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Subspace-Based Blind and Semi-Blind Channel
Estimation for OFDM Systems
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Abstract—This paper proposes a new blind channel estimation
method for orthogonal frequency division multiplexing (OFDM)
systems. The algorithm makes use of the redundancy introduced
by the cyclic prefix to identify the channel based on a subspace
approach. Thus, the proposed method does not require any modi-
fication of the transmitter and applies to most existing OFDM sys-
tems. Semi-blind procedures taking advantage of training data are
also proposed. These can be training symbols or pilot tones, the
latter being used for solving the intrinsic indetermination of blind
channel estimation. Identifiability results are provided, showing
that in the (theoretical) situation where channel zeros are located
on subcarriers, the algorithm does not ensure uniqueness of the
channel estimation, unless the full noise subspace is considered.
Simulations comparing the proposed method with a decision-di-
rected channel estimator finally illustrates the performance of the
proposed algorithm.

Index Terms—Blind, channel estimation, HIPERLAN/2,
IEEE802.11a, OFDM, semi-blind, subspace.

I. INTRODUCTION

M ULTICARRIER systems, and especially orthogonal fre-
quency division multiplexing (OFDM), are considered

today to be a reliable choice for high rate transmissions and are
now widely adopted and tested in many communication sys-
tems. Specifically, OFDM has been chosen for digital audio
and video broadcasting (DAB [1], DVB [2]), for high-speed
modems over twisted pairs (digital subscriber line: xDSL [3]),
and, more recently, for 5-GHz broadband wireless local area
networks (HIPERLAN/2, IEEE802.11a and MMAC standards
[4]).

OFDM enables very simple equalization of frequency-selec-
tive finite impulse response (FIR) channels, thanks to the inverse
fast Fourier transform (IFFT) precoding and the insertion of a
cyclic prefix (CP) of length larger than the channel memory at
the transmitter. Present in each block of transmitted symbols,
the CP consists of redundant symbols preceding (and circularly
replicated from) the IFFT-precoded nonredundant symbols. At
the receiver end, CP is discarded to avoid interblock interfer-
ence (IBI), and each truncated block is FFT processed. A com-
bination of IFFT and CP at the transmitter with the FFT at the
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receiver converts the frequency-selective channel into parallel
flat-faded subchannels, each one corresponding to a different
subcarrier. Unless they are zero, flat fades are simply removed
by dividing each subchannel output with the channel attenua-
tion at the corresponding subcarrier.

At the same time, the need for high data rates motivated the
search for blind identification and equalization methods because
they save bandwidth by avoiding the use of training sequences
[5]. Hence, numerous blind algorithms have been developed re-
cently (see [6]), where several works have focused specifically
on multicarrier systems. A blind equalization criterion has been
introduced in [7]; it does not apply to traditional OFDM systems
since it relies on a transmitter without CP. Correlation-matching
methods based on the transmitted signal cyclostationarity have
been presented in [8]–[10]. However, their implementation on
existing systems is fairly difficult in practice because the pres-
ence of null side carriers (see Section IV-C) seriously compli-
cates the proposed identification results. In [11], a method that
could apply to OFDM systems with CP is provided, but it re-
quires the CP length to be equal to the block size , which is
never the case in practice. Some blind equalizers relying on the
information contained in the CP were proposed in [12] and [13],
but it may be preferable to first dispose of a channel estimation
[for example, in order to shorten the channel impulse response
(CIR) [14] or to determine power loading at the transmitter [3]].
Finally, a subspace algorithm that guarantees channel identifia-
bility is proposed in [15] and [16] for the recent OFDM system
with zero padding. Obviously, this algorithm does not apply to
existing OFDM systems because the transmitter has a different
structure and introduces a different kind of redundancy. This
paper proposes a new channel estimation method that can be
seen as its counterpart for traditional OFDM systems.

Based on a subspace decomposition [17], our algorithm
takes advantage of the inherent redundancy introduced by the
CP to blindly estimate the channel. It possesses the following
attractive properties.

1) It does not require any modification of the classical
OFDM transmitter. Thus, it is compatible with existing
standardized OFDM systems.

2) It can be applied to arbitrary signal constellations. Un-
like decision directed (DD) algorithms, it does not suffer
from performance degradation when the constellation
size increases. Moreover, it does not require the knowl-
edge at the receiver of the constellation used for the
transmission.

3) It is robust to channel order overdetermination. Further-
more, it guarantees channel identifiability, regardless of
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Fig. 1. OFDM discrete baseband transceiver model.

the channel zeros location when the entire noise sub-
space is considered.

Actually, this last property is only of theoretical interest since
the noise subspace dimension is unknown and can only be
lower bounded in practice. Thus, the method effectively used
in practice may operate only on a part of the noise subspace.
This happens when the channel has nulls on subcarriers, and
in this case, channel identifiability is no longer guaranteed.
Finally, the theoretical algorithm (and the practical one, when
there is no channel zeros on subcarriers) provides a perfect
estimation after the observation of a finite number of received
symbols in the noiseless case. In the noisy case, the algorithm
is proved to be consistent.

