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Subspace-Based Channel Estimation for Code
Division Multiple Access Communication Systems

Stephen E. Bensley and Behnaam Aazhang, Senior Member, IEEE

Abstract— We consider the estimation of channel parame-
ters for code-division multiple access (CDMA) communication
systems operating over channels with either single or multiple
propagation paths. The multiuser channel estimation problem
is decomposed into a series of single user problems through
a subspace-based approach. By exploiting the eigenstructure of
the received signal’s sample correlation matrix, the observation
space can be partitioned into a signal subspace and a noise
subspace without prior knowledge of the unknown parameters.
The channel estimate is formed by projecting a given user’s
spreading waveform into the estimated noise subspace and then
either maximizing the likelihood or minimizing the Euclidean
norm of this projection. Both of these approaches yield algorithms
which are near—far resistant and do not require a preamble.

I. INTRODUCTION

N a code-division multiple access (CDMA) communication

system, all users simultaneously occupy the same frequency
band, and thus great care must be taken to limit multiple-
access interference (MAI). Although the spreading waveforms
are designed with low cross-correlations, the users’ signals are
not truly orthogonal. If power levels are widely varying, code
design alone may be insufficient for suppressing MAI. This is
the near—far problem.

Conventional CDMA systems either ignore the near—far
problem or try to limit it with power control, and thus,
standard single user techniques (e.g., matched filters, active
correlators, state estimators, etc.) are used for synchronization
and detection [1]. However, even a small amount of the
near—far effect can drastically degrade the performance of
conventional receivers [2]. For many years, this was thought to
be an inherent limitation of CDMA until Verdud developed the
optimum multiuser detector [3]. Verdd’s work was followed by
many suboptimal schemes of lower computational complexity
[4]-[6], all of which are near—far resistant. However, these
methods deal only with detection and assume that the timing
of the spreading waveforms is known.

In addition, many wireless transmission channels are char-
acterized by multiple propagation paths that further complicate
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synchronization. This problem is particularly severe in urban
and indoor environments [7], [8], which are of great interest
for cellular mobile radio applications and wireless local area
networks. Direct sequence spread spectrum (DS/SS) has often
been studied for these applications; however, many radio
channels exhibit such severe multipath effects that even the
strict autocorrelation properties of the spreading waveforms
are inadequate for rejecting multipath interference. Further-
more, rather than simply rejecting multipath, we can exploit
this time diversity by using a RAKE receiver matched to
each propagation path [9], thus capturing the multipath energy
and improving our overall signal-to-noise ratio (SNR). The
multiuser detection problem has been extended to multipath
channels [10], [11], where it has been shown that the outputs
of a bank of filters matched to each propagation path for
each user (or equivalently a RAKE correlator for each user)
form the sufficient statistics. However, to optimally “recom-
bine” the multipath requires knowledge of the relative delays,
amplitudes, and phases of the various propagation paths.

Most of the work done on timing acquisition for CDMA
systems focuses on jointly estimating the necessary parame-
ters for all users [11]-[13]. While these techniques produce
excellent results, they can be computationally intense since
they involve solving a multidimensional optimization problem
for a large number of parameters.

In [14], the authors presented a technique for reducing
this to a one-dimensional (1-D) problem while retaining the
performance of maximum likelihood estimation. This method,
however, requires a preamble and is incapable of multiuser
timing estimation. Subspace-based techniques avoid both of
these drawbacks, while providing a straightforward method
for decomposing a multidimensional parameter search into
a series of 1-D optimization problems. Subspace-based esti-
mation has been widely studied for array signal processing,
system identification, and time series analysis (see [15] and
references within). The received signal is modeled as an
arbitrary linear combination of several unknown signal vectors
plus noise. These signal vectors are known functions of
unknown parameters that we would like to estimate. By
exploiting the eigenstructure of the correlation matrix, the
observation space can be partitioned into a signal subspace
and a noise subspace without prior knowledge of the signal
vectors. In this paper, we examine a CDMA network within
this framework, where the signal vectors are the spreading
waveforms and the unknown parameters are the channel
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coefficients.! The estimate is based on the projection of a given
user’s signal vectors into the estimated noise subspace.

