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Subspace-Based Blind and Semi-Blind Channel
Estimation for OFDM Systems

Bertrand MuquetMember, IEEEMarc de Courville Member, IEEEand Pierre Duhamglellow, IEEE

Abstract—This paper proposes a new blind channel estimation receiver converts the frequency-selective channel into parallel
method for orthogonal frequency division multiplexing (OFDM)  flat-faded subchannels, each one corresponding to a different
systems. The algorithm makes use of the redundancy introduced g\ 4 rrier. Unless they are zero, flat fades are simply removed

by the cyclic prefix to identify the channel based on a subspace A .
approach. Thus, the proposed method does not require any modi- by dividing each subchannel output with the channel attenua-

fication of the transmitter and applies to most existing OFDM sys- tion at the corresponding subcarrier.
tems. Semi-blind procedures taking advantage of training dataare At the same time, the need for high data rates motivated the

also proposed. These can be training symbols or pilot tones, the Lo e -
latter being used for solving the intrinsic indetermination of blind search for blind identification and equalization methods because

channel estimation. Identifiability results are provided, showing they save bandwidth by avoiding the use of training sequences
that in the (theoretical) situation where channel zeros are located [5]. Hence, numerous blind algorithms have been developed re-
on subcarriers, the algorithm does not ensure uniqueness of the cently (see [6]), where several works have focused specifically
channel estimation, unless the full noise subspace is consideredon multicarrier systems. A blind equalization criterion has been

Simulations comparing the proposed method with a decision-di- . ; i i
rected channel estimator finally illustrates the performance of the introduced in [7]; it does not apply to traditional OFDM systems

proposed algorithm. since it relies on a transmitter without CP. Correlation-matching
Index Terms—Blind. channel estimation. HIPERLAN/2 methods based on the transmitted signal cyclostationarity have
IEEE802.11a, OFDM, semi-blind, subspace. ' " been presented in [8]-[10]. However, their implementation on

existing systems is fairly difficult in practice because the pres-
ence of null side carriers (see Section IV-C) seriously compli-
. INTRODUCTION cates the proposed identification results. In [11], a method that

ULTICARRIER systems, and especially orthogonal frecould apply to OFDM systems with CP is provided, but it re-

quency division multiplexing (OFDM), are considerediuires the CP length to be equal to the block siz&/, which is
today to be a reliable choice for high rate transmissions and &ever the case in practice. Some blind equalizers relying on the
now widely adopted and tested in many communication sy§formation contained inthe CP were proposed in [12] and [13],
tems. Specifically, OFDM has been chosen for digital audit it may be preferable to first dispose of a channel estimation
and video broadcasting (DAB [1], DVB [2]), for high-speedfor example, in order to shorten the channel impulse response
modems over twisted pairs (digital subscriber line: xDSL [3]{CIR) [14] or to determine power loading at the transmitter [3]].
and, more recently, for 5-GHz broadband wireless local arE#pally, a subspace algorithm that guarantees channel identifia-
networks (HIPERLAN/2, IEEE802.11a and MMAC standardBility is proposed in [15] and [16] for the recent OFDM system
[4]). with zero padding. Obviously, this algorithm does not apply to

OFDM enables very simple equalization of frequency-selegXisting OFDM systems because the transmitter has a different

tive finite impulse response (FIR) channels, thanks to the invergigucture and introduces a different kind of redundancy. This
fast Fourier transform (IFFT) precoding and the insertion of @aper proposes a new channel estimation method that can be
cyclic prefix (CP) of length larger than the channel memory &een as its counterpart for traditional OFDM systems.
the transmitter. Present in each block of transmitted symbolsBased on a subspace decomposition [17], our algorithm
the CP consists of redundant symbols preceding (and circulagkes advantage of the inherent redundancy introduced by the
replicated from) the IFFT-precoded nonredundant symbols. 8P to blindly estimate the channel. It possesses the following
the receiver end, CP is discarded to avoid interblock interfesttractive properties.
ence (IBI), and each truncated block is FFT processed. A com-

bination of IFFT and CP at the transmitter with the FFT at the 1) It does not require any modification of the classical
OFDM transmitter. Thus, it is compatible with existing

, _ _ _ standardized OFDM systems.
Manuscript received December 8, 1999; revised March 5, 2002. The assoclate2 | b lied bi . | llati U
editor coordinating the review of this paper and approving it for publication was 2) t can be applied to arbitrary signal constellations. Un-
Dr. Sergio Barbarossa. like decision directed (DD) algorithms, it does not suffer

B. Muquet was with Motorola Labs, Paris, France. He is now with Stepmind, from performance degradation when the constellation
Boulogne-Billancourt, France (e-mail: bertrand.muquet@stepmind.com).

M. de Courville is with Motorola Labs, Paris, France (e-mail: size increases. Moreover, it does not require the knowl-

Marc.de.Courville@crm.mot.com). edge at the receiver of the constellation used for the
P. Duhamel was with Ecole Nationale Supérieure des Télécommunications,  transmission.

Paris, France. He is now with CNRS/LSS, Supélec, Gif-Sur-Yvette, France . . .
(e-mail: pierre.duhamel@lIss.supelec.fr). 3) Itis robust to channel order overdetermination. Further-

Publisher Item Identifier S 1053-587X(02)05647-7. more, it guarantees channel identifiability, regardless of

1053-587X/02$17.00 © 2002 IEEE



1700 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 7, JULY 2002

Su (k) su (k) Sep(k) rep(k) (k) Fu(k)
sk p
—l 2 (k)
. |P /S S/P P 1/h
™ —7® )\
51(k) 1) 03] &
i
B | ; i
Sn ,_I Iy
H(z) \VZ

1/ha

; 5 20 ()
Su(k) (k) T E) (-

. Cyclic prefix  Parallel to serial Discrete time Serial to parallel  Cyclic Prefix i
Modulation appending conversion equivalent channel converl;ion suppression Demodulation

Fig. 1. OFDM discrete baseband transceiver model.

