎛
⎜⎜⎜⎜⎜⎝

HF

HF2

...

HFp

⎞
⎟⎟⎟⎟⎟⎠ .

(9)

Recovering F requires to assume that rank(Op) = dimF, and
thus that the number of block-rows inHp+1,q is large enough.
The eigenstructure (λ,φλ) then results from (2).
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The actual implementation of this subspace algorithm,
known under the name of balanced realization (BR) [19] has
the empirical covariances

R̂i = 1
(N − i)

N∑
k=i+1

YkY
T
k−i (10)

substituted for Ri in Hp+1,q, yielding the empirical Hankel
matrix

Ĥp+1,q
Δ= Hank

(
R̂i
)
. (11)

Since the actual model order is generally not known, this pro-
cedure is run with increasing model orders [6, 20]. The sin-
gular value decomposition (SVD) of Ĥp+1,q and its trunca-
tion at the desired model order yield, in the left factor, an
estimate Ô for the observability matrix O:

Ĥ = UΔVT = U

(
Δ1 0

0 Δ0

)
VT ,

Ô = UΔ1/2
1 , Ĉ = Δ1/2

1 VT.

(12)

From Ô, estimates (Ĥ , F̂) and (λ̂, φ̂λ) are recovered as
sketched above.

The CVA algorithm basically applies the same procedure
to a Hankel matrix pre- and post-multiplied by the covari-
ance matrix of future and past data, respectively [21, 22].

A minor but extremely fruitful remark is that it is pos-
sible to write the covariance-driven subspace identification
algorithm under a form which involves a parameter estimat-
ing function. This is explained next.

Associated parameter estimating function

Choosing the eigenvectors of matrix F as a basis for the state
space of model (1) yields the following representation of the
observability matrix:

Op+1(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Φ

ΦΔ

...

ΦΔp

⎞
⎟⎟⎟⎟⎟⎟⎠
, (13)

where Δ
Δ= diag(Λ), and Λ and Φ are as in (3). Whether

a nominal parameter θ0 fits a given output covariance se-
quence (Rj) j is characterized by [15, 22]:

Op+1
(
θ0
)
, Hp+1,q have the same left kernel space.

(14)

This property can be checked as follows. From the nominal
θ0, compute Op+1(θ0) using (13), and perform for example
an SVD of Op+1(θ0) for extracting a matrix S such that

ST S = Is, ST Op+1
(
θ0
) = 0. (15)

Matrix S is not unique (two such matrices relate through a
post-multiplication with an orthonormal matrix), but can be

regarded as a function of θ0 for reasons which will become
clear in Section 6. Then the characterization writes

S
(
θ0
)T
Hp+1,q = 0. (16)

For amultivariable random processY whose distribution
is parameterized by a vector θ, a parameter estimating func-
tion [23, 24] is a vector functionK of the parameter θ and a
finite size sample of observations1 YT

k,ρ = (YT
k · · · YT

k−ρ+1),
such that

EθK
(
θ0,Yk,ρ

) = 0 iff θ = θ0 (17)

of which the empirical counterpart defines an estimate θ̂ as a
root of the estimating equation:

1
N

∑
k

K
(
θ,Yk,ρ

) = 0. (18)

Since subspace algorithms exploit the orthogonality between
the range (or left kernel) spaces of matrix-valued statis-
tics, the estimating equations associated with subspace fitting
have the following particular product form [14, 17]:

1
N

∑
k

K
(
θ,Yk,ρ

) Δ= vec
(
ST(θ)N̂N

)
= 0, (19)

where S(θ) is a matrix-valued function of the parameter and
N̂N is a matrix-valued statistic based on an N-size sample
of data. Choosing the Hankel matrix H as the statistics N
provides us with the estimating function associated with the
covariance-driven subspace identification algorithm:

vec
(
ST(θ)ĤN

)
= 0 (20)

which of course is coherent with (16).
The reasoning above holds in the case of known system

order. However, in most practical cases the data are gener-
ated by a system of higher order than the model. The nom-
inal model characterization and parameter estimating func-
tion relevant for that case are investigated in [22].

Other uses of the key factorizations

Factorization (7) is the key for the characterization (16) of
the canonical parameter vector θ in (3), and for deriving a
residual adapted to detection purposes. This is explained in
Sections 6 and 7. Factorization (6) is also the key for

(i) designing various input-output covariance-driven sub-
space identification algorithms adapted to the presence
of both known (controlled) inputs and unknown (am-
bient) excitations [27];

1 More sophisticated functions of the observations may be necessary for
complex dynamical processes [23–26].



4 EURASIP Journal on Advances in Signal Processing

(ii) designing an extension of covariance-driven subspace
identification algorithm adapted to the presence and
fusion of nonsimultaneously recorded multiple sen-
sors setups [20];

(iii) proving consistency and robustness results [28–30],
including for that extension [31].