II. ANALYTICAL MODEL OF A CDMA SYSTEM

A. Spread Spectrum Signal

In a CDMA network, several users transmit simultaneously
over a common channel, so the received signal can be modeled
as the superposition of K active users with additive channel
noise

K
Z H4+n —oco<t<oo (N

where 7, is assumed to be white Gaussian noise with zero
mean and a two-sided power spectral density of Np/2. If the
transmission channel is linear, then 74(¢) can be expressed
as the convolution of the transmitted signal s;(¢) with the
time-varying channel impulse response hy (7, ¢)

ri(t) = hr(t, 7) * sg(t)

/ hi(t, &) sk(a) do. )
Note, that in a multiuser system, a different channel impulse
response may be associated with each user’s signal since in
general the users are transmitting from different locations. In
a cellular system, this will be the case for the reverse link,
whereas the channel impulse response will be the same for
the forward link.

If phase-shift keying (PSK) is used to modulate the data,
then the baseband complex envelope representation of the kth
user’s transmitted signal is given by

sk(t) = /2P 7% Z ej(z’“/M)mg)ak (t—1iT)

%

&)

where P is the transmitted power, ¢y is the carrier phase
relative to the local oscillator at the receiver, M is the size
of the symbol alphabet, m{’ € {0, 1, .-, M — 1} is the
transmitted symbol, ax(t) is the spreading waveform, and T
is the symbol duration.

The spreading waveform a(¢) is formed by modulating a
signature sequence of N “chips.” If PSK is also used for the
spreading modulation, then the spreading waveform is given
by

N-1

Z g (¢t — nTc)a;n)

n=0

ak(t) = C))

where Iy (t) is a rectangular pulse, 7, is the chip duration
(T, = T/N), and {a{”} for n = 0,1,---, N—1 is
a signature sequence (possibly complex valued since the
signature alphabet need not be binary).

Since we would like to do our signal processing digitally,
the received continuous-time signal is converted into discrete-
time by sampling the output of a filter matched to the chip
waveform. For PSK, the chip waveform is a rectangular pulse,

'See [16], where the authors report on a similar but independent work.
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so the matched filter can be implemented as an integrate-and-
dump circuit, and the discrete-time signal is given by

1 (n+1)T,

nT,

rln] = )
Since the chip timings of the users are unknown, the integra-
tion interval of the filter is chosen arbitrarily. Thus, a given
interval will generally contain components from two chips for
each user. This averaging of adjacent chips attenuates the high
frequency components of the spreading waveforms, resulting
in an average® loss of 1.76 dB to the SNR with a worst case
loss of 3 dB when the misalignment is exactly %TC. While
this obviously increases the estimation error, in many cases
this is preferable to the alternative of sampling faster than the
chip rate.?

Due to the underlying periodicities of the spreading wave-
forms, the covariance function of the received signal is not
shift-invariant, and thus r[n] is not wide-sense stationary
(WSS). This can cause problems since many traditional sig-
nal processing techniques are tailored toward WSS random
processes. Fortunately, r[n] is wide-sense cyclostationary. Its
mean function is zero and thus trivially periodic, and the
covariance function is invariant to a shift by NV in both its
arguments. Thus, the received signal can be converted into
a sequence of WSS random vectors by buffering 7[n] into
blocks of length N

vi = [r[¢N] (6)

where the nth element of the ith observation vector is given
by yi » = r[n + ¢N] defined in (5).

Although each observation vector corresponds to one sym-
bol interval, this buffering was done without regard to the
actual symbol intervals of the users. Since the system is
asynchronous, each observation vector will contain at least the
end of the previous symbol and the beginning of the current
symbol for each user (see Fig. 1). Multipath effects may
result in additional components from earlier symbols; however,
we will assume that the multipath delay spread is small
enough that these can be neglected. Thus, each observation
vector can be viewed as a linear combination of 2K signal
components plus noise. Since for now we are only interested
in estimating the channel impulse response, the factors due
to the power, phase, and transmitted symbols of the kth user
may be collected into a single complex constant cg), e.g., some
constant times ~/2P,ed[#s+(27/ M>m5cl>]. The signal model for
all K users can now be written as

r[1 +iN] rIN—1+iN]]" e ¢V

K
vi= Y [ Vg + cul) 4y = Aci (D

k=1
where n; = [1;,0, -+, 7, N_1]T e €V is a Gaussian random

vector and its elements are zero mean with variance o2 =

Ny /2T, and are mutually independent. The signal vectors uj,
and ul, depend only on the user’s spreading waveform and