Blind methods can also be used in cooperation with training
data in order to better track channel variations. In that case, they
are referred as semi-blind methods [18]. Usually, known blocks
of symbols (usually referred as “pilot symbols”) are transmitted
at the beginning of each frame for synchronization and initial
channel estimation purposes [19], [20]. We propose to use them
to avoid the convergence period of the blind subspace algorithm,
during which the estimation is unreliable. This semi-blind ini-
tialization can be extended to other blind algorithms (e.g., the
one proposed in [16]). However, it does not overcome the in-
herent scalar indetermination of blind methods that still has to
be removed. For that purpose, we propose to benefit from “pilot
subcarriers” (i.e., subcarriers carrying symbols known to the
receiver, which are found in many standards) and resort to a
semi-blind least-squares criterion incorporating that knowledge.
Finally, we detail some modifications of the original method
that are required to comply with standards requirements. That
way, we propose a new semi-blind estimator that directly ap-
plies to existing systems thatimproves the accuracy of the ini-
tial channel estimation obtained at the beginning of the frame.
This is confirmed by simulations conducted in the realistic con-
text of the HIPERLAN/2 (HL2), providing some performance
comparisons with a DD channel estimator.

The rest of this paper is organized as follows: Section II pro-
vides a discrete model of OFDM and defines notations. Sec-
tion III presents the new channel estimation method. Section IV

details the semi-blind implementation and the modifications re-
quired to cope with real systems. Section V presents simulations
results, and conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION ANDNOTATIONS

In this document, lower (upper) boldface symbols are used
for column vectors (matrices), sometimes with subscripts to
emphasize their sizes; argumentis used to index blocks of
symbols; denotes the size identity matrix; stands
for the Kronecker product, denotes Hermitian, and
transpose.

Fig. 1 depicts a discrete model of an OFDM system. The
size OFDM symbol is first
modulated by the IFFT matrix , where stands for
the size FFT matrix with entries (the
notation tilde is used for frequency domain quantities,
i.e., before IFFT precoding). The “time domain” vector

is then enlarged
by a CP of length , resulting in a size
vector whose components are
finally sent sequentially through the channel. The channel
effects are modeled by a linear FIR filter with CIR

and the addition of noise samples .
Usually, the system is designed such that the CP is longer
than the channel order which involves that for .
Furthermore, is usually greater than , which we assume
in the following and we denote as
channel coefficients to be identified. At the receiver end, the
CP is simply removed, yielding, after FFT demodulation, to
the equivalent frequency domain model of Fig. 2, where

, , denoting the
channel attenuation on theth subcarrier (see [21]).

Let be the matrix representing
both the IFFT modulation and the CP appending, where

stands for the matrix corresponding to the
last columns of . Let be the lower triangular
Toeplitz matrix with first column and
first row . Let be the upper triangular
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Fig. 2. Parallel carriers equivalent model.

Toeplitz matrix with first column and first row
[ ]. The transmitted block of symbols is
given by , and the corresponding received
block is

(1)

where represents the noise sam-
ples polluting the transmission of .

III. B LIND SUBSPACEALGORITHM

We propose to apply a subspace algorithm in order to identify
the channel coefficients from the observation of the received
signal . Subspace methods rely on a block formulation of
the input–output relationship of the form , where
the transfer matrix is a tall matrix. It can be observed that (1)
does not exactly have the desired structure to directly derive a
subspace algorithm due to the IBI term . A way
to address this problem is to use a particular precoder canceling
IBI [15], but this approach requires a change in the transmitter,
and we consider here only compatible methods. Another one is
to choose to allow IBI suppression by simple block
manipulations [11], but this would lead to CP much longer than
in existing systems. Instead, this paper proposes a method that
directly applies to existing systems.

For the sake of clarity, it is assumed in the following that
, which is a typical value in existing OFDM systems.

The extension to any value of , including noninteger values
of the ratio , verifying is presented in the Ap-
pendix. Note that is not a restrictive constraint since it
is always satisfied in practice to limit the amount of introduced
redundancy. Since , , , and can be
split into five sub-blocks of equal length

(2)

Since corresponds to the CP, . Intuitively,
it is this redundancy that is used to obtain an overdetermined
system. Let be the Toeplitz matrix with first column

and first row . Letting be the

Toeplitz matrix with first column and first
row [ ], the block-received signal can be expressed as

(3)

The IBI term no longer appears in (3), but the transfer matrix
remains square. However, two successive overlapping received
symbols can be considered in order to introduce some overde-
termination. Therefore, let , , and be the vectors
defined as

(4)

Vector is given by , where
is the matrix defined as

(5)

Let and be the au-
tocorrelation matrices of and , respectively. We assume
in this section that matrix is full rank and discuss the case
when this assumption does not hold in Section IV-C. The noise
is also assumed to be white with variance, but the method
can be extended to colored noise following the lines of [16] and
[17]. The subspace method relies on the autocorrelation matrix

defined as . We dis-
tinguish below two cases that depend on whether some subcar-
riers are hit by channel nulls or not since this property affects
identifiability.