the channel zeros location when the entire noise sutketails the semi-blind implementation and the modifications re-
space is considered. quired to cope with real systems. Section V presents simulations
Actually, this last property is only of theoretical interest sinceesults, and conclusions are drawn in Section VI.
the noise subspace dimension is unknown and can only be
lower bounded in practice. Thus, the method effectively used
in practice may operate only on a part of the noise subspace.
This happens when the channel has nulls on subcarriers, anth this document, lower (upper) boldface symbols are used
in this case, channel identifiability is no longer guaranteetbr column vectors (matrices), sometimes with subscripts to
Finally, the theoretical algorithm (and the practical one, wheamphasize their sizes; arguménts used to index blocks of
there is no channel zeros on subcarriers) provides a perfeginbols; I, denotes the sizé{ identity matrix; © stands
estimation after the observation of a finite number of receivédr the Kronecker product].) denotes Hermitian, anfl)?
symbols in the noiseless case. In the noisy case, the algorittrtamspose.
is proved to be consistent. Fig. 1 depicts a discrete model of an OFDM system. The
Blind methods can also be used in cooperation with trainirgize M OFDM symbol sy, (k) = [51(k) ... sar(k)]T is first
data in order to better track channel variations. In that case, tmgdulated by the IFFT matri>F{I4, where F;,; stands for
are referred as semi-blind methods [18]. Usually, known blockse size M FFT matrix with entriese/2™*/M /\/M (the
of symbols (usually referred as “pilot symbols”) are transmittedotation tilde (") is used for frequency domain quantities,
at the beginning of each frame for synchronization and initiak., before IFFT precoding). The “time domain” vector
channel estimation purposes [19], [20]. We propose to use them (k) = [s1(k) ... sy (k)]T = Fi sy (k) is then enlarged
to avoid the convergence period of the blind subspace algorithiny, a CP of lengthZ, resulting in a sizeP = M + L
during which the estimation is unreliable. This semi-blind inivector s.,(k) = [s{P(k)...s¥ (k)]* whose components are
tialization can be extended to other blind algorithms (e.g., tfieally sent sequentially through the channel. The channel
one proposed in [16]). However, it does not overcome the ieffects are modeled by a linear FIR filter with Clry, =
herent scalar indetermination of blind methods that still has fbo, ..., 2y 1] and the addition of noise samples,.
be removed. For that purpose, we propose to benefit from “pildsually, the system is designed such that the CP is longer
subcarriers” (i.e., subcarriers carrying symbols known to tlikan the channel order which involves thgt= 0 for ¢ > L.
receiver, which are found in many standards) and resort td-arthermore M is usually greater thaik, which we assume
semi-blind least-squares criterion incorporating that knowledge. the following and we denote a®n = [ho,...,hr]"
Finally, we detail some modifications of the original methoghannel coefficients to be identified. At the receiver end, the
that are required to comply with standards requirements. TI@R is simply removed, yielding, after FFT demodulation, to
way, we propose a new semi-blind estimator that directly afite equivalent frequency domain model of Fig. 2, where
plies to existing systems thahproves the accuracy of the ini-hy; = [hg...hy—1]T = VMFyhy, h;, denoting the
tial channel estimation obtained at the beginning of the framehannel attenuation on th#¢h subcarrier (see [21]).
This is confirmed by simulations conducted in the realistic con- Let F = [F.,, F /] be theP x M matrix representing
text of the HIPERLAN/2 (HL2), providing some performancéoth the IFFT modulation and the CP appending, where

Il. SYSTEM DESCRIPTION ANDNOTATIONS

comparisons with a DD channel estimator. F., stands for theM x L matrix corresponding to thé
The rest of this paper is organized as follows: Section Il préast columns ofF',;. Let Hy be the P x P lower triangular
vides a discrete model of OFDM and defines notations. Seteeplitz matrix with first columnhg,...,Ar,0,...,0]* and

tion 11l presents the new channel estimation method. Section fivst row [ho, 0, ...0]7. Let H; be theP x P upper triangular
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o (k) 1/fo L x L Toeplitz matrix with first columr{hy, ..., 0]* and first
) Ci) é o(k) & 20 row [hz, ..., ~1], the block-received signal can be expressed as
rep(k) = [ro(k), r1(k), Ta(k), ra(k), ra (k)]
Transmitted l;eccii)veid Cl 0 0 0 C 0 54( k— 1)
Symbols ymbols 0 C, O 0 C S1 (k)
; = 0 Cl Co 0 0 SQ(k)
T (®) Ava(k) ' 1oy 0 0 C, C, 0 s3(k)
Sw-1(k) Y ¥ Far(k) 0 G (! 0 0 0 C; G S4(/€)
I;;hanqel P(I)\lllouilisin Equalization + [no(k)7 nl (k)7 n2(k)7 ng(k)7 n4(k)7 ]T * (3)

The IBI term no longer appears in (3), but the transfer matrix

remains square. However, two successive overlapping received

symbols can be considered in order to introduce some overde-

Toeplitz matrix with first column(0,...,0]" and first row termination. Therefore, let(k), 5(k), andb(k) be the vectors

[0,...,0,hL,...,h1]. The transmitted block of symbols isdefined as

given bys.,(k) := Fsp(k), and the corresponding received

block is (k) =(r1(k =D .. ek = DT ro(B)T, .. ea(0)DT
( )

Fig. 2. Parallel carriers equivalent model.

rep(k) = Hosep(k) + Hisey(k — 1) +np(k) _ T T T T
— HoFsy (k) + HiFsp (k — 1) + np(k) () k) =(ni(k - D), .0k = DT no(kR), .. ma (k)T
wherenp(k) = [n1(k)...np(k)]* represents the noise sam- o ~ _ _
ples polluting the transmission ef, (k). Vectorr(k) is given byr(k) = H(h)s(k) +1(k), whereH(h)
is the(2M + L) x 2M matrix defined as

[ll. BLIND SUBSPACEALGORITHM rCo O 0 C, 0 0 0 0
We propose to apply a subspace algorithm in order to identify ¢ G 0 0 0 0 0 0
the channel coefficients from the observation of the received 0 € G 0 0 0 0 0
signalr.,,(k). Subspace methods rely on a block formulation of 0 0 € G 0 0 0 0

the input—output relationship of the forik) = Hs(k), where =10 0 0 C 0 0 0 Cof. ()
the transfer matriH is a tall matrix. It can be observed that (1) 00 0 0 G 0 0 G
does not exactly have the desired structure to directly derive a 0 0 0 0 C C 0 0
subspace algorithm due to the IBI tefhy F5,,(k — 1). A way 0 0 0 0 0 C G 0

O 0 0 0 0 0 C; Col

to address this problem is to use a particular precoder canceling -
IBI [15], but this approach requires a change in the transmlttirét Rex — E[F(H)E(k)] andRes = E[s(k)s(k)"] be the au-

and we consider here only compatible methods. Another ONGRorrelation matrices af( k) ands(k), respectively. We assume

to chooseL = M to allow IBI suppression by simple bIOCkin this section that matriRgs is full rank and discuss the case

manipulations [11], but this would lead to CP much longer tha hen this assumption does not hold in Section IV-C. The noise

in existing systems. Instead, this paper proposes a method }saa?lso assumed to be white with variangg, but the method

dlrgctl);happllis tofexllst_lpg _;:,y_stems. din the followina th an be extended to colored noise following the lines of [16] and
M Er 4 Le Ss.ci 95 ;ta” }c/:,all IZI afr‘]”ge.st_'r? OeFDOMOlVIZ?ems 7]. The subspace method relies on the autocorrelation matrix
= =4, WhICh 1S a fypical value In existing Y R;; defined aRer = H(h)ResH(h)" + 02Ty 1. We dis-

Ifh ?hzxrtaetri]cfjl\(zfr}zo 32r>ilf;//iarl1lu3\/([ﬂﬂ>’ Ig(]élulg In?eggglgtje?: :r:/: l,:e? tinguish below two cases that depend on whether some subcar-
X ’ gM = > P 1 INE AP ers are hit by channel nulls or not since this property affects
pendix. Note thafl/ > 2L is not a restrictive constraint since it. e
|(§Jent|f|ablllty.

is always satisfied in practice to limit the amount of introduce

redundancy. Sinc@ = 5L, rep(k), sep(k), andnp(k) can be 5 Subspace Identification When No Channel Zero
split into five sub-blocks of equal length Is Located on Subcarriers

