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Abstract. Conventional linear estimators give results contaminated in presence of nonlinearities and the extraction of underlying

linear system properties is thus difficult. To overcome this problem, the implementation of a recently developed method, called

Nonlinear Subspace Identification (NSI), is considered in this paper, by using the perspective of nonlinearities as unmeasured

internal feedback forces. Although its formulation is very simple, particular care has to be taken to reduce the ill-conditioning of

the problem, in order to find numerically stable solutions. To this purpose, the robustness and the high numerical performances of

the subspace algorithms are successfully exploited, as shown by the implementation of the proposed method on simulated multi-

degree-of-freedom systems with typical nonlinear characteristics as well as on an experimental case. These examples demonstrate

that the application of subspace algorithms to nonlinear system identification gives better conditioning and computational

efficiency with respect to the most recent nonlinear techniques. Moreover, the capability of the NSI method of simultaneously

dealing with several nonlinear terms, with a light computational effort, may be also exploited in those situations where no a priori

knowledge of the location and the type of nonlinearities is given, being this method well capable of detecting the contribution of

the dominant nonlinearities.

On the basis of the results discussed in this paper, and compared with those of other well-assessed nonlinear techniques, the

proposed method appears having the chances to become a robust procedure to be widely exploited in many industrial fields, being

its capability of separating linear and nonlinear contribution terms widely requested in mechanical and civil engineering field.
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1. Introduction

As demonstrated by recent papers [1,2], an increasing attention has been directed towards nonlinear systems
in recent years and many techniques have been developed, seeking to indicate the presence of nonlinearity and
to estimate the amount of nonlinear contributions, for a better understanding of nonlinear systems response. In
particular, much of this research has been developed on simple single-degree-of-freedom (SDOF) systems with
relative simple nonlinearities. Recently techniques have focused the attention on multi-degree-of-freedom (MDOF)
systems with multiple nonlinearities. A very synthetic list should include the coherence inspection [3], the causality
check via the Hilbert transform [4], the Wiener and Volterra series approaches [5], the time series models such as
the NARMAX [6], the force-state mapping technique [7]. Recently, the “Reverse Path” formulation (RP) [8] was
proposed with its “conditioned” version (CRP), based on the construction of a hierarchy of uncorrelated response
components in the frequency domain. More recently, Adams and Allemang [9] proposed a frequency domain
method called Nonlinear Identification through Feedback of the Outputs (NIFO), which has demonstrated some
advantages with respect to the CRP, mainly due to the lighter conceptual and computing effort. The basic idea of
NIFO consists in the interpretation of nonlinearities as unmeasured internal forces, i.e. considering nonlinearities
as cause of distortion in the linear Frequency Response Function matrix. Starting from this idea, the authors have
developed [10] an efficient time domain method for identifying nonlinear vibrating structures, which exploits the
robustness and the high numerical performances of the subspace algorithms.
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2. Nonlinear subspace identification

The equation of motion of a dynamical discrete system with h degrees of freedom, carrying lumped nonlinear

springs and dampers can be expressed as:

Mz̈ (t) + Cv ż (t) +Kz (t) +

p
∑

j=1

µjLnjgj (t) = f (t) (1)

where M , Cv and K are the mass, viscous damping and stiffness matrices respectively, z (t) is the generalised

displacement vector and f (t) the generalised force vector, both of dimension h, at time t. The nonlinear term is

expressed as the sum of p components, each of them depending on the scalar nonlinear function g j (t), indicating the

class of the nonlinearity, through a vector Lnj , which indicates the location of the nonlinear component and whose

elements may assume the values 1, −1 or 0. By moving the nonlinear term of Eq. (1) to the right hand side

Mz̈ (t) + Cv ż (t) +Kz (t) = f (t) −

p
∑

j=1

µjLnjgj (t) = f (t) + fnl (t) (2)

the original system may be viewed as subjected to the external forces f (t) and the internal feedback forces caused

by nonlinearities fnl (t). This point of view, already chosen in [9] to develop the NIFO frequency domain method, is

also on the basis of the present time domain identification method, referred to as Nonlinear Subspace Identification

(NSI) [10]. Assuming that only displacements are measured, a state-space formulation of the equation of motion,

corresponding to the state vector x =
[

z ż
]T

and to the input vector u =
[

f (t) −g1 (t) . . . −gp (t)
]T

, is
{

ż

z̈

}

=

[

0h×h Ih×h

−M−1K −M−1Cv

]{

z

ż

}

+

[

0h×h 0h×1

M−1 M−1µ1Ln1

. . . 0h×1

. . . M−1µpLnp

]