A. Subspace Identification When No Channel Zero
Is Located on Subcarriers

It is shown in the Appendix that is full column rank if
no channel zero is located on any subcarrier. In this case, if
is full rank, the matrix has rank 8 . There-
fore, its left nullspace has dimension and is spanned by a
basis of vectors . A particular basis for this sub-
space (usually referred as the noise subspace) can be found from
the singular value decomposition (SVD) of . It is indeed
spanned by the eigenvectors associated with thesmallest
eigenvalues of the autocorrelation matrix . Moreover, it
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is well known that the range space of a matrix is orthogonal to
its left null space, and hence, the space spanned by the columns
of (usually referred as the signal subspace) is orthogonal
to the noise subspace and, hence, to each vectorin the basis.
Thus, for any vector , the equation holds, and
hence, must satisfy the system of linear equations given by

for (6)

In order to express (6) in terms of the vector of unknowns,
split any vector into nine blocks of equal length:

, where . In addition,
let , and be the following size matrices:

...

...
...
...

(7)

...

...
...
...

(8)

Let , and define matrix as
.

Equation (6) is then equivalent to

for (9)

It is shown in the Appendix that this system of equations
uniquely determines up to a scalar factor,under the assump-
tion that is full column rank, that is, when no channel
null is located on a subcarrier. Note that the method is robust
to channel order overestimation since only an upper bound
of the channel order is required.

In practice, is estimated by an averaging in time over,
say, blocks

(10)

and hence, (9) has to be solved in the least square sense to es-
timate since only estimates of matrices are available.
Let us define as

(11)

In a noiseless context, can be expressed as

(12)

and therefore, (9) exactly holds as soon as is full rank.
This ensures a perfect channel estimation after the observation

of a finite number of received symbols , provided that there
exists an such that is full rank. This condition
is usually referred as the persistence of excitation assumption
(p.o.e.) [22] and is verified with most constellations for values
of . Thus, the method can be applied to arbitrary con-
stellations with performance that hardly depends on the con-
stellation as supported by simulations. In the noisy case,
converges in the mean square sense to the true correlation ma-
trix as since input has finite moments and
the channel has finite memory. Hence, as ,
and the algorithm is consistent.

Actually, solving for (9) usually requires a huge amount of
memory and computations. Hence, the storage of all matrices

is usually avoided by computing on the fly the quadratic
form matrix and by solving the quadratic
equation , where . At this point,
can be obtained (up to a scalar coefficient) by minimizing
subject to a properly chosen constraint, avoiding the trivial so-
lution . In practice, a power control is performed at the
receiver to ensure that the received power is approximately con-
stant. Therefore, a natural choice is to minimize subject to
the constraint . In this case, the channel estimateis the
unit-norm eigenvector associated with the smallest eigenvalue
of . This way, the channel is identified up to a phase factor
that has to be removed, and Section IV A proposes a mecha-
nism for that purpose.

B. Subspace Identification When Channels Zeros Are
Located on Some Subcarriers

It is shown in the Appendix that is no longer full
column rank if some channel zeros are located on subcarriers.
Specifically, is shown to have rank , where
is the number of subcarriers hit by channel nulls. Hence, the
noise subspace has dimension , and the system of (9)
makes use of only independent vectors of it. In this case, the
subspace algorithm may fail as shown in the Appendix, but it is
possible to enlarge the system (9) to consider a full basis of the
noise subspace that will guarantee that the channel is uniquely
identified, as shown in the Appendix. Since it is possible to
find the number of zeros asymptotically (it is equal to the
multiplicity of the smallest eigenvalue), identifiability using the
(theoretical) subspace algorithm is thus guaranteed. However,
this result is only of theoretical interest because it is impossible
in practice to observe an infinite number of symbols. Thus,
it is difficult to evaluate the number of channel zeros, and
practically, we will never be able to use the full noise subspace,
and hence, channel identifiability cannot be guaranteed in
practice.

IV. SEMI-BLIND IMPLEMENTATION IN REAL CONTEXTS

This section explains how to take advantage of the training
data (that are usually specified in standards) to raise the scalar
indetermination (Section IV-A) and improve the performance of
the algorithm (Section IV-B). It also details the modifications
that are necessary to apply the algorithm to existing systems
(Section IV-C).
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A. A Mechanism to Remove the Phase Indetermination
Inherent to Blind Methods

Blind methods always identify the channel up to one scalar
indetermination, which has to be removed to allow the received
symbols to be equalized. This appears clearly in (9), which
admits for any as a solution. Actually, standards often
specify some pilot subcarriers carrying known symbols for
phase tracking and channel estimation refinements purposes.
We propose to exploit them to remove the blind scalar inde-
termination and, thus, to allow the received symbols to be
equalized as detailed in what follows.