It is shown in the Appendix thdi (k) is full column rank if

N e (1T NTYT
rep(k) _[ro(k)T’ T r4(k)T]T no channel zero is located on any subcarrier. In this ca¥eif
sep(k) =[so(k)", ... ,s4(k)"] is full rank, the matrixH(h)RssH(h)? has rank &. There-
np(k) =ne(k)%, ... ,ny(k)F]*. (2) fore, its left nullspace has dimensidnand is spanned by a

basis ofL vectorsgy, ..., gr—1. A particular basis for this sub-
Sincesy (k) corresponds to the CBy (k) = s4(k). Intuitively, space (usually referred as the noise subspace) can be found from
it is this redundancy that is used to obtain an overdetermindte singular value decomposition (SVD) Bfg. It is indeed
system. LelC be thel, x L Toeplitz matrix with first column spanned by thd. eigenvectors associated with tlhesmallest
[ho,- -, hr—1]¥ and first row[ho, 0, ... 0]*. Letting C; be the eigenvalues2 of the autocorrelation matriRs:. Moreover, it
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is well known that the range space of a matrix is orthogonal td a finite number of received symbaték), provided that there
its left null space, and hence, the space spanned by the columsxists anV > 2M such thaR'." is full rank. This condition
of H(h) (usually referred as the signal subspace) is orthogornglusually referred as the persistence of excitation assumption
to the noise subspace and, hence, to each vggiarthe basis. (p.o.e.) [22] and is verified with most constellations for values
Thus, for any vectog;, the equatiorg? H(h) = 0 holds, and of N ~ 2M. Thus, the method can be applied to arbitrary con-
henceh must satisfy the system of linear equations given bystellations with performance that hardly depends on the con-
H _ ) stellation as supported by simulations. In the noisy cﬁ'éé)
g H(h)=0for0<:< L -1 (6) converges in the mean square sense to the true correlation ma-
trix Rgrz asN — oo since inputs(k) has finite moments and
the channel has finite memory. Hende,— h asN — oo,
and the algorithm is consistent.
Actually, solving for (9) usually requires a huge amount of
memory and computations. Hence, the storage of all matrices

In order to express (6) in terms of the vector of unknodins
split any vectorg; into nine blocks of equal length: g; =
g, ....g?"]7, whereg! = [¢/(1)...g}(L)]”. In addition,
let A/, B] andC] be the following sizé L + 1) x L matrices:

'g{(l) ng(L) G; is usually avoid%qlbx computing on the fly the quadratic
form matrixQ = >";; G;G¥ and by solving the quadratic
, 70 equationg(h) = 0, whereg(h) = hZQh. At this point, h
Al = Y : (7) can be obtained (up to a scalar coefficient) by minimizjfy)
. ) subject to a properly chosen constraint, avoiding the trivial so-
gL : lution h = 0. In practice, a power control is performed at the
L 0 oo 0 receiver to ensure that the received power is approximately con-
[0 0 stant. Therefore, a natural choice is to minimjzh) subject to
g the constrainfh|| = 1. Inthis case, the channel estimhtts the
B/ — : ) unit-norm eigenvector associated with the smallest eigenvalue
i . e of Q. This way, the channel is identified up to a phase factor
0 Vs : that has to be removed, and Section IV A proposes a mecha-
Lg (1) - - gD nism for that purpose.
Let ¢! = Al + B/*', and define matrixG; as B. Subspace Identification When Channels Zeros Are
G; = [C},C;,C}C + B}, CP 4+ A?,CP,Cl,C}|. Located on Some Subcarriers

Equation (6) is then equivalent to
a © a It is shown in the Appendix thaH(h) is no longer full

WG, =0foro0<i<L-1 (9) column rank if some channel zeros are located on subcarriers.
Specifically, H(h) is shown to have rankM — Z, whereZ
It is shown in the Appendix that this system of equations the number of subcarriers hit by channel nulls. Hence, the
uniguely determineh up to a scalar factognder the assump- noise subspace has dimensibr Z, and the system of (9)
tion that H(h) is full column rank that is, when no channel makes use of only. independent vectors of it. In this case, the
null is located on a subcarrier. Note that the method is robugstbspace algorithm may fail as shown in the Appendix, but it is
to channel order overestimation since only an upper baundpossible to enlarge the system (9) to consider a full basis of the

of the channel order is required. noise subspace that will guarantee that the channel is uniquely
In practice,Rg; is estimated by an averaging in time overidentified, as shown in the Appendix. Since it is possible to
say,N blocks find the numberZ of zeros asymptotically (it is equal to the

multiplicity of the smallest eigenvalue), identifiability using the
sy 1 e NH (theoretical) subspace algorithm is thus guaranteed. However,
Re' = N Z r(k)T(k) (10) this result is only of theoretical interest because it is impossible
k=0 in practice to observe an infinite number of symbols. Thus,
and hence, (9) has to be solved in the least square sense tdtés-difficult to evaluate the numbeZ of channel zeros, and
timateh since only estimate&:; of matricesG; are available. practically, we will never be able to use the full noise subspace,

N—-1

Let us defineﬁg) as and hence, channel identifiability cannot be guaranteed in
practice.
i 1 N—-1
Reg) = < > s(kys(k)” (12)
N k=0 [V. SEMI-BLIND IMPLEMENTATION IN REAL CONTEXTS
In a noiseless contexﬁé’;) can be expressed as This section explains how to take advantage of the training
data (that are usually specified in standards) to raise the scalar
R =HMm) RY) HM)" (12) indetermination (Section IV-A) and improve the performance of

. the algorithm (Section 1V-B). It also details the modifications
and therefore, (9) exactly holds as soonRgé\‘) is full rank. that are necessary to apply the algorithm to existing systems
This ensures a perfect channel estimation after the observat{8ection 1V-C).
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A. A Mechanism to Remove the Phase Indetermination Case,EiLz_ol |Gf1h||2+/3||F1,i1h—lA~1pi1||2) has to be minimized
Inherent to Blind Methods to estimate the channel. This criterion is close to the one pro-
Blind methods always identify the channel up to one scal@psed in another context in [24]; the difference here is that the
indetermination, which has to be removed to allow the receiv&@ining symbols alone are not sufficient to estimate the channel.
symbols to be equalized. This appears clearly in (9), whigbenote byQuu = 37 G:GF + BF F,,; the channel esti-
admitsah for any « as a solution. Actually, standards oftermation, which is finally given bj& - (Qpil)_lﬁFglﬂpil- Thus,
specify some pilot subcarriers carrying known symbols fqhis semi-blind subspace algorithm can be seen as a channel-de-
phase tracking and channel estimation refinements purposgsndent interpolator between the pilot subcarriers.
We propose to exploit them to remove the blind scalar inde- Fyrthermore, it is shown in the Appendix that considering the
termination and, thus, to allow the received symbols to k@mposite system of (15) that accounts directly for the pilot
equalized as detailed in what follows. symbols reduces the lack of identifiability of the blind algo-
Leth,, be the channel estimation provided by the blind subithm. Indeed, channel identifiability is guaranteed in this case
space algorithm. The problem is to find the scalar coefficientif the numberZ of zeros located on subcarriers is smaller than

such that = h,.;,/« is close in the quadratic sense to the trughe numbet of pilot subcarriers (which is a situation that still
channel vectoh. Denote byl the number of pilot subcarriers pecomes less likely).