These three issues are addressed in Sections 3 to 5.

3. HANDLING KNOWNANDUNKNOWN INPUTS

In some applications, the key issue is to identify the eigen-
structure in the presence of both a natural (unknown, un-
measured, and often nonstationary) excitation and a known
(measured) input. For example, during flight tests, an aircraft
is subject to both atmospheric turbulence and artificial dy-
namic excitations applied through control surfaces and aero-
dynamic vanes [32].

The corresponding model writes

Xk = FXk−1 +DUk +Vk, cov
(
Vk
) = QV ,

Yk = HXk−1 + εk, cov
(
εk
) = Qε,

(21)

where (Uk) is the known input, the unknown noises (Vk) and
(εk) are zero-mean Gaussian white noise sequences, and the
three sequences (Uk), (Vk), and (εk) are pairwise uncorre-
lated. Note that the measurement noise (εk) does not affect
the eigenstructure of the system in (21), and that a moving
average sequence (εk) can also be encompassed [12, 22].

For handling both known and unknown excitations, the
use of input/output identification methods is mandatory.
Within the framework of the covariance-driven subspace
identification algorithm of Section 2, different types of pro-
jections can be performed for handling separately or jointly
the two types of excitations. Projections are very natural tools
within the subspace algorithms landscape [12]. For recov-
ering the eigenstructure, the idea is to project system (21)
onto the subspace U generated by all the known inputs, or
onto its orthogonal subspace. The projections used in [27]
are somewhat nonclassical. They take benefit of the factoriza-
tion property (6) which holds under two different instances:

Ri
Δ= E

(
Yk YT

k−i
)
, G

Δ= E
(
Xk YT

k

)
(22)

as above, and

Ri
Δ= E

(
Yk WT

k−i
)
, G

Δ= E
(
Xk WT

k

)
, (23)

where the sequence (Wk) is a measured and white input, the
Ri’s are the input/output cross-covariance matrices and G is
the state/input cross-covariance.

Five algorithms have been proposed corresponding to the
following approaches.

(i) Eliminating the unknown input V by projecting (21)
ontoU.

(ii) Eliminating the known input U by projecting (21)
ontoU⊥.

(iii) Using jointly both projections of (21) ontoU andU⊥-
Variant 1.

(iv) Using jointly both projections of (21) ontoU andU⊥-
Variant 2.

(v) Ignoring the presence of the known input U .

The sequence (Uk) is assumed white, except in the second
approach.

The performances of these algorithms on real flight
test data sets are reported in [27], together with compar-
isons with several frequency domain polyreference LSCF
input/output and output-only eigenstructure identification
methods [33, 34].

4. HANDLINGMULTIPLEMEASUREMENTS SETUPS

A classical approach in structural analysis, called polyrefer-
ence modal analysis, consists in processing data measured
with respect to multiple references [35]. The common prac-
tice is to collect successive data sets with sensors at different
locations on the structure:

(
Y (0,1)
k

Y (1)
k

)
︸ ︷︷ ︸
Record 1

(
Y (0,2)
k

Y (2)
k

)
︸ ︷︷ ︸
Record 2

· · ·
(
Y (0,J)
k

Y (J)
k

)
︸ ︷︷ ︸
Record J

. (24)

Each record j contains data Y
(0, j)
k from a fixed reference sen-

sor pool, and data Y
( j)
k from amoving sensor pool. The num-

ber of sensors may be different in the fixed and the moving
pools, and thus in each record j, the measurement vectors

Y
(0, j)
k and Y

( j)
k may have different dimensions. This setup,

usually referred to as multipatch measurements setup and
typically based on about 16 to 32 sensors, can mimic a sit-
uation in which hundreds of sensors are available. Process-
ing multipatch measurements data for structural analysis is
achieved today by performing eigenstructure identification
for each record separately, and then merging the results ob-
tained for records corresponding to different sensor pools.
However, pole matching may be not easy in practice, and
thus the result of eigenvector gluing may not be consistent.

Instead of merging the identification results, the ap-
proach in [20] achieves eigenstructure identification by
merging the data of the successive records and processing
them globally. The key idea is to elaborate further on the key
factorizations properties (6) and (7).