2The average loss in dB is calculated as 10 log 1.5

3The drop in SNR can be reduced by integrating and dumping every T:./2
s instead of every T.. Obviously, increasing the sampling rate increases the
size of the data and in turn increases the hardware requirernents.
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Diagram to depict a two-user asynchronous system with arbitrary timing of chip integrations. The statistics y; , are defined in (6). Note that since

the users and the receiver are not synchronized, in the integration over one chip period, there are contributions from two adjacent chips for each user.

the associated channel impulse response. Thus, if the channel
is time-invariant, the signal vectors do not vary with ¢. It is
possible to gain insight from a simple channel model where
these vectors uj and ul, are the right side of the kth user’s
code vector followed by zeros and zeros followed by the
left side of the kth user’s code vector, respectively. These
vectors will be defined more precisely for different channels
in the following section. Note that in (7), we have defined

ci = [Cii_l) Cgi) . c%_m cg?]T € €% and the signal
matrix A = [u] u} - uf uk]e VK,

An important issue that we will not address is the deter-
mination of the number of users. For this paper, it will be
assumed that K is known; however, a variety of techniques
have been proposed for estimating the model order (e.g., [17]).

B. Transmission Channel

To examine how the signal vectors depend on the channel
impulse response, we first consider a transmission channel
where each user’s signal goes through a single propagation
path with an associated attenuation factor and propagation
delay. We assume that these parameters vary slowly with time,
so that for sufficiently short intervals the channel is approx-
imately a linear time-invariant (LTI) system. The baseband
channel impulse response can then be represented by a Dirac
delta function as hi(t, 7) = hi(t) = apb(t — ), V7,
where oy, is a complex valued attenuation weight and 7, is
the propagation delay. Since there is just a single path, we
assume that o, is incorporated into c,(:) and concentrate solely
on the delay.

By sampling and blocking the input data, the receiver has
established an arbitrary timing reference. In order to success-
fully “despread” a given user and detect its data symbols, we
only need to know the chip and symbol timing relative to

this reference; thus, the propagation delay 75 can be evaluated
modulo the symbol period T'.

We now define v € {0, --+, N—1} and y € [0, 1) such that
(1/T.)mod N = v + . Let’s first consider the case where
v = 0, i.e., the received signal is precisely aligned with the
chip matched filter. For this special case, only one chip will
contribute to each sample, and the signal vectors are

u = ag(v)
E[agN_”) - a,(CN_l) 0 - 0"
uj, =aj,(v)
=[0 - 0 a¥ ... JNTYT (8)

Since the chip matched filter is just an integrator, the
samples for a nonzero ~ will be a convex combination of
two adjacent chips

Yai(v) + yap(v + 1)
14
k

u 1 -
uf = (1 - )a(v) +ya,(v +1). )

I

We now consider the more general case of a multipath
transmission channel with L distinct propagation paths. If we
retain the LTI approximation, the impulse response becomes
a series of delta functions

hi(t, T) = hk(t)

L
=3 a6t =T p). (10)
p=1 '

The multipath spread of the channel, 7,,, is the maxi-
mum difference between propagation delays, ie., T, =
maxp, p' [Tk, p — Tk, |- Typical values for the multipath spread
are 0.3 ps for indoor channels and 10 is for outdoor channels
[7], [8]. We assume that the multipath spread is less than half



1012

the symbol period (T, < %T), which is consistent with data
rates of 1.5 Mbs indoors and 50 Kbs outdoors.

Since the amplitudes and phase shifts of the various paths
may be quite different, we can no longer neglect the o ,’s.
Thus, the signal vectors will be a weighted sum of the convex

combinations corresponding to each path
L
uy = a, p[(1 = Ve, p)a% (Vk, )
p=1
+ Yk, p% (Vk,p + DI,

L
uj = Z a,p[(1 - 'Yk,p)ai(yk,p)

p=1
+'Yk,pa§c(’/k,p+l)]- (11)
If we define
U; =[a}(0) - ap(N —1)]e VN
U}, =[ak(0) -~ aj(N -1)]e ¥ (12)

where the a;’s are as defined in (8), then the signal vectors
may be expressed as a linear combination of the columns of
these matrices

uj, = Ulhy, (13)
where hy, is the composite impulse response of the channel and
the receiver front-end, evaluated modulo the symbol period.
Thus, the nth element of the impulse response is given by
© 1 pTHEADT
hin = D 7 / hi(t) * Ip, (t) dt.
J

b
=0 TC T4+nT,

(14)

Note that due to our restrictions on the multipath spread, at
most two terms in the summation will be nonzero.