[

f (t) −g1 (t) . . . −gp (t)
]T

(3)

y =
[

Ih×h 0h×h

]

{

z

ż

}

+
[

0h×h 0h×1 . . . 0h×1

] [

f (t) −g1 (t) · · · −gp (t)
]T

(4)

or, in compact form,

ẋ = Acx+Bcu

y = Cx+Du
(5)

The proposed nonlinear identification procedure is based on the estimation of the state space matrices Âc, B̂c, Ĉ

and D̂, obtained within a similarity transformation by a subspace method in the time domain, and on the subsequent

computation of system parameters from the matrix

HE (ω) = D + C (iω I −Ac)
−1
Bc (6)

which is invariant under the similarity transformation [10] and contains all system parameters (included in

M, Cv, K, µj andLnj). It is possible to write the matrix HE (ω) as follows

HE (ω) =
[

H Hµ1Ln1 . . . HµpLnp

]

(7)

where

H (ω) =
(

K + iωCv − ω2M
)−1

(8)

is the underlying linear system receptance matrix. HenceHE (ω) is called “extended” Frequency Response Function

(FRF) matrix, because it also includes nonlinear terms in the Multiple Input Multiple Output (MIMO) model.

Moreover, in the particular case ω = 0, one obtains

HE (0) = D − CA−1
c Bc =

[

K−1 K−1µ1Ln1 . . . K
−1µpLnp

]

(9)

the latter expression will be utilised in the numerical examples.
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2.1. Subspace methods

Linear identification through subspace methods take advantage from robust numerical techniques and, although an

exhaustive review is impossible, the books of Ljung [11] and of Van Overschee and De Moor [12] are two milestones

to be surely mentioned. In this subsection, only the principal steps of the procedure proposed by [12] are illustrated

for brevity’s sake.

In the data-driven approach the input data are gathered in a block Hankel matrix

U0|2i−1

def
=





























u0 u1 · · · ul−1

u1 u2 · · · ul

...
...

. . .
...

ui−1 ui · · · ui+l−2

ui ui+1 · · · ui+l−1

ui+1 ui+2 · · · ui+l

...
...

. . .
...

u2i−1 u2i · · · u2i+l−2





























def
=

[

Up

Uf

]

(10)

the subscript p denotes the “past” and the subscript f denotes the “future” and the number of block rows i is a user

defined index. The output block Hankel matrices Y0|2i−1, Yp and Yf are defined in a similar manner by replacing

u with y in Eq. (10) and both input and output data are used to define an oblique projection matrix O i. Then the

Singular Value Decomposition of the following weighted oblique projection is performed

W1OiW2 = USV T =
[

U1 U2

]

[

S1 0
0 S2

] [

V T
1

V T
2

]

(11)

where W1 and W2 are two weighting matrices, whose definition depends on the chosen subspace algorithm. As

previously discussed, the state-space matrices in Eq. (5) can be obtained only within a similarity transformation,

that is function of the above mentioned weighting matrices. The model order n is determined by inspecting singular

values and accordingly U1, V1 and S1 are defined. Finally an estimate of the state space matrices Âc, B̂c, Ĉ and D̂

can be obtained, as shown in [12].

2.2. Nonlinear identification through feedback of the outputs

This procedure [9] treats nonlinearities like unmeasured internal nonlinear feedback forces that, together with the

measured external input, act on the underlying linear system to produce the measured output of the system, as shown

by the equation of motion Eq. (2). Applying the Fourier Transform results in the frequency domain version

(

K + iω Cv − ω2M
)

Z (ω) = F (ω) −

p
∑

j=1

µjLnjGj (ω) (12)

with Z (ω) = F [z (t)] , F (ω) = F [f (t)] and Gj (ω) = F [gj (t)].

Premultiplying both sides of Eq. (12) by the linear FRF matrix H (ω) =
(

K + iωCv − ω2M
)−1

, it is immediate

to find following MIMO relationship

Z (ω) =
[

H (ω)H (ω)µ1Ln1 . . . H (ω)µpLnp

] [

F (ω) −G1 (ω) · · · −Gp (ω)
]

T (13)

which represents the basic formulation of the Nonlinear Identification through Feedback of the Outputs. By

comparing Eq. (13) with the expression of HE (ω) in Eq. (7) it is clear that the NIFO formulation may be viewed

as the frequency domain counterpart of the NSI formulation; this is obvious, since both methods start from the

same equation of motion and consider the nonlinear terms as internal feedback forces. Moreover, both methods

estimate nonlinear structural parameters as well as the underlying linear parameters in a single computational step.
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Table 1

Numerical example parameters

Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear stiffness (N/m3)

m1 = 25; m2 = 18; k1 = 3 ×104; k2 = k3 = k4 =5×104; c1 = c2 = c3 = 10; knl = 5 ×1010

m3 = 15; m4 = 25 k5 = k6 = k7= 5×104 c4 = c5 = c6 = c7 = 10;

Since nonlinearities convert uncorrelated random noise into correlated noise, the matrix involved in Eq. (13) is

ill-conditioned, this determining the need of numerical techniques to reduce the error propagation. An approach

similar to that discussed in [13] may be used to solve for the nonlinear parameters and the underlying linear FRFs

simultaneously.