on which some known symbols are transmitted. These carriers
can be equispaced (as in HL2), or not, and at fixed or various [®- Training Symbol-Based Initialization of the Blind Algorithm
sitions, but it is not necessary for what follows to explicitly state

Lh?'r exact p_oszlon. heil’i.ll(l)’ o Spit (£ )~be the knovyn sl);m- convergence rate [6], which often prevents their use in realistic
ols transmitted on the pilot subcarriers apfi(1), .. ., 7pir(£) contexts where methods based on training sequences are pre-

pe th_e corresponding FFT-proce_ssed received symbols_. An fetred. Thus, standards usually specify the transmission at the
timation of the channel attenuations at the corresponding frﬁéginning of each frame of known blocks of symbols for syn-

quencies is provided by chronization and initial channel estimation at the receiver. We
Foa(1) Fou(F) T propose to use thgse pilot_symb_ols to initialize the_estimation
pil = | 2, (13) of the autocorrelation matrix. This enables us to skip the long
spit(1) spit(£) convergence period of the blind algorithm and to obtain immedi-
LetF,; be theF x L matrix obtained from thé first columns of ~ ately the same accuracy as the pilot-based estimation. The steps
matrix v MF, by selecting the rows corresponding to the pild®f the proposed algorithm are detailed as follows.
carriers and by removing the other ones. Another estimation of
these coefficients can be inferred from the subspace identifidg- Obtain an initial channel estimation:
tion up toa h(© through the pilot symbols (see, for
- . . - instance, [19] and [25] ).
Dew, = Fpillay, = oFpah = aby. (14) 2) From h©, generate an estimation of ma-
tix R as RY = H(LO)RsH(MLO)H,
From (13) and (14)q can be determined by solving the lineaB) Refine iteratively the autocorrelation
systemh,,, = aflpﬂ in the least square sense. However, Wnatrix estimation each time a new block
the channel estimatioh.,, = «h obtained using the sub-symbol T(k) is received using an adaptive

An inherent problem to blind methods is their rather slow

50

space algorithm is far from the true CIR the final channel process of forgetting factor A€ [0,1]
estimation remains inaccurate, evemifs estimated such that ) (N_1) .
| — hy,,/al is minimal. Somehow, no benefit is taken from Ry’ :=ARg 7 + (1 - NT(NV)T() 17)

the knowledge of the channel attenuations on the pilot carriers o i i
for the subspace algorithm. This can be overcome by consfj- @ Sliding window of length W in (18) ,

ering the following system of equations: shown at the bottom of the next page.
AL)(AI?)erform the subspace algorithm based on

Ry
e 15 rr
Fpilh = hpil. ( )

{Gf’h:o, foro<i<IL -1
to be solved in the least squares sense similarly to (9), whi flown because the signal and the noise subspaces of Rairix

amounts to minimizing the quadratic criterigh(h), which is 9° not depend on it'_ Ho_wever, the autoz_:orrelatiqn mat%
g q of(h) has to be known, which is not the case with the blind algorithm.

Since this system of equations holds only approximately, it hgsNOte that Step 2 does not require the noise variafjce be

defined as
-1 P =~ C. Subspace Estimation With Null Side Carriers
! — . _ .
¢(h) = ; 1G 0" + [[Fpah — byl | - (16) In all standardized OFDM systems, null carriers (zeros) are

appended on each side of the modulator (cf. Fig. 3). These car-
It is possible to increase the robustness of this approach tigrs are specified to provide frequency guard bands in order to
changing the confidence degree in the pilot carriers usingagoid interference between adjacent systems. This particularity
weighting factorg (see [23] for optimally choosing). In this is often ignored in the literature but has to be considered for the
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Fig. 3. Oversampled OFDM discrete model.

subspace algorithm sind&ss is no longer full rank: a fact that channel estimation is provided blindly as soonfgs reaches
modifies the signal and noise subspace®Regf. We detail, in rank 2K (instead of 2/ previously). Thus, the transmission of
what follows, some modifications of the algorithm that are nezeros on side carriers, which was foreseen as a potential issue,
essary to cope with this practical situation. reveals itself as a means for increasing the convergence capa-
Define K as the number of nonzero subcarriers, and assutmitities of the algorithm (intuitively increasing the amount of
without loss of generality that the side carriers are locateddundancy facilitates the channel determination). Finally, sim-
at the bottom of the FFT input; (k) = 0 for< > K. Let ulations suggest that it shares the same properties as the orig-

s (k) = [51(k),..., 3K (k)] be the vectors of nonzero entriesnal algorithm (i.e., identifiability is guaranteed only when no
and sy (k) = [sx(k)T,sx(k — 1)T]T. Let Fir<x be the channel zero is located on subcarriers).

M x K obtained fromF¥, by removing its last\M — K

columns, and defin@&'sps o aSFonrwor = I @ Farxk. V. SIMULATIONS

Due to the zeros at the FFT inpatk) = H(h)s(k) + n(k)

In this section, we illustrate the merits of our semi-blind
can also be expressed as

channel estimator through realistic simulations conducted in
_ N _ the context of the existing standard HIPERLAN/2. All the
(k) = H()FonrxonSoxc (k) + (k). (19) results are compared with those obtained using either the

Thus, it is possible to proceed as in Section Il to obtain tl.%a_ssical pilot-based estimation method .[19] or “S“f‘g a D.D
channel coefficients from the autocorrelation maRig of the estimator [19], [26]. Note that an exhaustive comparison with
received signal the subspace algorithm proposed in [16] and, more generall,y

between CP and ZP transmitters is reported in [27] because

Res = H(h)FQJ\lx2I(R§2K§2KFéq]\/fxgl( + 02121\4+LH(h)H we only co_mpa_re algorithms that are compatible with existing
’ (20) standards in this paper.

whereRs, 5, = E[825 (k)s2i (k). Consistently with the A Presentation of HIPERLAN/2
p.o.e. assumption, matrRs, , s, .. can be assumed to have full
rank, and hence, the noise subspacRaf has dimensio® + We have chosen to illustrate our subspace algorithm in
M—2K.Thus, itis spanned by a setBft M —2K independent the specific context of the HIPERLAN/2 broadband wireless
vectors (WhICh can be obtained as previ0u5|y by SVD), andgemmunication standard, which is similar to IEEE802.11a
can be shown in a similar way thhathas to satisfy and MMAC. HL2 is a multicarrier system operating at 5 GHz

using a 20-MHz band at typical SNR values of 0—40 dB for

FlvorGih=0for0<i<P+M—-2K—1. (21) terminal speeds < 3 m/s. The number of carriers i&/ = 64,

and the CP is 16 samples long. As depicted in Fig. 3, 12 of
This modified algorithm works for any value ¢ < M, in- the 64 carriers are null carriers. Among the = 52 nonzero
cluding the cas& = M initially described and can be generalsubcarriers, four are carrying known QPSK symhBis— P,
ized to the subspace algorithm proposed in [16] for zero-paddetiereas the othe = K — 4 = 48 subcarriers convey the
(ZP) multicarrier transmissions. Moreover, whé&h < M, a information-bearing sequences. With denoting each of the

il

(N 1 g r H _ AEQ) <
_ égfl) +{ ‘q [r(N)r(N) Rrr} ; forv <W (18)
w

- [F(NT(N)H —F(N - W)EN — W)H], forN > W.