To each record j (1 ≤ j ≤ J) corresponds a state-space
realization in the form

X
( j)
k+1 = FX

( j)
k +V

( j)
k+1,

Y
(0, j)
k = H0X

( j)
k (reference pool),

Y
( j)
k = HjX

( j)
k (sensor pool no j)

(25)

with a single state transition matrix F, a fixed observation
matrix H0 for the fixed sensor pool, and a specific observa-
tion matrix Hj corresponding to location j of the moving
sensor pool. The problem is to find how to merge the mea-
surements in (24) and adapt the output-only covariance-
driven subspace algorithm of Section 2 in order to identify
the eigenstructure of F in (25). We focus on the two families
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of covariances:

R
0, j
i

Δ= EY
(0, j)
k Y

(0, j)T
k−i ,

R
j
i

Δ= EY
( j)
k Y

(0, j)T
k−i

(26)

of which empirical estimates can be computed, for lags i ≥ 0.
In the stationary case, the excitation covariance matrix

does not depend on record j: EV
( j)
k V

( j)T
k′ = Qδ(k − k′), and

the cross-covariance between the state and the fixed sensors
output,

G
Δ= EX

( j)
k Y

(0, j)T
k , (27)

does not depend on j either. Thus all the covariances in (26)
factorize with a constant right factor:

R
0, j
i = H0F

iG
Δ= R0

i ,

R
j
i = HjF

iG.
(28)

Consequently, for each lag i ≥ 0, we can stack the R
j
i ’s into a

block-column vector:

Rπ
i

Δ=

⎛
⎜⎜⎜⎜⎜⎜⎝

R0
i

R1
i

...

RJ
i

⎞
⎟⎟⎟⎟⎟⎟⎠

(29)

which factorizes as

Rπ
i = HFiG, (30)

where HT Δ= (HT
0 HT

1 · · · HT
J ). The corresponding Han-

kel matrix factorizes as well:

Hπ Δ= Hank
(
Rπ
i

) = O(H ,F)C(F,G) (31)

and the algorithm of Section 2 applies toHπ .
This merge fails under nonstationary excitation: if the in-

put excitation covariancematrix depends on the record index
j, the cross-covariance matrix also depends on j, and the fac-
torizations in (28) now write with a record-dependent G:

R
0, j
i = H0F

i Gj ,

R
j
i = HjF

iGj ,
(32)

and vector Rπ
i of stacked covariances defined in (29) no

longer factorizes as in (30).
To circumvent this difficulty, the idea [20] is to right-

normalize the covariance matrices in (26), (32) to make them
looking as if they were obtained with the same excitation.
One interesting computational feature of the resulting algo-
rithm is that it mainly amounts to apply the subspace identi-
fication algorithm of Section 2 to a Hankel matrix obtained
by interleaving the block-columns of the “reference” Han-
kel matrices and the block-rows of the suitably normalized

“moving” Hankel matrices. Experimental results obtained on
real data recorded on a bridge have shown the relevance of
this algorithm for merging multiple measurements setups
and handling the nonstationarities in the data.

5. ROBUSTNESS TO NONSTATIONARY EXCITATION

In Sections 2 and 4, we have assumed a stationary excitation
within the (each) record, with possibly record-dependent co-
variance matrix. A more realistic assumption is that the exci-
tation covariance matrix is time-varying within each record.
Precise mathematical results have been presented in [20, 28]
which justify the use of the same algorithms as introduced
above, without the need for any change in the case of a non-
stationary excitation. This justification can be sketched as fol-
lows.

When the excitation is nonstationary, so is the recorded
signal Yk, and the empirical covariance matrices R̂i in (10)
no longer converge to some well defined underlying Ri when
the sample size N grows to infinity. Instead, the matrices R̂i

may vary in some arbitrary way. However, the following ap-
proximate factorization still holds for N large:

R̂i = HFiĜ + o(1), (33)

where Ĝ = 1/N
∑N

k=1 XkY
T
k and o(1) goes to zero when the

sample size N grows to infinity.
Assumptions for this to hold roughly formulate as fol-

lows: the covariance matrix of the excitation has to be uni-
formly bounded, and the nth singular value of the empirical
Hankel matrix Ĥ built using the R̂i’s is uniformly bounded
from below, where n is the assumed model order (this is a
formal version of the requirement that all the modes of the
structure should be excited).