III. SUBSPACE BASED CHANNEL ESTIMATION

A. Subspace Approach

If the users’ signal vectors are linearly independent, the
data component of each observation vector y; will lie in
the 2K-dimensional subspace spanned by the columns of
the signal matrix A. Thus, the observation space may be
partitioned into a signal subspace (Sy) and a noise subspace
(Ny). From our model, it is clear that for a given set of
K spreading waveforms, there is a well-defined mapping G
from the channel parameters to the resulting signal subspace,
ie, G({hg}) = Sy. If this mapping is one-to-one and
thus, invertible, then the channel parameters can be uniquely
determined from Sy. For our purposes, we will assume that
this bijection can be guaranteed by proper choice of codes or
by placing restrictions on the class of channels over which we
operate.

In the absence of noise, once 2K linearly independent
observation vectors have been collected, we can determine Sy
exactly, and the desired parameters will immediately follow.
Of course, in practice the observation vectors are corrupted
with noise, and we must estimate the signal subspace. Since
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a parametric approach would be prohibitively complex, we
instead form an unconstrained estimate 3y, i.e., a set of basis
vectors that best fit the observed data without regard to our
analytical model for the received signal. While this drastically
reduces the complexity of the estimator, the result is that
with probability one, Sy will not lie in the range space of
G, and thus G~1(Sy) is undefined [18]. Therefore, we must
instead choose a feasible Sy that is “close” in some sense to
Sy. While a wide variety of algorithms have been proposed
[19], we follow an approach based on the projection of a
user’s signal vectors into the estimated noise subspace. This
method has the nice property of allowing us to form each
user’s estimate independently of the others, which drastically
decreases complexity.

B. Estimating the Signal Subspace
The correlation matrix of the observation vectors is given by
R = Ely;y]]
=ACA" 4+ 0’1 (15)

where C = E[c;c]] € €2K*2K s diagonal, A is defined in
(7) and o? is the noise variance. The correlation matrix can
also be expressed in terms of its eigenvector decomposition

R = vDvVt (16)

where the columns of V € €YY are the eigenvectors of R,
and D is a diagonal matrix of the corresponding eigenvalues
(An). Furthermore

d, + o2,
)\n:{ 7

g,

if n <2K

otherwise an

where d,, is the variance of the signal vectors along the nth
eigenvector and we assume that 2K < N. Since the 2K largest
eigenvalues of R correspond to the signal subspace, V can
be partitioned as V = [Vg V], where the columns of

Vs = [vs,1 -+ Vs,2k] € CV*2E form a basis for the
signal subspace Sy and Vi = [vu,1 © VA, N-2K] €
CV*N=2K ¢haps the noise subspace Ny

Since we would like to track slowly varying parameters, we
form a moving average or Bartlett estimate of the correlation
matrix based on the J most recent observations

fiq:% >yl

j=imJ+1

(18)

It is well known [20] that the maximum likelihood estimate
of the eigenvalues and associated eigenvectors of R is just
the eigenvector decomposition of R.. Thus, we perform an
eigenvector decomposition of R, and select the eigenvectors
corresponding to the 2K largest eigenvalues as a basis for Sy.

C. Channel Estimation

Consider the projection of a given user’s signal vectors into
the estimated noise subspace

e} (u;,;TYN)T} c N-2K
e, = (ukTVN)T

19)
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Ideally, since the uy’s lie completely within the signal sub-
space, the e’s should be identically zero. The channel esti-
mate could then be formed by choosing a feasible h; such
that the corresponding signal vectors lie in the null space of
V . Furthermore, our assumptions on the invertibility of the
map G would guarantee this solution to be unique.