Let be the channel estimation provided by the blind sub-
space algorithm. The problem is to find the scalar coefficient
such that is close in the quadratic sense to the true
channel vector . Denote by the number of pilot subcarriers
on which some known symbols are transmitted. These carriers
can be equispaced (as in HL2), or not, and at fixed or various po-
sitions, but it is not necessary for what follows to explicitly state
their exact position. Let be the known sym-
bols transmitted on the pilot subcarriers and
be the corresponding FFT-processed received symbols. An es-
timation of the channel attenuations at the corresponding fre-
quencies is provided by

(13)

Let be the matrix obtained from the first columns of
matrix by selecting the rows corresponding to the pilot
carriers and by removing the other ones. Another estimation of
these coefficients can be inferred from the subspace identifica-
tion up to

(14)

From (13) and (14), can be determined by solving the linear

system in the least square sense. However, if
the channel estimation obtained using the sub-
space algorithm is far from the true CIR, the final channel
estimation remains inaccurate, even ifis estimated such that

is minimal. Somehow, no benefit is taken from
the knowledge of the channel attenuations on the pilot carriers
for the subspace algorithm. This can be overcome by consid-
ering the following system of equations:

for
(15)

Since this system of equations holds only approximately, it has
to be solved in the least squares sense similarly to (9), which
amounts to minimizing the quadratic criterion , which is
defined as

(16)

It is possible to increase the robustness of this approach by
changing the confidence degree in the pilot carriers using a
weighting factor (see [23] for optimally choosing). In this

case, ( ) has to be minimized
to estimate the channel. This criterion is close to the one pro-
posed in another context in [24]; the difference here is that the
training symbols alone are not sufficient to estimate the channel.
Denote by the channel esti-

mation, which is finally given by . Thus,
this semi-blind subspace algorithm can be seen as a channel-de-
pendent interpolator between the pilot subcarriers.

Furthermore, it is shown in the Appendix that considering the
composite system of (15) that accounts directly for the pilot
symbols reduces the lack of identifiability of the blind algo-
rithm. Indeed, channel identifiability is guaranteed in this case
if the number of zeros located on subcarriers is smaller than
the number of pilot subcarriers (which is a situation that still
becomes less likely).

B. Training Symbol-Based Initialization of the Blind Algorithm

An inherent problem to blind methods is their rather slow
convergence rate [6], which often prevents their use in realistic
contexts where methods based on training sequences are pre-
ferred. Thus, standards usually specify the transmission at the
beginning of each frame of known blocks of symbols for syn-
chronization and initial channel estimation at the receiver. We
propose to use these pilot symbols to initialize the estimation
of the autocorrelation matrix. This enables us to skip the long
convergence period of the blind algorithm and to obtain immedi-
ately the same accuracy as the pilot-based estimation. The steps
of the proposed algorithm are detailed as follows.

1) Obtain an initial channel estimation:
through the pilot symbols (see, for

instance, [19] and [25] ).
2) From , generate an estimation of ma-
trix as .
3) Refine iteratively the autocorrelation
matrix estimation each time a new block
symbol is received using an adaptive
process of forgetting factor

(17)

or a sliding window of length in (18) ,
shown at the bottom of the next page.
4) Perform the subspace algorithm based on

.

Note that Step 2 does not require the noise varianceto be
known because the signal and the noise subspaces of matrix
do not depend on it. However, the autocorrelation matrix
has to be known, which is not the case with the blind algorithm.

C. Subspace Estimation With Null Side Carriers

In all standardized OFDM systems, null carriers (zeros) are
appended on each side of the modulator (cf. Fig. 3). These car-
riers are specified to provide frequency guard bands in order to
avoid interference between adjacent systems. This particularity
is often ignored in the literature but has to be considered for the
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Fig. 3. Oversampled OFDM discrete model.

subspace algorithm since is no longer full rank: a fact that
modifies the signal and noise subspaces of. We detail, in
what follows, some modifications of the algorithm that are nec-
essary to cope with this practical situation.

Define as the number of nonzero subcarriers, and assume
without loss of generality that the side carriers are located
at the bottom of the FFT input: for . Let

be the vectors of nonzero entries
and . Let be the

obtained from by removing its last
columns, and define as .
Due to the zeros at the FFT input,
can also be expressed as

(19)

Thus, it is possible to proceed as in Section III to obtain the
channel coefficients from the autocorrelation matrix of the
received signal

(20)
where . Consistently with the
p.o.e. assumption, matrix can be assumed to have full
rank, and hence, the noise subspace of has dimension

. Thus, it is spanned by a set of independent
vectors (which can be obtained as previously by SVD), and it
can be shown in a similar way thathas to satisfy

for (21)

This modified algorithm works for any value of , in-
cluding the case initially described and can be general-
ized to the subspace algorithm proposed in [16] for zero-padded
(ZP) multicarrier transmissions. Moreover, when , a

channel estimation is provided blindly as soon as reaches
rank 2 (instead of 2 previously). Thus, the transmission of
zeros on side carriers, which was foreseen as a potential issue,
reveals itself as a means for increasing the convergence capa-
bilities of the algorithm (intuitively increasing the amount of
redundancy facilitates the channel determination). Finally, sim-
ulations suggest that it shares the same properties as the orig-
inal algorithm (i.e., identifiability is guaranteed only when no
channel zero is located on subcarriers).