The approximate factorization in (33) is the key step
in proving the consistency of the covariance-driven sub-
space identification method in Section 2 and its extension
to multiple measurement setups in Section 4 in the case of
nonstationary excitation and noises. Note that such non-
stationarities may result in time-varying zeros for the under-
lying system. Hence, likelihood and prediction error related
methods do not ensure consistency under such situation, be-
cause estimation of poles and estimation of zeros are tightly
coupled (Fisher information matrix not block-diagonal). In
[20, 28], and using martingale techniques, it is shown that

the eigenstructure estimate (λ̂, ϕ̂λ) provided by the subspace
methods above is a consistent estimate of the true eigen-
structure. Although this theoretical result holds under the
assumption of knownmodel order, experimental results sug-
gest that it extends to the practical situation of unknown
model order.

A recent generalization of this consistency result to a
generic form of subspace algorithms can be found in [29, 30],
which separates statistical from nonstatistical arguments,
therefore enlightening the role of statistical assumptions.

The main conclusion from both the theory and the prac-
tice is that the combination of the key factorization property
(6) of the covariances and of the averaging operation in the
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computation (10) of their empirical estimates, allows to can-
cel out nonstationarities in the excitation.

6. BATCH-WISE CHANGE DETECTION AND
MODEL VALIDATION

Change detection is a natural approach to fault/damage de-
tection. Indeed the damage detection problem can be stated
as the problem of detecting a change in the modal parameter
vector θ defined in (3). It is assumed that a reference value θ0
is available, generally identified using data recorded on the
undamaged system.2

Based on a new data sample Y1, . . . ,YN , the damage de-
tection problem is to decide whether the new data are still
well described by this parameter value or not. The modal di-
agnosis problem is to decide which components of the modal
parameter vector θ have changed. The damage localization
problem is to decide which parts of the structure have been
damaged, or equivalently to decide which elements of the
structural parameter matrices have changed.

We concentrate here on the damage detection problem
for which we describe a χ2-test based on a residual associated
with the subspace algorithm in Section 2. The modal diagno-
sis problem can be solved with similar χ2-tests focussed onto
the modal subspaces of interest, using selected sensitivities of
the residual with respect to the modal parameters. The dam-
age localization problem can be solved with similar χ2-tests
focussed onto the structural subspaces of interest [36–38],
plugging sensitivities of the modal parameters with respect
to the structural parameters of a finite elements model in the
above setting. This is described in detail in [39].

Subspace-based residual

For checking whether the new data Y1, . . . ,YN are well de-
scribed by the reference parameter vector θ0, the idea is to use
the parameter estimating function in (20),3 namely, to com-
pute the empirical Hankel matrix Ĥp+1,q in (10)-(11) and to
define the vector

ζN
(
θ0
) Δ=

√
N vec

(
S
(
θ0
)T
Ĥp+1,q

)
. (34)

Technical arguments for the
√
N factor can be found in [43,

44]. Let θ be the actual parameter value for the system which
generated the new data sample, and let Eθ be the expectation
when the actual system parameter is θ. From (16), we know
that

Eθ
(
ζN
(
θ0
)) = 0 iff θ = θ0, (35)

2 In case of nonstationary excitation, θ0 should be identified on long
data samples containing as many of these nuisance changes as possible.
However, the proposed detection algorithm can be run on samples of
much smaller size.

3 Building test statistics on parameter estimating functions is a widely
investigated topic; see for example [40–42].

namely, vector ζN (θ0) in (34) has zero mean when θ does
not change, and nonzero mean in the presence of a change
(damage). Consequently ζN (θ0) plays the role of a residual.

It turns out that this residual has highly interesting prop-
erties in practice, both for damage detection [22] and local-
ization [39], and for flutter monitoring [45]. Even when the
eigenvectors (mode-shapes) are not monitored, they are ex-
plicitly involved in the computation of the residual. It is our
experience [39] that this fact may be of crucial importance in
structural healthmonitoring, especially when detecting small
deviations in the eigenstructure.

The residual is Gaussian

To decide whether θ = θ0 holds true or not, or equiva-
lently whether the residual ζn is significantly different from
zero, requires the knowledge of the probability distribution
of ζN (θ0), which unfortunately is generally unknown. One
manner to circumvent this difficulty is to assume close hy-
potheses:

(safe)H0 : θ = θ0,

(damaged)H1 : θ = θ0 + δθ/
√
N ,

(36)

where vector δθ is unknown, but fixed. Note that for largeN ,
hypothesis H1 corresponds to small deviations in θ. This is
known under the name of statistical local approach, of which
the main result is the following [43, 44, 46–48].