—
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48 information symbols drawn from four-, 16-, or, 64-quadra- TABLE |
ture amplitude modulation (QAM) constellations (depending CHANNEL MODEL A

on the target bit rate), the symbol structure is summarized iNTap | Delay(ns) | Av Power(dB) || Tap | Delay(ns) | Av Power(dB)
(21a), shown at the bottom of the page. The first two blocks 1 0 0.0 10 90 78
of a frames,;(0) ands,,(1) are known to the receiver and 2 10 -0.9 1 1o -4.7
can be used for initial channel estimation. Relying on these Z gg :é:g g }‘7‘8 :;:g
training symbols and the received noisy FFT processed date 5 40 35 14 200 125
rp(k) = [F1(k),...,7m(k)], the receiver forms an initial 6 50 -43 15 240 -13.7
channel estimate as 7 60 -52 16 |29 -18.0

8 70 6.1 17 340 224

9 80 6.9 18 390 -26.7

5‘(1) — 1 [7}‘(0) 7}‘(1)} for1 <i< M. (22) The figures of merit for channel estimation are 1) the time
2 [5(0) ~ si(1) domain (TD) mean square error (MSE) defined as

This method is the classical pilot-based estimation algorithm Z [P _Tlu|2
usually adopted for coherent modulation [19]. Because only TMSE= “» (24)
symbolss,, (k) for m = 12,26,40, and 54 contain known Z I

data in subsequent blockgk),>2, one can track adaptively the
channel transfer function using a running average (over, safd the frequency domain (FD) MSE defined for theigedf
B = 20 blocks) only on these four frequencies as follows:  indices corresponding to tHeé useful carriers as

> Jhu — hl?
~ FMSE = 6”—2 (25)
hi(k+1) = f 12,26, 40,54}, (23 2, [h]
+ Z 5111 k— oree { 9 } ( ) weU

The first criterion is relevant if equalization is performed in

Actually, the standard specifies these four pilot subcarriers fé time domain as is done in [16] or for channel shortening [14],
synchronization and phase-tracking purposes, but they are Y§iereas the second one is relevant if equalization is performed
distant in frequency (spaced more than the channel coherefitée frequency domain (in that case, itis natural to consider the
bandwidth) for estimating the channel by a simple interpmghannel estimation error only on the carriers that are effectively
tion or even for tracking channel variations. Thus, only a pagonveying information). We also plot BER curves to give an
tial channel tracking can be achieved using (23), which m{@sightinto how channel MSE translates into BER performance.
not yield accurate channel estimation in rapidly varying envi- The autocorrelation matrix is refined each time a new block
ronments. To enhance mobility in HL2, semi-blind channel e8f symbols is received, and a new channel estimation is com-
timation is well motivated, especially with the relatively smalPuted every 50 blocks of symbols. This arbitrary choice keeps

number of carriers that enables even subspace approaches #®@&ithmetical complexity to reasonable values without sacri-
tried with affordable complexity. ficing channel tracking. Note that more frequent channel estima-

tion would be useless since the channel does not vary quickly.

For reference purposes, the semi-blind algorithm is compared

with the classical pilot-based estimation method previously de-
Simulation results have been obtained in this paper runniagribed, as well as a DD algorithm. This algorithm does the fol-

Monte Carlo trials, where each trial corresponds to a differelowing.

realization of the channel model. The channels models con-

sidered are a random FIR channel with random order upger It first estimates the channel as in

bounded by the CP length and the channel model A provid#ee classical method.

B. Simulations Description

by the HL2 standard [28]. Channel A corresponds to a typicd) It equalizes r(k) by simply dividing
office environment and is given in Table I, where a classicé](k) with the channel attenuation hi(k — 1)
Jake’s Doppler spectrum and Rayleigh fading statistics are astimation obtained at step k — 1 to obtain

sumed for all taps. Results are provided both for a static chanagimbol estimates as 5i(k) = 7(k) /hi(k — 1);
(using an averaging window of size 500) and for a time-varyiri®) It updates the channel attenuatlons es-
channel (using an exponential window) for a terminal speed ations as hi(k)=1/B Zl Bl ik —1/QGi(k —

v = 3 m/s, as specified in the HL2 standard. 1)), where Q(5;(k — 1)) denotes the hard de-
00X XPX - XP,X---X0X---XPsX---XP,X---X0---0| (21a)
—— —— —_— —_— Se—-— — —— ——

6 5 13 6 6 13 5

ot
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Time domain estimation MSE - SNR=25dB Frequency domain estimation MSE — SNR v=3m/s — Channel A - Lambda=0.99

10" o

+*| &~ Pilot based — any constellation | L
....| B~ Subspace - any constellation 1. : .

..| =+ Decision directed - QPSK e TR .

| - Decision directed — 16QAM

—— Decision directed - 64QAM

TMSE
MS
3

{ —©— Pilot based - any constellation } -+~ -:
st ------oo--| =8 Subspace - any constellation
........ e L | = Decision directed - QPSK

: : : —- Decision directed — 16QAM
........................... “oeoch b o Decision directed - 64QAM

1 1 ] )

-3 1 1 L 1 1 | I ' I ) —4 N : " L 1
10 50 100 150 200 250 300 350 400 450 500 10 50 100 150 200 250 300 350 400 450 500
Number of observed OFDM symbols Number of observed OFDM symbols
Fig. 4. Time domain channel estimation MSE along the frafig/N, = Fig. 5. FD channel estimation MSE along the frarfigy Ny = 25 dB.
25 dB.
5 Time domain MSE — Channel A — Terminal speed v=3m/s
. N . 10 B N R .
cision taken from s;(k — 1) by the quantizer SN [ =5~ Pilot based estimation - All constellations |:
. . . - —B— Subspace estimation — All constellations
Q)(.) associated with the constellaton. | | S Decision directed estimation - QPSK
T : : ! "1 —— Decision directed estimation - 16QAM
: - -| —%— Degcision directed estimation — 64QAM

Note that it has been chosen to average the DD estimat
over B = 20 blocks because it has revealed experimentally |-
be a good tradeoff between error propagation (large values - .
B) and channel tracking (small values B)). Note also that a N U Db NN\ N B e
denoising of the estimation is also applied to the pilot-bas@ [N ORONL T TR
and DD estimations to allow a fair comparison between alg ‘ _ v , :
rithms. This allows us to take into account in the estimationth 1o} e ;
the channel frequency response actually corresponds in the t :
domain to a CIR of length upper boundedyl. = M /4 [29].