3. Numerical example

A numerical example is considered hereafter to show the performances of the NSI technique with simulated data

from a MDOF system with a single cubic nonlinear stiffness characteristic. This example demonstrates that the

application of subspace algorithms to nonlinear system identification gives good conditioning and computational

efficiency even with short input-output time histories.

The four-degree-of-freedom nonlinear system shown in Fig. 1 is excited by a zero-mean gaussian random force

(with r.m.s. = 50 N) at DOF 2 only; a nonlinear term is included in the equation of motion Eq. (1):

µ1Ln1g1 (t) = knl

[

−1 0 1 0
]T

(z3 − z1)
3

(14)

with system parameters summarised in Table 1. Time histories are obtained by a Runge-Kutta numerical integration

and 1% of zero-mean gaussian noise has been added to each simulated displacement. The first 5× 10 4 samples with

sampling frequency fs = 4 kHz are used for the NSI analysis, choosing i = 60 block rows for the block Hankel

matrix in Eq. (10). In this case the extended FRF matrix is

HE (ω) = [H Hµ1Ln1] (15)

where H is the FRF matrix of the underlying linear system. Since the force is only applied at DOF 2, only the

second column of this matrix can be estimated. However, the reciprocity relationshipsH 21 = H12, H23 = H32 and

H24 = H42 (which hold since H is related to a linear system) can be applied, and this is sufficient to compute µ 1

from the second element of the following vector (the symbol ? denotes unknown terms)

Hµ1Ln1 = µ1









? H12 ? ?
H21 H22 H23 H24

? H32 ? ?
? H42 ? ?























−1
0
1
0















= µ1















?
H23 −H21

?
?















(16)

The model order n = 8 is selected by inspecting the singular value plot in Fig. 2, where a jump of two orders of

magnitude (more in absence of measurement error) between model order eight and nine is observed.

As shown in Fig. 3, the classic H1 and H2 procedures (the mean value is depicted) are unable to estimate the

linear FRFs: there is a considerable peak shift for the last two modes. On the contrary, excellent agreement may be

observed between the NSI estimate and the true FRF of the underlying linear system (the range between 14.5 and

15.5 Hz has been also magnified to show the differences).

The nonlinear stiffness contribution is estimated by using the invariant matrixHE (ω = 0), which is nonzero since

displacement measurements are here considered. From Eqs (15) and (16) it is possible to estimate the nonlinear

coefficient µ1: in Fig. 4 the identified nonlinear stiffness characteristic is compared with the true one and with

the linear characteristic, showing a good level of agreement (the case without measurement errors gives excellent

results).

Due to its capability of treating many nonlinear terms simultaneously, NSI has been adopted for the identification

of the same system (with a single nonlinear element), but seeking for possible nonlinear stiffness elements located

at each joint. Clearly, the identified coefficients µj (2 � j � 7) are not exactly zero, however, as shown in Fig. 5,
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Fig. 1. 4-DOF nonlinear system with a cubic stiffness located between DOF 1 and 3.

Fig. 2. Singular value plot for the numerical example.

the identified nonlinear contributions are negligible with respect to the linear ones, except between the mass 1 and 3
(where the nonlinear element is located). This example shows the possibility of detecting nonlinear lumped elements
(also due to damping) by using the NSI method treating the system as a black box and without much computational
effort. NIFO shows similar performances as it will be discussed in the experimental application, while CRP would
have required a huge computational effort in constructing a set of uncorrelated response components.

4. Experimental application

The analysed data were chosen from those proposed by VTT Technical Research Centre of Finland within the
framework of the COST action F3 working group WG3 on “Identification of non-linear systems” [14]. The structure
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Fig. 3. H32 system receptance: nominal linear FRF (solid line), NSI nominal linear estimate (dashed line) and FRF estimated by linear methods
(Hle, dotted line, mean value between H1 and H2 procedures).