Let Σ(θ0)
Δ= limN→∞ Eθ0 (ζN ζTN ) be the residual covari-

ance matrix (it is assumed that the limit exists). Matrix Σ
captures the uncertainty in ζN due to estimation errors: in-
deed the covariance matrix of the error in estimating θ0 is
this Σ(θ0) as well [43, 47]. It should be mentioned also that
the estimation of Σmay be somewhat tricky [48, 49].

Provided that Σ(θ0) is positive definite, the residual ζN
in (34) is asymptotically Gaussian distributed with the same
covariance matrix Σ(θ0) under bothH0 andH1; that is [22]:

ζN
(
θ0
) −−−−→

N→∞

⎧⎪⎨
⎪⎩
N
(
0,Σ

(
θ0
))

underH0,

N
(
J
(
θ0
)
δθ,Σ

(
θ0
))

underH1,
(37)

where J(θ0) is the Jacobian matrix containing the sensitivi-
ties of the residual with respect to the modal parameters:

J
(
θ0
) Δ= 1√

N

∂

∂θ
EθζN

(
θ0
) |θ=θ0. (38)

As seen in (37), a deviation δθ in the system parameter
θ is reflected into a change in the mean value of residual
ζN , which switches from zero (in the undamaged case) to
J(θ0)δθ in case of small damage. Note that matrices J(θ0)
and Σ(θ0) depend on neither the sample size N nor the fault
vector δθ in hypothesisH1. Thus they can be estimated prior
to testing, using data on the safe system (exactly as the ref-
erence parameter θ0). In case of nonstationary excitation, a
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similar result has been proven, for scalar output signals, and
with matrix Σ estimated on newly collected data [50].

χ2-test for damage detection

Let Ĵ and Σ̂ be consistent estimates of J(θ0) and Σ(θ0), and
assume additionally that J(θ0) is full column rank (f.c.r.).
Then, thanks to (37), testing between the hypothesesH0 and
H1 in (36) can be achieved with the aid of the following χ2-
test:

χ2N
Δ= ζTN Σ̂

−1Ĵ
(
ĴT Σ̂−1 Ĵ

)−1
ĴT Σ̂−1ζN (39)

which should be compared to a threshold. Note that the IV-
based test proposed in [51] can be seen as a particular case of
(39) [22].

In (39), the dependence on θ0 has been removed for
simplicity. The only term which should be computed after
data collection is residual ζN in (34). Thus the test can be
computed on-board. Test statistics χ2N is asymptotically dis-
tributed as a χ2-variable, with rank(J) degrees of freedom.
From this, a threshold for χ2N can be deduced, for a given
false alarm probability. The noncentrality parameter of this
χ2-variable underH1 is δ θT JT Σ−1 Jδ θ. How to select
a threshold for χ2N from histograms of empirical values ob-
tained on data for undamaged cases is explained in [52].

From the expressions in (34) and (39), it is easy to
show that this test enjoys some invariance property: any pre-
multiplication of the left kernel S by an invertible matrix fac-
tors out in χ2N [53]. This is why S defined in (15) can be con-
sidered as a function of θ0, as announced in Section 2.

The asymptotic properties of the test (39) have been in-
vestigated in [54] for the IV-based version, and in [55] in
the case of more general (not limited to subspace) estimating
functions.

χ2-criterion for model validation

In the change detection problem above, one wants to know
if some fresh data {Y0, . . . ,Yn} recorded on a structure are
still coherent with a reference structural parameter vector θ0
identified from data recorded earlier on the same structure. In
that problem, a large number of independent data recording
experiments is required to get information about the distri-
bution of the damage detection test and assess whether the
structural parameters have changed or not.

A different problem, known under the name of model
validation, is the following. Only one experiment dataset
{Y0, . . . ,Yn} and one reference signature θ0 are available.
From this, one wants to know if the dataset and the signature
match, and decide if some slight modification of the signa-
ture can better match the dataset from a statistical point of
view. In that problem, a large number of signatures θ have to
be tested in order to find the signature minimizing some rel-
evant statistical criterion. This problem has received a wide
attention in the identification literature [56].

The idea investigated in [57, 58] consists in using the
above change detection χ2-test as the criterion for model

validation: the signature θ̃ and the dataset are said to match4

if

θ̃ = argmin
θ

V(θ), (40)

where

V(θ) = χ2N (θ) (41)

and χ2N is defined in (39). The end result would be either to
obtain a better signature by selecting parameters which min-
imize the validation criterion (41), or to obtain confidence
intervals depending on the variations of the validation crite-
rion (41) around its minimum.