However, since we are dealing with an estimate and not
the true noise subspace, the e;’s are realizations of random
vectors, and thus with probability one, e} and e} do not
equal zero. Thus, we must introduce some measure of what
is a “good” ey, so that we can choose h; accordingly. We
will explore two approaches to this problem. The first is a
probabilistic approach apparently first proposed in [21] which
exploits known statistical properties of the estimated subspaces
to maximize the likelihood of the projections. The other is a
geometric solution which seeks to minimize the distance (or
£3-norm) of the e;,’s. This is the well-known MUSIC algorithm
[22], which is commonly used in array signal processing. Due
to the absence of a displacement structure in our correlation
matrix, ESPRIT techniques [18] are not applicable to our
problem [23]. They would be applicable when our algorithms
are extended to the multisensor case [23].

1) Probabilistic Approach: It has been shown [24] that
the projections of the estimated noise subspace eigenvectors
{¥n, i} onto the actual signal subspace Vs are asymptotically
jointly Gaussian with zero mean and covariance matrices given
by

. . 1
E[(VsVEow,)(VsVivw )1 = 5 Qb s
E[(VsVEyn, ) (VsVivn, ;)71 =0, foralli,j (20)

where 6; ; is the Kronecker delta function and

— 2 < )‘k T 21
Q=0 Zm"&kvs,k - @n
k=1

Note, that in the above expressions we are dealing with the
actual signal subspace, not the estimate. Thus

uZT = u;TVsVL
uff =ulfvsvi (22)

and the projections into the estimated noise subspace can be
rewritten as

e = (u]'VsVEVA)T
e = (W VsVEVN)T. @3)
Comparing this with (20), it is clear that asymptotically the
er’s are also zero-mean, complex-valued, circular Gaussian
random vectors. However, the projections are not statistically
independent, thus we define a new ey in order to arrive at a
more tractable log-likelihood function. Clearly, if u}, and ufc
both lie in the signal subspace, then their sum u; = uj, + ufc
must also be contained in Vg. We now consider the projection
of u;, into the estimated noise subspace

ér=(ul V)T, (24
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This too is a Gaussian random vector and thus has probability
density function
ps(€r) = 1 exp {—6[ K 1é} (25)
N det [7K] L
From (20), we see that the covariance matrix K is a scalar
multiple of the identity given by
L+
K= i u, QugL (26)
Therefore, within an additive constant, the log-likelihood
function of e, is

~t ~
A(&r) = —(N - 2K) In (u} Quy) — J <5k
quuk
=—(N - 2K) In (u} Quy)
1 1

u] Quy

Of course, the exact Vr and Q are unknown, but we may
replace them with their estimates.

Unfortunately, maximizing this likelihood function is pro-
hibitively complex for a general multipath channel, so we will
consider only a single propagation path. In this case, the vector
uy, is a function of only one unknown parameter: the delay 7.
To form the timing estimate, we must solve

7, = arg max A(ug). (28)
T €[0,T)

Ideally, we would like to differentiate the log-likelihood func-
tion with respect to 7. However, the desired user’s delay
lies within an uncertainty region, 75, € [0, T], and ug(7) is
only piecewise continuous on this interval. To counter these
problems, we divide the uncertainty region into N cells of
width T, and consider a single cell, C, = [vT¢, (v + 1)T0).
We again define v € {0, ---, N —1} and v € [0, 1) such that
(1/T;)mod N = v + v, and for 7 € C, the desired user’s
signal vector becomes

ui(7) = (1 = y)up(v) + yur(v +1) 29
and
—c_ld; up(r) =up(v+ 1) — up(v)
=a constant. 30)

Thus, within a given cell, we can differentiate the log-
likelihood function and solve for the maximum in closed
form. We then choose whichever of the N solutions yields
the largest value for (27).

To determine the stationary points of the log-likelihood
function, we first compute the following 4N scalars

21(v) = ul (1) Qu(v)

z2(v) =ul (1) Qui(v + 1)

z3(v) =uf(V)VaViu(v)

z4(v) =ul () VAV (v + 1). (31)
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Fig. 2. Probability of acquisition for the maximum likelihood (ML) estimator, the approximate ML, and the MUSIC algorithm [K =5, N = 31, J = 200,

MAI = 20 dB].

For each cell, C, = [vT., (v + 1)T.), we calculate

z1 =21(v) = 2z2(v) + 21 (v + 1)
1 =zo(v) —z1 (v + 1).