C. Simulation Results

Figs. 4 and 5 illustrate the behavior of the three channel es 10 g G N g
mation methods along the frame for transmission over the tir, © % ' ® 20 2 0 % 4 &N
varying channel A aF, /Ny = 25 dB. They depict the MSE
in the time and frequency domains as a function of the numbé&ig- 6. Time domain MSE as a function &, /No. Channel Aw = 3 m/s.
of received symbols. It appears clearly that the channel estima-
tion provided by the pilot-based method degrades quickly whand frequency domain and the average uncoded BER as a
the channel is varying and that tracking the channel variatiofgction of the SNR (quantities are averaged over the full
is a must with long frames. The subspace algorithm tracks thiame of 500 OFDM symbols for many channel realizations)
channel variations and offers performance independent of flee thechannel model AThe conclusions drawn previously for
constellation. For channel estimation in the time domain, it o, /Ny = 25 dB can be generalized. The subspace algorithm
fers good performance and clearly outperforms the DD algdees well for channel estimation in the TD (it outperforms the
rithm for 16 and 64 QAM. For channel estimation in the frebD estimator for 16 QAM and 64 QAM ) and significantly
guency domain, the DD is preferable. Note, however, that tiraproves the estimation provided at the beginning of the frame.
probability of making a wrong decision increases with the co®n the other hand, the DD is preferable for channel estimation
stellation size with the DD and that it can suffer error propan the FD. Since the equalization is performed in the FD in
gation, unlike the subspace algorithm (this property has oftenr setup, this translates into the BER curves of Fig. 8, which
prevented the DD algorithm to be used in practice). This is eshows that the BER obtained using the subspace algorithm,
pecially highlighted in Fig. 5, where the effect of error propaalthough significantly improved compared with the case when
gation is clear. The channel estimation provided by the DD i refinement is performed, is outperformed by the DD, even
degrading along the frame, whereas the subspace accuradpi4 QAM.
approximately constant after a few observed symbols. To provide a more general insight on the relative merits of the

In order to compare more deeply the subspace and thebspace algorithm compared to the DD algorithm, Figs. 9-11
DD algorithm, Figs. 6—8 depict the average MSE in the timaéepict the same quantities for mndom FIR channelwith
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Frequency domain MSE - Channel A - Terminal speed v=3m/s Tlme domain MSE ~ Random channel - Term:nal speed v=3m/s

e Pllot based estimation ~ All constellations {:
{ —&— Subspace estimation — All constellations
| —— Degcision directed estimation — QPSK
: —>— Decision directed estimation - 16QAM
---- N O N —%— Decision directed estimation — 64QAM

3 - Pllotbased estlmanon All conslellatlons .
| -5 Subspace estimation ~ All constellations
| —— Decision directed estimation — QPSK DT WA W
| —— Degcision directed estimation — 16QAM [ TR

.| =¥~ Decision directed estimation - 64QAM

w
[
=
e N e N e N
10-2 ........
N L 10—3_, Lo Iiﬁ: R R R v ,Z:’,..l
R 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 a5 40 45 50
SNR SNR
Fig. 7. FD MSE as a function df, /No. Channel Aw = 3 m/s. Fig. 9. Time domain MSE as a function &f,/N,. Random channek =
3 m/s.

Frequency domain MSE Random channel — Terminal speed v=3m/s

| —o— Pilot based estimation - All constellations |
.. | =8— Subspace estimation — All constellations
| —— Decision directed estimation - QPSK

| —»— Decision directed estimation — 16QAM
| = Decision directed estimation - 64QAM

& Pilot based estmation
-8 Subspace estimation
- % -_Decision directed estil

] 5 10 15 20 25 30 35 40 45 50
SNR

Fig. 8. BER as a function aE, /N,. Channel Axv = 3 m/s.
Fig. 10. FD MSE as a function df, /N,. Random channet: = 3 m/s.

the random channel order upper bounded by the cyclic prefix
length. This scenario is more general but does not take inmtnich cannot be accurately tracked since the algorithm requires
account the fact that the channel usually has a decreasing ataaveraging window of length greater thalf 2The DD also
tistical power profile, as channel model A does. With this neexhibits an error floor, but it is easily possible to lower it by
scenario, DD is slightly favored compared with the subspaceducing the number of symbols used for the averaging as the
algorithm, but the conclusions drawn for channel A extend ®NR increases.
this new simulation scenario: The subspace algorithm offersFinally, we provide in Figs. 12—14 some curves obtained for a
good performance for time domain estimation and a moderatatic random channels with time-varying channels, the sub-
one for frequency domain estimation. Moreover, it can be ispace algorithm is better for channel estimation in the time do-
ferred from the comparison between results with channel A andhin rather than in the frequency domain but is also outper-
the random channel that the subspace algorithm performaifacened by the DD algorithm. Note, however, that BER perfor-
is enhanced when the channel has a decreasing power profitances are almost the same with or without channel tracking
This is probably due to better matrix conditioning. and, hence, that both the DD and the subspace algorithm are
Note that both the subspace and the DD suffers from ernaseless in a static channel context. Indeed, with static channels,
floor phenomenon with time-varying channels. Actually, thithe only errors to occur are due to the thermal noise because the
can be explained by the number of observations required to @hannel estimation obtained at the beginning of the frame using
tain a channel estimation in the noiseless case (akglutPhus, pilot symbols is accurate enough to avoid errors due to an inac-
at high SNR, the error floor occurs due to the channel variatiortsirate channel estimation.
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Frequency domain MSE - Random time invariant channel

{76 Pilot based estimation
8- Subspace estimation
- % - Decision directed estil
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| —8— Subspace estimation — All constellations

... | —+— Decision directed estimation — QPSK
—p— Decision directed estimation — 16QAM

] 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

SNR SNR
Fig. 11. BER as a function df, /N, . Random channeht: = 3 m/s. Fig. 13. FD MSE as a function df, /N,. Random static channel.

Time domain MSE — Random time invariant channel Uncoded Bit Error Rate — Random time invariant channel

] —8— Subspace estimation — All constellations
-+ —— Decision directed estimation - QPSK

-| —p— Decision directed estimation — 16QAM
—— Decision directed estimation — 64QAM

8- Subspace estimation
*-_Decision directed estimation |

o
wl
m

10°

10—5 1 1 Il 1 1 1 1 Il Il 4

° 5 1 15 20 2 % 3% 40 A s 1%, 5 10 15 20 25 30 35 40 45 50
SNR SNR
Fig. 12. Time domain MSE as a function &% / N,. Random static channel. Fig. 14. BER as a function . /N,. Random static channel.