Experimental results, obtained on data from both simu-
lations and a laboratory test-bed, are reported in [58] which
show the relevance of the model validation criterion (41).

7. RECURSIVE ON-LINE CUSUM TESTS

In some applications, it is necessary to design detection al-
gorithms working sample point-wise rather than batch-wise.
For example, as explained in Section 8, the early warning
of deviations in specific modal parameters is required for
new aircrafts qualification and exploitation, and especially
for handling the flutter monitoring problem.

A simplified although well sounded version of the flutter
monitoring problem consists in monitoring a specific damp-
ing coefficient. It is known, for example from Cramer-Rao
bounds, that damping factors are difficult to estimate ac-
curately [59]. However, detection algorithms usually have a
much shorter response time than identification algorithms.
Thus, for improving the estimation of damping factors and
achieving this in real-time, the idea is to design an on-line de-
tection algorithm able to detect whether a specified damping
coefficient ρ decreases below some critical value ρc [45]:

H0 : ρ ≥ ρc, H1 : ρ < ρc. (42)

A good candidate for designing this test is the residual
associated with subspace-based covariance-driven identifica-
tion defined in (34), which can be computed recursively as
follows:

ζN
(
θ0
) =

N−p∑
k=q

Zk
(
θ0
)

√
N

, (43)

where

Zk
(
θ0
) Δ= vec

(
S
(
θ0
)T

Y+
k,p+1 Y−Tk,q

)
,

Y+
k,p+1

Δ=

⎛
⎜⎜⎜⎝

Yk

...

Yk+p

⎞
⎟⎟⎟⎠ , Y−k,q

Δ=

⎛
⎜⎜⎜⎝

Yk

...

Yk−q+1

⎞
⎟⎟⎟⎠ .

(44)

4 Note that this is coherent with the residual covariance matrix being equal
to the covariance matrix of the error in estimating θ0 [43, 47].
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Since the hypothesis (42) regarding the damping coeffi-
cient is not local any more–compare with (36), the asymp-
totic local approach used in Section 6 can no longer be used
for that residual, and another asymptotic should be used in-

stead. From (37) and (43), we know that
∑N−p

k=q Zk(θ0)/
√
N

is asymptotically Gaussian distributed, with mean zero un-
der θ = θ0 and J(θ0)δθ under θ = θ0 + δθ/

√
N . Now, the

arguments in [25, Subsection 5.4.1] lead to the following ap-
proximation: for k large enough, Zk(θ0) can itself be regarded
as asymptotically Gaussian distributed with zero mean un-
der θ = θ0, and the Zk(θ0)’s are independent. Furthermore,
a change in θ is reflected into a change in the mean vector ν
of Zk(θ0). This paves the road for the use of Cusum tests for
detecting such changes, according to the type and amount of
a priori information available for the parameters to be mon-
itored [44].

For monitoring a damping coefficient (scalar parameter
θa), the Cusum test writes

Sn
(
θa
) Δ=

n−p∑
k=q

Zk
(
θa
)
,

Tn
(
θa
) Δ= max

q≤k≤n−p
Sk
(
θa
)
,

gn
(
θa
) Δ= Tn

(
θa
)− Sn

(
θa
)

(45)

and an alarm is fired when gn(θa) ≥ γ for some threshold
γ [44, Chapter 2]. Since neither the actual hypothesis when
this processing starts nor the actual sign and magnitude of
the change in θa that will occur are known, a relevant proce-
dure consists in introducing aminimummagnitude of change
νm > 0, running two tests in parallel, for a decreasing and an
increasing parameter, respectively; making a decision from
the first test which fires; resetting all sums and extrema to
zero and switching to the other one afterwards. This is inves-
tigated in [45].

For addressing the more realistic problem of monitor-
ing two pairs of frequencies and damping coefficients pos-
sibly subject to specific time variations,5 multiple Cusum
tests for single parameters can be run in parallel. It turns out
that the individual subspace-based tests, monitoring respec-
tively each damping coefficient, and each frequency (or sum
and difference), appear to behave in a reasonably decoupled
manner, and to perform a correct isolation of the parameter
which has changed [60].

The advantages and drawbacks of these recursive detec-
tion algorithms with respect to those of the recursive sub-
space identification algorithms described in [61] are investi-
gated in [62].

8. APPLICATION EXAMPLES

The subspace-based identification and detection methods
described above have proven useful in a number of simulated

5 It may be assumed indeed that two modes evolve until superimposition
of each other.

and real application examples [52, 63–69]. All these algo-
rithms have been implemented within COSMAD, the modal
module of the free INRIA software Scilab [70], and partly
within LMS software environment. An overview of results
obtained with the subspace-based detection algorithms on
several examples is now provided.