V. SIMULATIONS

In this section, we illustrate the merits of our semi-blind
channel estimator through realistic simulations conducted in
the context of the existing standard HIPERLAN/2. All the
results are compared with those obtained using either the
classical pilot-based estimation method [19] or using a DD
estimator [19], [26]. Note that an exhaustive comparison with
the subspace algorithm proposed in [16] and, more generall,y
between CP and ZP transmitters is reported in [27] because
we only compare algorithms that are compatible with existing
standards in this paper.

A. Presentation of HIPERLAN/2

We have chosen to illustrate our subspace algorithm in
the specific context of the HIPERLAN/2 broadband wireless
communication standard, which is similar to IEEE802.11a
and MMAC. HL2 is a multicarrier system operating at 5 GHz
using a 20-MHz band at typical SNR values of 0–40 dB for
terminal speeds m/s. The number of carriers is ,
and the CP is 16 samples long. As depicted in Fig. 3, 12 of
the 64 carriers are null carriers. Among the nonzero
subcarriers, four are carrying known QPSK symbols ,
whereas the other subcarriers convey the
information-bearing sequences. With denoting each of the

for

for
(18)
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48 information symbols drawn from four-, 16-, or, 64-quadra-
ture amplitude modulation (QAM) constellations (depending
on the target bit rate), the symbol structure is summarized in
(21a), shown at the bottom of the page. The first two blocks
of a frame and are known to the receiver and
can be used for initial channel estimation. Relying on these
training symbols and the received noisy FFT processed data

, the receiver forms an initial
channel estimate as

for (22)

This method is the classical pilot-based estimation algorithm
usually adopted for coherent modulation [19]. Because only
symbols for and contain known
data in subsequent blocks , one can track adaptively the
channel transfer function using a running average (over, say,

blocks) only on these four frequencies as follows:

for (23)

Actually, the standard specifies these four pilot subcarriers for
synchronization and phase-tracking purposes, but they are too
distant in frequency (spaced more than the channel coherence
bandwidth) for estimating the channel by a simple interpola-
tion or even for tracking channel variations. Thus, only a par-
tial channel tracking can be achieved using (23), which may
not yield accurate channel estimation in rapidly varying envi-
ronments. To enhance mobility in HL2, semi-blind channel es-
timation is well motivated, especially with the relatively small
number of carriers that enables even subspace approaches to be
tried with affordable complexity.

B. Simulations Description

Simulation results have been obtained in this paper running
Monte Carlo trials, where each trial corresponds to a different
realization of the channel model. The channels models con-
sidered are a random FIR channel with random order upper
bounded by the CP length and the channel model A provided
by the HL2 standard [28]. Channel A corresponds to a typical
office environment and is given in Table I, where a classical
Jake’s Doppler spectrum and Rayleigh fading statistics are as-
sumed for all taps. Results are provided both for a static channel
(using an averaging window of size 500) and for a time-varying
channel (using an exponential window) for a terminal speed of

m/s, as specified in the HL2 standard.

TABLE I
CHANNEL MODEL A

The figures of merit for channel estimation are 1) the time
domain (TD) mean square error (MSE) defined as

TMSE (24)

and the frequency domain (FD) MSE defined for the setof
indices corresponding to the useful carriers as

FMSE (25)

The first criterion is relevant if equalization is performed in
the time domain as is done in [16] or for channel shortening [14],
whereas the second one is relevant if equalization is performed
in the frequency domain (in that case, it is natural to consider the
channel estimation error only on the carriers that are effectively
conveying information). We also plot BER curves to give an
insight into how channel MSE translates into BER performance.

The autocorrelation matrix is refined each time a new block
of symbols is received, and a new channel estimation is com-
puted every 50 blocks of symbols. This arbitrary choice keeps
the arithmetical complexity to reasonable values without sacri-
ficing channel tracking. Note that more frequent channel estima-
tion would be useless since the channel does not vary quickly.
For reference purposes, the semi-blind algorithm is compared
with the classical pilot-based estimation method previously de-
scribed, as well as a DD algorithm. This algorithm does the fol-
lowing.

1) It first estimates the channel as in
the classical method.
2) It equalizes by simply dividing

with the channel attenuation
estimation obtained at step to obtain
symbol estimates as ;
3) It updates the channel attenuations es-
timations as

, where denotes the hard de-

(21a)
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Fig. 4. Time domain channel estimation MSE along the frame:E =N =

25 dB.

cision taken from by the quantizer
associated with the constellation.