T ———xl(y—}- l)

zs =23(v) = 2z4(v) + z3(v + 1)

&g =xz4(v) —z3(v + 1)

333 :£C3(V + 1) (32)
and from these compute
a=(1~-Jrizs— (N —2K)u?
b= (2 — J):Cljig -+ (1 —_ 2J)§cla:3
— 3(N = 2K)ui
c —_—2(1 - J)@ldﬁg + 2321 — JZ113
— (N = 2K)(24% + #121)
d=%381 — Ji123 — (N — 2K)Zq 2. (33)

Within the cell C,, there are stationary points at = = (v +
¥)T., where

v e{yvay+i+ey+d=0andye[0,1)}. (34)

Since C,, is a half-open interval, it need not contain a local
maximum at all. However, if it does, that local maximum must
occur at either v = 0 or at one of the stationary points. We
compute the likelihood function at each of these points and
select the one with the greatest value.

Under certain conditions, it may be possible to simplify this
algorithm. Note that maximizing the log-likelihood function

(27) is equivalent to maximizing

N —-2K
—F ln-(uLQuk)

uLVNV}r\/uk

ul Quy

Aler) =—
(35)

As J — oo, the leading term goes to zero; thus, for large
observation windows, we can use the following approximation:

'I.IL‘/‘./\/"fj\/vu/c

A(ék) ~ -
uf Quy,

(36)

This yields a much simpler expression for the stationary points.
For each cell C,, we define

a=[zs(v+ 1) — z3(¥)]Re {z2(v)}
— o+ 1) =z (v)]Re {z4(v)}
+z3()z1(v+ 1) — z3(v + Dz (v)
b=2z3(v)Re{za(v)} — 2z1(v)Re {za(v)}
—z3(W)z1(v+ 1) + z3(v + Dz (v)

c=z1(v)Re{z4(v)} — z3(v) Re{za(v)} 37
and the stationary points are located at
v e {vay  +by+c=0andy€[0, 1)} (38)

It is interesting to note that the MUSIC algorithm is equiv-
alent to (36) when one only maximizes the numerator and
ignores the denominator, i.e., one assumes uL Quy, is equal to
one in (35) or (36). This yields an even simpler approximation
for the log-likelihood function

A&) ~ —ul VA Vi, (39)
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Fig. 3.
MUSIC algorithm [K = 5, N = 31, J = 200, MAI = 20 dB].

which allows a linear solution for the stationary points

Re {z4(v)}
2Re {z4(v)} +z3(v+ 1)

* x3(y) -

T = e 40)

2) Geometric Approach: From the preceding subsection, it
is clear that we must define a less complicated cost function
if we are to consider general multipath channels. Thus, we
look for an alternative to our stochastic model and consider
a nonprobabilistic method. We would like the projections of
the signal vectors into the noise subspace to be zero, however
as mentioned earlier, we can never achieve this in practice.
Intuitively, however, we have the sense that the “smaller”
the projections are, the “better” our estimate is. To form
our channel estimate, we propose to minimize the Euclidean
distance or {5 norm of the projections. Thus, our channel
estimate hy, is the solution to the quadratic program

by, = arg min [wi" Vo l® + [0/ Val? @D
her
where the constraint set H is the set of all feasible impulse
responses as determined by some a priori channel model.
Using the matrix representation for the signal vectors given
by (13), the program becomes

hy = arg min W [UY VAV UL + UV VUL 42)
heH

Depending on the constraint set, this optimization problem
may be quite difficult to solve, so we propose a two-step ap-
proximate solution. Since a given user’s transmitted amplitude
and phase are unknown, we can only determine flk to within a

Root mean squared error (RMSE) of the delay estimate in chips for the maximum likelihood (ML) estimator, the approximate ML, and the

complex multiplicative constant, so without loss of generality
we can 1ntroduce the simple constramt |lh|| = 1. If we define
M = UV VI UL + ULV VI UZ, then the quadratic
program rcduces to

hy = arg min h'Mh.
Ihfj=1

(43)

In the absence of noise, M will not have full rank, and thé
true hy, will lie in the null space of M. Thus; our conditions for
identifiability are equivalent to assuming that this null space
has rank one, in which case there is a unique solution to the
optimization problem. However, in the presence of noise, M
will have full rank, and the solution is simply the eigenvector
corresponding to the smallest eigenvalue of M.