Sports car

The proposed method has been applied [68] to detect a fa-
tigue failure of a sports car. The method has been first ap-
plied to a reduced scale model, which consists of two verti-
cal plates supported by a very stiff bottom plate. Between the
two plates, a mass is connected by four rubber elements. The
structure is vertically excited. During the endurance test, the
crack initiation period is very short, the accelerometers pick
up the changes very soon during the crack growth, and the
resonance frequency is decreasing. The global χ2-test well de-
tects this fatigue.

The car endurance test has first a sports car driven on
the endurance track until a fatigue problem of the gear box
mounting with the car body occurs. Then a second test
car is instrumented to measure the relevant strain and ac-
celeration signals, during an endurance 4-shaker test on a
body-in-white equipped with the power train. The objec-
tive of this test is to reproduce the same failure in a much
shorter time and controlled conditions. The result of the
test is that cracks, although less severe, are obtained in ex-
actly the same locations as on the test track. During the
test, the acceleration and strain signals are recorded every
half hour in order to see whether early detection of the
fatigue problem is possible. Two groups of sensors at dif-
ferent locations are evaluated. The first group consists of
the 6 sensors on the body and the 4 sensors on the power
train. The χ2-test value slightly increases during the crack
growth, and significantly increases at the end of the crack
growth.

Z24 bridge

The proposed method has been applied [52] to the Swiss Z24
bridge, a benchmark of the BRITE/EURAM project SIMCES
on identification and monitoring of civil engineering struc-
tures, for which EMPA (the Swiss Federal Laboratory forMa-
terials Testing and Research) has carried out tests and data
recording. The response of the bridge to traffic excitation un-
der the bridge has beenmeasured over one year in 139 points,
mainly in the vertical and transverse directions, and sam-
pled at 100Hz. The global χ2-test has been applied to data
of the four reference stations. Thus the test has been eval-
uated for several data sets, for both the safe and damaged
structures.

Two damage scenarios are considered: pier settlement of
20mm and 80mm, respectively, further referred to as DS1
and DS2. Even though the effect of the damages on the nat-
ural frequencies is really small (no more than 1% for DS1),
the χ2-test is very sensitive: for DS1, 1000 times larger than
for the safe case.
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The implementation and tuning of an online monitor-
ing system for automated damage detection have also been
achieved. Monitoring results based on three sensors have
been analyzed, from which the following conclusions have
been drawn. The overall increase in the test value is slightly
hidden by its daily fluctuations. These fluctuations are due
to changes in the modal parameters themselves, due to varia-
tions in environmental variables such as temperature, precise
hour of measurements, speed of wind, . . . and can be higher
than the changes of the modal characteristics due to damage.
However, modal variations due to damage imply greater vari-
ations of the test than those due to environmental changes.

Another major issue is to take care of the fluctuations
of the excitation, due, for example, to changes in the traf-
fic or neighboring activities (a new bridge was in construc-
tion a few hundred meters apart), and to avoid running the
test when the excitation is clearly different from the excita-
tion of the reference model. A good way to avoid interference
between these changes and the test result is to calibrate sev-
eral reference data sets corresponding to different values of
the environmental variables, including excitation and tem-
perature, and to run the test uponmatching the environmen-
tal characteristics of both the reference and the fresh data
sets. Another approach would be to include these variables
into the model and consider them as nuisance information.
This is the topic of current investigation.

Reticular structure

The method has been applied [64] on a geometrically simple
test article designed, assembled and tested dynamically under
impact and random shaker excitation. The test structure con-
sists of six cylindrical bars connected in four spherical joints
through screwed bolds specially designed according to the re-
quirements of the civil building industry. In order to simu-
late several damage scenarios, progressive displacements are
imposed on the structure by unscrewing one of the joint con-
nectors. The most dramatic damage situations are obtained
with the joint completely unscrewed first only in one loca-
tion, then in two different ones. Sine sweep excitation (30–
850Hz) is applied.

Newmeasurements are taken before and after each of the
damage scenarios is applied. For each new scenario, measure-
ments are carried out in four runs: two point locations are
used as reference sensors and kept fixed while all other sen-
sors are moved. The global χ2-test is applied to the data of a
reduced set of sensors. This allows evaluating the test for sev-
eral data sets both for the healthy and the damaged structure.
The method detects damage in an early stage, and it does not
require the extraction of the modal parameters from each
newly collected data set. This characteristic is very well suited
for monitoring purposes: it does not need continuous user
interaction and it can easily be made automatic. A remark-
able result is the sensitivity of the test to structural changes.
The method allows detecting and separating all changes oc-
curring on one node. Increasing stress, single and double col-
lapses are identified by a different order of magnitude in the
damage index.