Note that it has been chosen to average the DD estimation
over blocks because it has revealed experimentally to
be a good tradeoff between error propagation (large values of

) and channel tracking (small values of). Note also that a
denoising of the estimation is also applied to the pilot-based
and DD estimations to allow a fair comparison between algo-
rithms. This allows us to take into account in the estimation that
the channel frequency response actually corresponds in the time
domain to a CIR of length upper bounded by [29].

C. Simulation Results

Figs. 4 and 5 illustrate the behavior of the three channel esti-
mation methods along the frame for transmission over the time-
varying channel A at dB. They depict the MSE
in the time and frequency domains as a function of the number
of received symbols. It appears clearly that the channel estima-
tion provided by the pilot-based method degrades quickly when
the channel is varying and that tracking the channel variations
is a must with long frames. The subspace algorithm tracks the
channel variations and offers performance independent of the
constellation. For channel estimation in the time domain, it of-
fers good performance and clearly outperforms the DD algo-
rithm for 16 and 64 QAM. For channel estimation in the fre-
quency domain, the DD is preferable. Note, however, that the
probability of making a wrong decision increases with the con-
stellation size with the DD and that it can suffer error propa-
gation, unlike the subspace algorithm (this property has often
prevented the DD algorithm to be used in practice). This is es-
pecially highlighted in Fig. 5, where the effect of error propa-
gation is clear. The channel estimation provided by the DD is
degrading along the frame, whereas the subspace accuracy is
approximately constant after a few observed symbols.

In order to compare more deeply the subspace and the
DD algorithm, Figs. 6–8 depict the average MSE in the time

Fig. 5. FD channel estimation MSE along the frame:E =N = 25 dB.

Fig. 6. Time domain MSE as a function ofE =N . Channel A:v = 3 m/s.

and frequency domain and the average uncoded BER as a
function of the SNR (quantities are averaged over the full
frame of 500 OFDM symbols for many channel realizations)
for thechannel model A. The conclusions drawn previously for

dB can be generalized. The subspace algorithm
does well for channel estimation in the TD (it outperforms the
DD estimator for 16 QAM and 64 QAM ) and significantly
improves the estimation provided at the beginning of the frame.
On the other hand, the DD is preferable for channel estimation
in the FD. Since the equalization is performed in the FD in
our setup, this translates into the BER curves of Fig. 8, which
shows that the BER obtained using the subspace algorithm,
although significantly improved compared with the case when
no refinement is performed, is outperformed by the DD, even
for 64 QAM.

To provide a more general insight on the relative merits of the
subspace algorithm compared to the DD algorithm, Figs. 9–11
depict the same quantities for arandom FIR channelwith
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Fig. 7. FD MSE as a function ofE =N . Channel A:v = 3m/s.

Fig. 8. BER as a function ofE =N . Channel A:v = 3 m/s.

the random channel order upper bounded by the cyclic prefix
length. This scenario is more general but does not take into
account the fact that the channel usually has a decreasing sta-
tistical power profile, as channel model A does. With this new
scenario, DD is slightly favored compared with the subspace
algorithm, but the conclusions drawn for channel A extend to
this new simulation scenario: The subspace algorithm offers
good performance for time domain estimation and a moderate
one for frequency domain estimation. Moreover, it can be in-
ferred from the comparison between results with channel A and
the random channel that the subspace algorithm performance
is enhanced when the channel has a decreasing power profile.
This is probably due to better matrix conditioning.

Note that both the subspace and the DD suffers from error
floor phenomenon with time-varying channels. Actually, this
can be explained by the number of observations required to ob-
tain a channel estimation in the noiseless case (about 2). Thus,
at high SNR, the error floor occurs due to the channel variations,

Fig. 9. Time domain MSE as a function ofE =N . Random channel:v =

3 m/s.

Fig. 10. FD MSE as a function ofE =N . Random channel:v = 3m/s.

which cannot be accurately tracked since the algorithm requires
an averaging window of length greater than 2. The DD also
exhibits an error floor, but it is easily possible to lower it by
reducing the number of symbols used for the averaging as the
SNR increases.

Finally, we provide in Figs. 12–14 some curves obtained for a
static random channel. As with time-varying channels, the sub-
space algorithm is better for channel estimation in the time do-
main rather than in the frequency domain but is also outper-
formed by the DD algorithm. Note, however, that BER perfor-
mances are almost the same with or without channel tracking
and, hence, that both the DD and the subspace algorithm are
useless in a static channel context. Indeed, with static channels,
the only errors to occur are due to the thermal noise because the
channel estimation obtained at the beginning of the frame using
pilot symbols is accurate enough to avoid errors due to an inac-
curate channel estimation.
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Fig. 11. BER as a function ofE =N . Random channel:v = 3 m/s.

Fig. 12. Time domain MSE as a function ofE =N . Random static channel.