In many cases, we may have no a priori information about
the channel, and thus H = C. In this case, our estimate hk
is trivially contained in the set of feasible impulse responses.
However, many techniques used to combat multipath (e.g.,
RAKE correlators and matched filter banks) assume that the
channel impulse response can be modeled as a finite number of
distinct propagation paths. Due to noise, hy, will generally not
satisfy this constraint, so we now perform a least-squares fit
to our parametric channel model to extract the strongest paths.

It is important to remember that a single path will manifest
itself in two adjacent values of the composite channel impulse
response. We now perform a least-squares fit of a single path
to each pair of adjacent coefficients,

arg min |iLk,, — (1 = 7y)af?

a€C,v€[0,1)

+ Ak, w41 — val?

[al/1 '71/] =

44)
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where ﬁk,y is the vth element of flk. The solution to the
least-squares problem is given by

Y=g+ 002+ 3

— (1 - fYV)iLk,I/ + ’YV;lk,I/-f-l
' L=7)+72

(45)

where

B: Re{hk,yﬁk,u—f—l}

e, w2 = |hi,ps1]?
Recall that we need to only consider v, € [0, 1). All that
remains is to search for the strongest path

(46)

=  arg max e, | (47)

ve{0,1, -, N—1}
and then compute the desired channel parameters

7= +v)T.
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and

(48)

& = Q.

The estimated path is subtracted from hy, and the process is
repeated to find the next strongest path, etc., until either a
specified number of paths have been identified or |4 falls
below some predetermined significance level. In addition,
subsequent searches can be restricted to a range of v consistent
with the assumed multipath spread.

D. Estimation of Received Amplitude

In the presentation of these subspace-based methods, the
amplitude and phase have been lumped into arbitrary complex
coefficients and thus obscured. Since second order statistics
contain no phase information, we clearly can not recover
phase from the sample correlation matrix. However, we now
consider a subspace-based method for estimating the received
amplitude.
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Fig. 6. (a) Loss in SNR at the output of a RAKE correlator using estimated
parameters versus one with perfect knowledge for varying observation window
[N = 31, K = 5, SNR = 8 dB, MAI = 20 dB, 3 paths} and (b) loss for
varying SNR [J = 500, N = 31, K = 5, MAI = 20 dB, 3 paths].

Since we assume that the channel attenuation parameters
vary slowly and we are using PSK for all data and spreading
modulation, the users’ signals have constant modulus, i.e.,
lcl(f)| = |ex] = a constant. Thus, estimating the received
amplitude is equivalent to estimating |cx|. Recall that the
correlation matrix has the form

R=ACA" + %I
=Rg + o°L 49)

We now extract the signal correlation matrix R from the total
correlation matrix R by finding the matrix of this form that
best fits the sample correlation matrix in a two-norm sense, i.e.,

[Rs 6% =arg min |R — Rs — o2I||2

R5,0‘2

(50
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subject to 02 € R and Rs € CV*V a positive, semidefinite
matrix of rank 2K . This has the solution

6% = 2(Xok 41+ An)
Rs =VsDV] (51)
where D = diag (\; — 62, -+, Ay — &2). Since we have
already estimated the channel parameters, we have in effect
also formed estimates for the signal vectors 1} and ). We
define the signal matrix for a single user as

Ay =0 al]ech*2 (52)
Ideally, we would like to choose |¢x| such that Rg —
|éx|2Ax AL has rank 2(K — 1) or equivalently

I-|&2PAlRG'AL = 0. (53)
Of course, due to errors in our estimate of the signal correlation
matrix, this will generally be impossible, so we instead seek
the best fit in a two-norm sense

|éx| = arg min [T - |&?A] RS Agllo. (54)

Ck

This has the solution

~rTH—1ar AT —1 4 A(1/2)
joul = (u"TR‘S uk;u’:R‘s ui“) 55)
Note from (51) that the inverse of f{s is easily calculated,
and thus the amplitude estimates require only minimal com-
putation.

IV. NUMERICAL RESULTS

We conducted simulations of the proposed algorithms for
five users with length 31 Gold codes. A single desired user
was acquired and tracked in the presence of strong multiple
access interference (MAI). The power ratio between each of
the four interfering users and the desired user is designated
the MAI level.