Fig. 4. Stiffness characteristics between mass 1 and 3: true nonlinear (dashed line), NSI estimate (solid line) and true linear (dotted line).

shown in Fig. 6 consists of helical wire rope isolators mounted between the load mass and the base mass of an

electrodynamic shaker. The acceleration a2 of the load mass, the acceleration a1 of the bottom plate, the force F

and the relative displacement u12 between top and bottom plate are measured. Excitation is white noise low pass

filtered at 400 Hz, producing records of approximately 5×10 5 samples for each channel, sampled at 4096 Hz, with

different levels of excitation and two different load masses.

The choice of the type of nonlinearities still represents a cumbersome matter, since it should be known a priori

for the method to be applied to real nonlinear system. However, this information can be obtained by performing

a preliminary analysis based on the use of multiple and partial coherence functions between the force vector and

any nonlinear vector with attempt form [15]. As discussed in the previous section, it is also possible to consider

the nonlinearity as sum of several functions and then to remove all of them giving negligible contributions to the
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Fig. 5. Stiffness characteristics among the four masses: true nonlinear (dashed line), NSI estimate (solid line) and true linear (dotted line).

Fig. 6. The experimental system.

restoring force. In this manner the following type of nonlinearity has been chosen:

g1 (t) = sign (u12 (t)) |u12 (t)|
1.5

(17)

Both NSI and NIFO analyses have been performed on the time histories corresponding to load mass m 2 = 2.2 kg

with excitation level 4 Vrms. The first 4 × 104 samples have been used for NSI and the first 3 × 105 for NIFO, since

the latter method requires more samples to give more stable results [10]: this fact represents a drawback of NIFO

with respect to NSI. On the other hand, the choice of the model order is a cumbersome matter when applying NSI to

experimental vibrating structures, since often it is not possible to find a strong discontinuity in the decreasing order

of the singular values, as for the numerical examples (Fig. 2). The use of stabilization diagrams similar to those

adopted for a linear analysis is probably useful in order to find the correct model order and to eliminate spurious

poles corresponding to computational modes [16].

In the present case, the model order n = 16 has been chosen with i = 60 block rows in Eq. (10), which reduces

to a minimum the contribution of computational modes, and results in accordance to the NIFO method have been

found. Moreover, in order to quantify the nonlinearity (i.e. to estimate the nonlinear coefficient µ 1), Eq. (7) should
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(a)

(b)

Fig. 7. Acceleration transmissibilility (a): NSI nominal linear estimate (solid line), NIFO nominal linear estimate (dashed line) and estimated

by linear methods (Hle, dotted line, mean value between H1 and H2 procedures). Nonlinear coefficient (b): NSI estimate (solid line), NIFO

estimate (dashed line).

be considered instead of Eq. (9), since only the accelerations of the two masses have been measured and the inertance
is zero when ω = 0. As a consequence, the estimated coefficient is complex and frequency dependent. However,
the imaginary part, without any physical meaning, is much smaller than the real one, and a single value of nonlinear
coefficient can be easily obtained by a spectral mean. Figure 7 shows that the peak frequency of the acceleration
transmissibility, obtained by linear methods, is shifted toward left, due to softening nonlinear effects. The estimate
of the nonlinear coefficient (real part) is also depicted in the same figure, being the spectral mean of the imaginary
part (without any physical meaning) much smaller than the spectral mean of the real one and thus negligible. Good
agreement between NSI and NIFO can be observed, except near the system resonance, where NIFO underestimates
the FRF, since the internal nonlinear forces are highly correlated [9].

Moreover, once the state-space matrices have been estimated by a subspace method, it is easy to reconstruct the
output [12]. A comparison between measured and reconstructed output for this experimental case is made in Fig. 8,
where excellent overlay is achieved. Such capability may be used to predict the experimental response also to other
loading conditions, which is often requested in many industrial fields [2].

5. Conclusions

A time domain method, called Nonlinear Subspace Identification (NSI), is proposed for the identification of
nonlinear vibrating structures, by using the perspective of nonlinearities as internal feedback forces. The numerical
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Fig. 8. Experimental measurement (solid line) and prediction (dashed line). A zoom is also shown to put in evidence the excellent overlaying.

and experimental examples demonstrate that the application of subspace algorithms to nonlinear system identification

in structural dynamics gives good conditioning and computational efficiency.

Furthermore, the capability of the NSI method of simultaneously dealing with many nonlinear functions may be

successfully exploited in order to characterize and localize the nonlinearities, being this method well capable of

detecting the dominant nonlinearities. Shorter time histories, in comparison with other nonlinear methods such as

NIFO, are needed to obtain good results, but the choice of the correct model order may be not immediate, this area

requiring further studies.

On the basis of the results discussed in this paper, NSI appears to have the chances to be a robust method for

employing in many industrial fields, being its capability of predicting the experimental response widely requested in

real structures.
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