D. Discussion Performance could be improved following the steps proposed in

The proposed method has been shown to offer good perff23] and [30]. In any case, even in this frequency domain equal-
mance and to compare favorably with the DD algorithm fagation framework, the proposed method does work in practice,
channel estimation in the time domain. For channel estimatiexen if the performance is not always as good as that of the DD
in the frequency domain, even though it works and does improwae. Moreover, since the performance of that class of method
the channel estimation accuracy, it is outperformed by the Dddes not depend on the constellation size, they could be useful
algorithm. This loss in performance is mainly due to the fact thédr applications using varying or very large size constellations
the proposed subspace algorithm, as does any subspace mefleogl, 256 QAM) [3] and/or constellations unknown to the re-
suffers of important error floors phenomenon due to the averiver. Further, the subspace method also has the interesting
aging window involved by the autocorrelation matrix estimazharacteristic to be able to work in a fully blind context.
tion. This limitates the interest of subspace methods comparediore important, the subspace method has the very attrac-
with DD approaches to practical applications with slow-varyintjve feature of estimating directly the channel impulse response,
channels, provided that one accepts to be subject to error prayirereas the DD first estimates the frequency domain channel at-
agation phenomena, which may happen with DD algorithms.tenuations. This explains why the DD algorithms often perform

Besides, this conclusion concerning the frequency domaimrse for channel estimation in the time domain. Indeed, the
equalization must be made mild because this is only a first @hannel attenuations on the guard carriers cannot be estimated
tempt to apply that class of methods to a real context and heith the DD yielding an inaccurate estimation in the time do-
cause only a basic implementation has been considered hergiain.
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Furthermore, unlike DD, this feature allows us to extend trendnp (k) = (no(k)?,ny (k)% na(k))?. From these decom-
method to identify channels with length greater than the Cpysitions, each of matricdd, andH; can be split into nine
whichis a problem that occurs, for example, in digital subscribeubmatrices, leading to the following relationship:
line (DSL) contexts [3]. This can be useful because a shortening

of the time domain channel impulse response [14] is usually rop(k) = [ro(k), r1(k), r2 (k)]
performed at the receiver in that case. Thus, this requires us to Co 0 0 so (k)
estimate the taps located after the CP, which is difficult with =|C, C, 0© s1(k)
methods operating in the frequency domain. In contrast, the pro- 0 e so (k)
posed subspace algorithm [31] has been extended toward this 00 C so(k— 1)
aim, as reported in [32] and [33]. 1o o 01 52(k 1)
Finally, it is important to note that the subspace approach re- 00 0 s;(k _1)

lies on the use of a redundancy (the cyclic prefix) whose struc-
ture is imposed by the transmitter and is designed for equaliza- + [no(k), ny (k) n2(k)]" (26)
tion purposes but not for channel estimation. This may be the
most limiting factor of that kind of method since itimposes botihere matrice€, andC; are defined as previously, wheg,
the minimal size of the averaging window as well as the conds the (M — L) x (M — L) Toeplitz matrix with first column
tioning of the matrix to be decomposed by SVD. In [34], a suiko, - - -, 21, 0,...,0]" and first row[h, 0, ...0]" and where
space method is proposed for linearly block-precoded OFD&, andC/ are defined a€} = [CT, OLX(M,QL)]T andCy =
systems [35] in which the redundancy can be arbitrarily choséﬂLx(M,QL), Cl]. Following the lines of Section IlI, we can
since it is introduced by the block precoder. This allows us ®efiner(k) as
obtain improved performance and to use the method in realistic
contexts, provided that the compatibility constraint is relaxed. (k) = [r1(k — )%, ro(k — DT ro(B), v (k)T r2(k)F]*

(27)
to get the relationship that follows, from which it is possible to
derive the subspace algorithm:

This paper has presented a new blind channel estimation

VI. CONCLUSIONS

method for OFDM systems. Making use of the redundancy ifi{k) = [r1(k — 1), r2(k — 1), ro(k), r1(k), r2(k)]"
troduced by the cyclic prefix to identify the channel, it preserves C, ¢, 0 o b1

the classical OFDM transmitter structure and, thus, applies to Cc/ Cy 0 0 Sl(k )
most existing systems. The method can operate inafullyblind =| 0 C; 0 G sa( Z 1
context and does not require initialization. It can also be used 0 0 ¢, C Sl(k)

to improve the estimation obtained from pilot symbols using 0 0 Cf G s2(k)

semi-blind procedures, as proposed in this paper. The most 4 1y (£ — 1), ny(k — 1), no(k), ny (k), na(k)]* . (28)
important feature of the method is that it estimates directly the
channel impulse response rather than the channel attenuations
on subcarriers. Thus, unlike decision-directed algorithms,
the proposed algorithm can be extended to estimate channels
longer than the cyclic prefix, which is important for channel
impulse response shortening algorithms. Simulations haveThis appendix focuses on the noise subspace of mHifk)
shown that the proposed method offers good performanceaind provides some results concerning identifiability.
practice, especially for channel estimation in the time domain.

For channel estimation in the frequency domain, some limita: Structure and Dimension of the Noise Subspace

tions may reduce the practical impact of subspace approacheéince permuting the columns of a matrix changes neither its
compared with decision-directed algorithms estimating direct]

the channel attenuations from svmbol decisions Q{gnal subspace nor its noise subspace, the demonstration is con-
y : ducted in the following with the matrii(h) defined in (29)
instead of the matrix defined in (5) since it simplifies the later

APPENDIX B
IDENTIFIABILITY ISSUES

APPENDIX A developments.
IMPLEMENTATION OF THE SUBSPACEALGORITHM FOR ANY
VALUEOF L, K, ORM Co 0 0 C; 0 0 0 07
C, G 0 0 0 0 0 0
In this Appendix, we detail how the subspace algorithm can 0 C Cy 0 0 0 0 0
be implemented for any value af andL verifying M > 2L. 0 0 C C 0 0 0 0
Consider the I/O relationship (1ye,(k) = Hoscp(k) + Hh)=|0 0 0 C C 0 0 0
H;s.,(k—1)+np(k). Due to the CP, the vecter,, (k) can be 0 0 0 0 C, Cy, 0 0
split into three subvectors of siZe M — L, andL, respectively: 0 0 0 0 0 C Co O
Scp(/ﬂ) = (So(k)T, Sl(k)T, SQ(k)T)T with So(k) = Sg(k). Sim- 0 0 0 0 0 0 C, G
ilarly, bothr, (k) andnp(k) can be split into three subvectors Lo 0 0 0 C 0 0 CJ

of sizeL, M—L,andL asr.,(k) = (ro(k)*, r1 (k)T ro(k)1)T (29)
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Consider a vectog; = [gl”

%

c=[cfcil
is equivalent to

[g% ) 8 }CIO
[éHgquIO
[gHgquIO
k?H,fH7+g$H}C3=0
[§H+£ £TTC=0
[g?, 3H}C*=0
[ngquIO
[ﬁHgqu—O
Let H(z) = 2F

andpy, ...

,...,g?T]T in the noise sub-
space of matri (h). Let C be the2L x L matrix defined as then matrix(I;, — D*) is invertible, andvi,a; =
; the orthogonality relationshig??

H(h) =0

(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
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If no channel zero is located on subcarriers (pg.,# 1, Vi),
—b;. Thus,
any vectorg; in the noise subspace is uniquely definediyy
Hence, the noise subspacd®fh) has dimensiod, andH(h)

is full column rank. If there ar& < L zeros located among the
M subcarriers, le = {k1, ..., kz} be the set of index corre-
sponding to these zeros (that is, such ﬂi‘ét_ 1). In this case,
(I, — D*) is no longer invertible. HoweveW(IL —DYHa; =
V(D* — Ip)b; involves thata; (k) = —b;(k) for eachk ¢ Z.
This proves that the noise subspaceH)(fh) has dimension
L + Z since any vectog; in the noise subspace is uniquely de-
fined by the sizel + Z vectore; = [a;(k1), ..., a;(kz),bI]7.