We first compared the true log-likelihood estimate (27)
with the large observation window approximation (36) and
the MUSIC algorithm (39). This was done for a window size
of 200 symbols and with a varying SNR. Fig. 2 shows the
probability of acquisition for each method, where acquisition
is defined as |1 — 7| < %Tc. Using the approximate log-
likelihood function resulted in almost no drop in performance.
Furthermore, when the SNR was poor, both probabilistic
approaches considerably outperformed the MUSIC algorithm.
In Fig. 3, we compare the RMSE of the delay estimate
once acquisition has occurred, i.e., after processing enough
symbols to reach within half of one chip. The approximate
log-likelihood function experiences a slight increase in error
at low SNR, but again both probabilistic methods do better
than MUSIC. It is interesting to note that for sufficiently high
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SNR (> 10 dB), there is virtually no difference in performance
among the three methods.

We next take a more in depth look at the performance of
the full maximum likelihood estimator. Fig. 4(a) demonstrates
the algorithm’s ability to acquire a desired user’s delay even
with large MAI. In Fig. 4(b), we examine the relationship
between the RMSE of the timing estimate and the window size.
Tracking errors on the order of 0.1 chips can be achieved with
windows of less than 200 bits, indicating that the algorithm
can be used for tracking of slowly time-varying parameters.
Fig. 5(a) and (b) illustrate the near—far resistance of the
algorithm. As expected, the estimate is influenced by the SNR,
but even large changes in the MAI level have no effect on
accuracy.

To evaluate the geometric approach we simulated a channel
with three propagation paths. The propagation delays were
generated as uniform random variables with 7 ~ U[0, T") and
T9, T3 ~ U0, %T )+71. The attenuation weights were complex
Gaussian random variables with zero mean and equal variance.

Since a large number of interdependent parameters are being
estimated, it is not very revealing to look at the estimation error
for each parameter individually. Instead the estimated channel
parameters are passed to a RAKE correlator [9] which is used
to collect the signal energy from all the propagation paths. For
a performance metric, we then calculated the loss in SNR at the
output of a RAKE correlator using the estimated parameters
as compared to one with perfect knowledge of the channel.

Fig. 6(a) shows the resulting loss in SNR as a function of
the observation window length J. When choosing J, there is a
natural trade-off between estimation error and tracking speed.
In Fig. 6(b), we see the effect of varying SNR. As expected,
the algorithm is influenced by the SNR. However, a given

performance level can always be maintained by adjusting
the window Iength. Thus, a poor SNR will only degrade
the capability to track time varying parameters. In Fig. 7,
we confirm that the algorithm is indeed near—far resistant,
since even large changes in the MAI level have no effect on
performance.

To gain some insight into how the proposed estimator
effects the probability of error, we simulated a decorrelating
receiver [25] using a bank of RAKE correlators matched to
each user. In Fig. 8, we compare the probability of error
when using the estimated parameters to a receiver using the
true parameter values. We have also shown the probability of
error for a decorrelating receiver using the standard matched
filter front-end with perfect tracking of a single propagation
path. The RAKE receiver using the estimated values performs
almost identically to the receiver with perfect knowledge of
the channel parameters, and both considerably outperform the
receiver which neglects the multipath.

V. CONCLUSION

Since the signal subspace is determined solely by the
users’ spreading waveforms and not their relative amplitudes,
subspace-based methods are both near—far resistant and well-
suited for fading channels. It is also interesting to note, that
when calculating the estimate for a given user, no knowledge
of the other users’ spreading waveforms is necessary. Thus,
the algorithm can be used for both multiuser or single user
estimation. Although we limited our work to channels with
multipath spreads of less than half the symbol period, longer
delays could easily be accommodated by increasing the length
of the observation vectors.
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Furthermore, the estimate is formed solely from second-
order statistics, which are independent of the data modulated
on the waveform. Thus, unlike other methods, no preamble or
decision feedback is necessary. This makes the algorithm very
stable during tracking, since it is able to quickly reacquire the
desired user if it loses lock.

Perhaps the biggest drawback to subspace-based methods is
the O(N?3) computational complexity of performing an eigen-
vector decomposition. However, note that in the geometric
approach, we don’t need the actual eigenvector decomposition.
All we really need is a set of orthonormal basis vectors for
the noise subspace. A great deal of research has been done
on reduced complexity subspace tracking [26], [27], including
an O(NK) algorithm based on the recursive least squares
problem [28]. These techniques to reduce the computational
complexity of the algorithm suggest that the approach may
also find application, with reasonable hardware, in tracking
slowly varying channel parameters in mobile systems.
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