Slat track

The method has also been applied during a fatigue test [69].
During experimental fatigue tests, structural health monitor-
ing is essential to monitor the degradation of the structure
with an increasing number of fatigue cycles. Moreover, es-
pecially for structures with very high fatigue We added the
highlighted “period.” Please check. strength, it is important
that the test does not have to be interrupted. Since the above
damage detection method has the advantage that it operates
online, it is a good monitoring candidate for fatigue tests. It
has been used in a project aimed at damage detection, life
prediction and redesign of a slat track, a device which ex-
tends the surface of an airplane wing during takeoff and land-
ing. Since the slat track has very high fatigue strength, test-
ing times can typically take several weeks. Even though the
eigenfrequencies of the test structure are not very sensitive to
the fatigue crack, the global χ2-test above turns out to per-
form very well, including in comparison with other linear
and nonlinear damage indicators. Moreover, the test seems
to be robust against nonideal, but typical experimental and
data processing issues: 50Hz magnitude variation, violation
of the white-noise assumption, and an incomplete nominal
model. In addition, the approach offers the advantage that
only output data are needed, and that the nominal model (in
terms of modal parameters) has to be determined only once.
Afterwards, fresh raw data are simply confronted with this
model with these statistics.

Flutter monitoring

A crucial issue in the development of new aircrafts is to en-
sure the stability of the airplane throughout its operating
range. For preventing from a critical instability phenomenon
known under the name of aero-elastic flutter, the airplane
is submitted to a flight flutter testing procedure, with in-
crementally increasing altitude and airspeed. The problem
of predicting the speed at which flutter can occur is usu-
ally addressed with the aid of identification methods achiev-
ing modal analysis from the in-flight data recorded during
these tests [71, 72]. While frequencies and mode-shapes are
usually the most important parameters in structural analysis,
the most critical ones in flutter analysis are the damping fac-
tors, for some critical modes. Until the late nineties, most ap-
proaches to flutter clearance have led to data-based methods,
processing different types of data. A combined data-based
and model-based method has been introduced recently un-
der the name of flutterometer [73].

Algorithms achieving the on-line in-flight exploitation of
flight test data are expected to allow a more direct, reliable
and cheaper exploration of the flight domain. One impor-
tant issue is the on-line flight flutter monitoring problem,
stated as the problem of monitoring some specific damp-
ing coefficients. For improving the estimation of damping
factors, and moreover for achieving this in real-time dur-
ing flight tests, one possible although unexpected route is
to resort to detection algorithms able to decide for example
whether some damping factor decreases below some criti-
cal value or not. The rationale is that detection algorithms
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usually have a much shorter response time than identifica-
tion algorithms. This is why the on-line detection algorithms
described in Section 7 have been designed. They are based
on the subspace-based residual defined in (34), and on the
CUSUM test [44]. The monitoring is focussed on specific
parameters of interest, such as damping coefficients [45] or
pairs of eigenfrequencies subject to specific time variations
[60].

9. FURTHER COMMENTS AND CONCLUSIONS

In this paper, an overview has been provided of the de-
sign and investigation of subspace-based algorithms for solv-
ing parameter identification, change detection, model valida-
tion and data fusion problems arising in the area of model-
based structural analysis and health monitoring of structures
in-operation. Some comments are in order, on open prob-
lems and ongoing research.

When it comes to vibration-basedmonitoring of civil en-
gineering structures, it is well known that the dynamics of
most of them is affected by the ambient temperature and
other environmental effects [74]. This raises the issue of dis-
criminating between changes in modal parameters due to
damages and changes in modal parameters due to environ-
mental effects, and in particular the effect of temperature
variations. One solution to this problem that is currently in-
vestigated consists in using a model of the temperature effect
on the structural dynamics, considering this effect as a nui-
sance parameter, and plugging in the above test a statistical
nuisance rejection technique of the type discussed in [75–77].

As far as the flight flutter monitoring problem is con-
cerned, the key issue is also to involve more complex mod-
els of the underlying physical phenomenon (here the flutter)
within the design of the identification and monitoring algo-
rithms. The challenge is whether the monitoring algorithms
which will result from these more complex models will better
solve the tradeoff efficiency/cost/robustness than the current
subspace-based algorithms described in this paper.
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