D. Discussion

The proposed method has been shown to offer good perfor-
mance and to compare favorably with the DD algorithm for
channel estimation in the time domain. For channel estimation
in the frequency domain, even though it works and does improve
the channel estimation accuracy, it is outperformed by the DD
algorithm. This loss in performance is mainly due to the fact that
the proposed subspace algorithm, as does any subspace method,
suffers of important error floors phenomenon due to the aver-
aging window involved by the autocorrelation matrix estima-
tion. This limitates the interest of subspace methods compared
with DD approaches to practical applications with slow-varying
channels, provided that one accepts to be subject to error prop-
agation phenomena, which may happen with DD algorithms.

Besides, this conclusion concerning the frequency domain
equalization must be made mild because this is only a first at-
tempt to apply that class of methods to a real context and be-
cause only a basic implementation has been considered herein.

Fig. 13. FD MSE as a function ofE =N . Random static channel.

Fig. 14. BER as a function ofE =N . Random static channel.

Performance could be improved following the steps proposed in
[23] and [30]. In any case, even in this frequency domain equal-
ization framework, the proposed method does work in practice,
even if the performance is not always as good as that of the DD
one. Moreover, since the performance of that class of method
does not depend on the constellation size, they could be useful
for applications using varying or very large size constellations
(e.g., 256 QAM) [3] and/or constellations unknown to the re-
ceiver. Further, the subspace method also has the interesting
characteristic to be able to work in a fully blind context.

More important, the subspace method has the very attrac-
tive feature of estimating directly the channel impulse response,
whereas the DD first estimates the frequency domain channel at-
tenuations. This explains why the DD algorithms often perform
worse for channel estimation in the time domain. Indeed, the
channel attenuations on the guard carriers cannot be estimated
with the DD yielding an inaccurate estimation in the time do-
main.
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Furthermore, unlike DD, this feature allows us to extend the
method to identify channels with length greater than the CP,
which is a problem that occurs, for example, in digital subscriber
line (DSL) contexts [3]. This can be useful because a shortening
of the time domain channel impulse response [14] is usually
performed at the receiver in that case. Thus, this requires us to
estimate the taps located after the CP, which is difficult with
methods operating in the frequency domain. In contrast, the pro-
posed subspace algorithm [31] has been extended toward this
aim, as reported in [32] and [33].

Finally, it is important to note that the subspace approach re-
lies on the use of a redundancy (the cyclic prefix) whose struc-
ture is imposed by the transmitter and is designed for equaliza-
tion purposes but not for channel estimation. This may be the
most limiting factor of that kind of method since it imposes both
the minimal size of the averaging window as well as the condi-
tioning of the matrix to be decomposed by SVD. In [34], a sub-
space method is proposed for linearly block-precoded OFDM
systems [35] in which the redundancy can be arbitrarily chosen
since it is introduced by the block precoder. This allows us to
obtain improved performance and to use the method in realistic
contexts, provided that the compatibility constraint is relaxed.

VI. CONCLUSIONS

This paper has presented a new blind channel estimation
method for OFDM systems. Making use of the redundancy in-
troduced by the cyclic prefix to identify the channel, it preserves
the classical OFDM transmitter structure and, thus, applies to
most existing systems. The method can operate in a fully blind
context and does not require initialization. It can also be used
to improve the estimation obtained from pilot symbols using
semi-blind procedures, as proposed in this paper. The most
important feature of the method is that it estimates directly the
channel impulse response rather than the channel attenuations
on subcarriers. Thus, unlike decision-directed algorithms,
the proposed algorithm can be extended to estimate channels
longer than the cyclic prefix, which is important for channel
impulse response shortening algorithms. Simulations have
shown that the proposed method offers good performance in
practice, especially for channel estimation in the time domain.
For channel estimation in the frequency domain, some limita-
tions may reduce the practical impact of subspace approaches
compared with decision-directed algorithms estimating directly
the channel attenuations from symbol decisions.

APPENDIX A
IMPLEMENTATION OF THE SUBSPACEALGORITHM FOR ANY

VALUE OF , , OR

In this Appendix, we detail how the subspace algorithm can
be implemented for any value of and verifying .

Consider the I/O relationship (1):
. Due to the CP, the vector can be

split into three subvectors of size, , and , respectively:
with . Sim-

ilarly, both and can be split into three subvectors
of size , , and as

and . From these decom-
positions, each of matrices and can be split into nine
submatrices, leading to the following relationship:

(26)

where matrices and are defined as previously, where
is the Toeplitz matrix with first column

and first row and where
and are defined as and

. Following the lines of Section III, we can
define as

(27)
to get the relationship that follows, from which it is possible to
derive the subspace algorithm:

(28)

APPENDIX B
IDENTIFIABILITY ISSUES

This appendix focuses on the noise subspace of matrix
and provides some results concerning identifiability.