B. Uniqueness of the Solution Using the Entire Noise Subspace

Leth’ = [h}...h"] be a vector such thag’H(h') =
Oforl < ¢ < L+ Z, whereG = [g1,...,8r1+z] is a
basis for the noise subspad@”H(h') = 0 is equivalent to
GHH(h') = 0, whereG.. stands for the canonical basis corre-
sponding to the vectoks = 1L+Z forl <4 < L+4Z (note that

o hiz~" be the channel transfer functionif z = 0, ¢; simply reduces ttb ), Wherels denotes the vector
,pr be its L roots, which are assumed to be distincgf sizeS with 1 at positiorni and 0 elsewhere. Considering (37),

[if H(z) has multiple roots, it is easy to extend the demonstr@fH(h/) = 0 involves

tion using the generalized Vandermonde vectors [36]], and let

p; be the Vandermonde vector of sizé 2ssociated withy;:

H
pi = [Lpfl---,p L= 1;}
C is spanned by thé Vandermonde vectonsy, . ..

. The left null space of matrix
, P 8SSo-

ciated with theL roots of H(»). Let V andD be theL x L

matrices defined as

pi - p.”
Vel i e
p1(2 2) pL(2 2)
—(2L—-1 —(2L—-1
p1< ) PL( )
and
pt 0 0
D=|"Y
: .0
0 0 pf

(38)

(39)

LH i~ i | Col)
177 [DYVH V] [Cl(h,) ofor1 <i<L
DHVH yH] [ W) g (41)
? Cl(h/)
and henceH'(z) = Ef:o hiz~* shares the same roots as

H(z), which proves thah’ = «h.

C. Channel Estimation Using Only a Part of the Noise
Subspace

It has been proven that the channel can be uniquely identified
under the condition that the noise subspace dimendieiy) is
known. However, the numbéf of zeros located on subcarriers
can only be upper bounded ysince the channel is unknown,
and the noise subspace dimension can only be assumed to be
greater or equal td.. Thus, it is of interest to know if unique-
ness is guaranteed if only independent vectors of the noise

A basis for the left null space of matri€ is given by the Subspace are considered.

columns of matrix[(VD)” VT]T = [p1,---
any vectorg; in the noise subspace, there exists a gizector

= [(vD)T vI]" a}

T
a}? such that ng g?Tl =
similarly with (31) to

,pr]. Hence, for

12 Proceeding
36), it can be ShOW“ that any vectofhere are several zeros located on the subcarrier) and assume

Uniqueness is ensured if no zero is located on subcarriers be-
cause the entire noise subspace is considered in that case. Let
us assume now that one zero is located on a subcarrier (the fol-
lowing developments can easily be extended to the case where

in the noise subspace is only defined by two sIze/ectors without any loss of generality tha#! = 1. In this case, any
T'since  vector in the noise subspagg is uniquely specified by a size

a;, = [a;(1),...,a;(L)]*" andb; = [b;(1),...
it has the foIIowmg structure:
rgrl T VD*a;
gZQ VD?’ai
g? VD32a;
g} VDa;
g= |8 | = | VIL —DYa; = V(D* —1)b;
g’ VDb,
Lg?] L Vb;

(40)

L + 1 vector of sizec; = [a;(1),b]*. If L independent vec-
torsg; for 1 < ¢ < L of the noise subspace are considered,
the corresponding vectors for 1 < ¢ < L are independent.
Hence, (41) holds, which proves that = «h. If the vectors

b; for 1 < ¢ < L are not independent, a vectat satisfying
glH(h') = 0for 1 < i < L such thah’ # «h can be found.
For example, let us assume that theéndependent vectors;
used to identify the channel are the vectgff the canonical
basisG. for1 < ¢ < L + 1 and¢ # 3. Leth’ be the sizet
vectors of norm 1 defined by the data of the— 1 roots p.
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of H'(z) with p, = p, for ¢ # 2 andp}, # p.. In that case,  [4]
(g9)"H(h') = 0 and(g5)”"H(h') = 0 sincep; is a root of
H'(z). In addition,(g¢)"H(h') = 0 for4 <4 < L + 1 since
ps,...,pr areroots of’(z). Henceh' # «h but satisfiesthe  [5]
orthogonality relations. Thus, identifiability is not guaranteed 6]
when some channel zeros are located on subcarriers.

Besides, the numbeR of different roots betweert (z)
and H'(z) is smaller thanZ, which is proved in the fol- 7]
lowing when Z = 1 (the demonstration can be extended
to Z > 1). In order to do this, let us compute the spectral
decomposition of matriB := [by,...,bz], which is given 8]
by B = UgAVB, whereUp andV g are square orthogonal 9]
matrices of sizeL x L and whereA is a diagonal matrix
with main diagonal entriedy,...,d;, with d;, > --- > d.

Co(h') 1ol

From (37), AU[(VD)", V#] [Cl(h,) = 0. If the L
eigenvectorsby,..., by are not independent, then matrix a1

A is noninvertible, andl; > --- > d;_; > dr = 0.1In
that case, it can be shown that for eack {1,...,L — 1},
Zfz_ll [Ugli ;p; is a linear combination of the Vandermonde [12]
vectorsp’ associated with the rootg of H'(z). Let us assume
that ® > 1, and consider, without any loss of generality, that;3
o, # p; for 1 < ¢ < R. Using the fact that the columns of a
tall Vandermonde matrix built from distinct roots are linearly
independent, it can be shown that for eaeh{1,...,D — 1},
[Uglii = [Usgli2 = 0, and therefore, that the two first
columns ofU g are proportional, which is impossible because
U g is orthogonal. Hencel < 7 = 1.

[14]
[15]

[16]

D. Identifiability With the Semi-Blind Algorithm
Consider the semi-blind algorithm defined by (15), and as-

sume that the numbéf of channel zeros located on subcarriers[17]
is smaller than the number of pilot subcarridfsLet h’ be a
vector satisfying (15). Equation (15) involves (6), and hence[18]
at mostZ roots of H'(z) are different from those oH(z).
Denote theseé? < F roots asps,...,pr andpi,...,py for
H(z) andH'(z), respectively. Since both andh’ must satisfy
FPilh = hri! for the pilot subcarriers frequencigd’, . . ., p2!

(19]

,Pr
o (pfil —pi) = an Hfil(p})ﬂ — pi) must hold for every [20]
Jje€{1,...,F}, wherea; anda, are two nonzero normaliza-
tion constants. Hence, ever§' is a root of the degre& poly- ~ [21]
nomial P(x) = a1 [[Ie, (@ — pi) — o [[22, (& — p}). There-
fore, P(x) is equal to zero for any value af since it is a de-  [22]
greef? < F polynomial with £ distinct roots. Thusg; must
be equal tax,, andpy,...,pr must be equal tg/,...,pr up  [23]

to a permutation, and henck! = h. Therefore, the unique-
ness of the solution provided by (15) is ensured if the numbefr24]
of channel zeros located on the unit circle is smaller than the

number of pilot subcarriers. 25)
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