A. Structure and Dimension of the Noise Subspace

Since permuting the columns of a matrix changes neither its
signal subspace nor its noise subspace, the demonstration is con-
ducted in the following with the matrix defined in (29)
instead of the matrix defined in (5) since it simplifies the later
developments.

(29)
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Consider a vector in the noise sub-
space of matrix . Let be the matrix defined as

; the orthogonality relationship
is equivalent to

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

Let be the channel transfer function
and be its roots, which are assumed to be distinct
[if has multiple roots, it is easy to extend the demonstra-
tion using the generalized Vandermonde vectors [36]], and let

be the Vandermonde vector of size 2associated with :

. The left null space of matrix
is spanned by the Vandermonde vectors asso-

ciated with the roots of . Let and be the
matrices defined as

...
... (38)

and

...
...

...
...

. . .
.. .

(39)

A basis for the left null space of matrix is given by the
columns of matrix . Hence, for
any vector in the noise subspace, there exists a sizevector

such that . Proceeding
similarly with (31) to (36), it can be shown that any vector
in the noise subspace is only defined by two sizevectors

and since
it has the following structure:

(40)

If no channel zero is located on subcarriers (i.e., ),
then matrix is invertible, and . Thus,
any vector in the noise subspace is uniquely defined by.
Hence, the noise subspace of has dimension , and
is full column rank. If there are zeros located among the

subcarriers, let be the set of index corre-
sponding to these zeros (that is, such that ). In this case,

is no longer invertible. However,
involves that for each .

This proves that the noise subspace of has dimension
since any vector in the noise subspace is uniquely de-

fined by the size vector .

B. Uniqueness of the Solution Using the Entire Noise Subspace

Let be a vector such that
for , where is a

basis for the noise subspace. is equivalent to
, where stands for the canonical basis corre-

sponding to the vectors for (note that
if , simply reduces to ), where denotes the vector
of size with 1 at position and 0 elsewhere. Considering (37),

involves

for

(41)

and hence, shares the same roots as
, which proves that .

C. Channel Estimation Using Only a Part of the Noise
Subspace

It has been proven that the channel can be uniquely identified
under the condition that the noise subspace dimension () is
known. However, the number of zeros located on subcarriers
can only be upper bounded bysince the channel is unknown,
and the noise subspace dimension can only be assumed to be
greater or equal to . Thus, it is of interest to know if unique-
ness is guaranteed if only independent vectors of the noise
subspace are considered.

Uniqueness is ensured if no zero is located on subcarriers be-
cause the entire noise subspace is considered in that case. Let
us assume now that one zero is located on a subcarrier (the fol-
lowing developments can easily be extended to the case where
there are several zeros located on the subcarrier) and assume
without any loss of generality that . In this case, any
vector in the noise subspace is uniquely specified by a size

vector of size . If independent vec-
tors for of the noise subspace are considered,
the corresponding vectors for are independent.
Hence, (41) holds, which proves that . If the vectors

for are not independent, a vector satisfying
for such that can be found.

For example, let us assume that theindependent vectors
used to identify the channel are the vectorsof the canonical
basis for and . Let be the size-
vectors of norm 1 defined by the data of the roots
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of with for and . In that case,
and since is a root of

. In addition, for since
are roots of . Hence, but satisfies the

orthogonality relations. Thus, identifiability is not guaranteed
when some channel zeros are located on subcarriers.

Besides, the number of different roots between
and is smaller than , which is proved in the fol-
lowing when (the demonstration can be extended
to ). In order to do this, let us compute the spectral
decomposition of matrix , which is given
by , where and are square orthogonal
matrices of size and where is a diagonal matrix
with main diagonal entries with .

From (37), . If the

eigenvectors are not independent, then matrix
is noninvertible, and . In

that case, it can be shown that for each ,
is a linear combination of the Vandermonde

vectors associated with the roots of . Let us assume
that , and consider, without any loss of generality, that

for . Using the fact that the columns of a
tall Vandermonde matrix built from distinct roots are linearly
independent, it can be shown that for each ,

, and therefore, that the two first
columns of are proportional, which is impossible because

is orthogonal. Hence, .

D. Identifiability With the Semi-Blind Algorithm

Consider the semi-blind algorithm defined by (15), and as-
sume that the number of channel zeros located on subcarriers
is smaller than the number of pilot subcarriers. Let be a
vector satisfying (15). Equation (15) involves (6), and hence,
at most roots of are different from those of .
Denote these roots as and for

and , respectively. Since both and must satisfy
for the pilot subcarriers frequencies ,

must hold for every
, where and are two nonzero normaliza-

tion constants. Hence, every is a root of the degree-poly-
nomial . There-
fore, is equal to zero for any value of since it is a de-
gree- polynomial with distinct roots. Thus, must
be equal to , and must be equal to up
to a permutation, and hence, . Therefore, the unique-
ness of the solution provided by (15) is ensured if the number
of channel zeros located on the unit circle is smaller than the
number of pilot subcarriers.
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