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ABSTRACT

In this research, a unique subspace data driven control for linear parameter changing system with 
scheduling parameters is presented. This control paves the way for investigating the nonlinear system 
based on the results regarding the linear system that are already known. Only the data matrix is utilized 
to represent the output prediction value in the future various time instants, while the input-output 
observation data matrix is used to identify Markov parameters in the form of state space forms. The 
cost function in data-driven control is then adjusted using the output prediction value. The optimal 
control input value of this quadratic cost function is solved using a parallel distribution technique, 
and the algorithm’s iterative convergence is thoroughly examined. Finally, the DC motor, whose mass 
distribution factor is considered to be one linear parameter varying system, is controlled using the 
suggested subspace data driven control approach.
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1. INTRODUCTION

Automatic control system is very important for realizing some automatic operations in practical 
industry and monitoring of complex industrial processes, such as paper, glass, automotive and aircraft 
etc (Daraz et al., 2022, 2021; Ibraheem et al., 2020a,b; Abdul-Adheem et al., 2020a,b; Soliman et al., 
2020; Gorripotu et al, 2021, 2019; Meghni et al., 2017, 2018). Practical industrial processes require 
some critical process variables to be maintained around their given values, for example, temperature, 
flow level, pressure and press. The amplitude fluctuations of process variables need to be carefully 
chosen and continuously controlled to achieve the products, while keeping the desired quality with 
the minimum raw materials and energy. Then automatic control technology was developed with 
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this mission, being used to ensure the smooth and safe operation for industrial process or maximum 
corporate benefit. Generally, at present, automatic control technology has been widely used in 
electric power, oil refining, paper making chemical industry, energy and other industrial production 
fields (Mahdi et al., 2022; Sain et al., 2022; Fekik et al., 2022a,b, 2021a,b,c,d, 2020a,b; Ali et al., 
2022, 2021a,b; Acharyulu et al., 2021; Ajel et al., 2021). More specifically to obtain the qualified 
productions during the industrial production, some key process variables are usually required to meet 
certain performance index. Then this performance index will eventually be realized by deigning one 
suitable controller. Most of the current controller design methods are model-based, so the accuracy 
of the considered process used in the controller design will ultimately affect the performance of the 
control loop system (Toumi et al., 2022; Saidi et al., 2022; Serrano et al., 2022; Humaidi et al., 2022, 
2020; Hamida et al., 2022; Ben Njima et al., 2021; Ghoudelbourk et al., 2021; Pilla et al., 2021a,b; 
Ajeil et al. 2020a,b; Azar and Serrano, 2015). Model mismatch will deteriorate the performance 
of the control loop, for example, having larger overshot, longer adjustment time, oscillation, etc. 
All above factors lead to substandard product quality, bring great harm to the enterprise. Even if 
the controller designed based on the current model or identified model can meet the performance 
index, an improved process model can better describe the dynamic changes of the process, then one 
controller with better performance can be yielded from this improved process model, so that the raw 
material and energy consumption are reduced. Actually, most industrial processes in practice present 
complex nonlinear or parameter varying characteristics. Typically, controllers are designed according 
to a single, locally linearized model at a certain operating point, in order to achieve the specified 
performance requirements (Mittal et al., 2021; Al-Qassar et al., 2021a,b; Ammar et al., 2020, 2019, 
2018; Kazim et al., 2022, 2021a,b; Najm et al., 2021a,b, 2020; Vaidyanathan et al., 2019, 2018a,b, 
2017a,b,c; Radwan et al., 2018; Abdelmalek et al., 2018; Ouannas et al., 2020, 2017a,b,c,d, 2016a,b; 
Azar et al., 2018a,b; Singh et al., 2021, 2017). However practical industrial process usually has a wide 
operating range, and process operating points are caused by production planning, such as product grade 
changes, economic optimization etc., or work environment changes. But a single locally linearized 
model cannot describe the global dynamic behavior of the considered process, which will greatly 
deteriorate the performance of controller, designed based on this locally linearized model. Even this 
approximated linear model leads to the instability of the closed loop system or process. It can be 
seen that good model used to describe the global dynamic behavior of the process, is a prerequisite 
for the latter control design or other interesting tasks.

Generally, the mechanism model from the conservation laws of mass, momentum, heat and 
energy reflects the inherent laws of process dynamic changes and can describe the global dynamic 
behavior of the process. But with the increasing scale and complexity of modern industrial processes, 
it is very difficult or almost impossible to construct their mechanism models, even if the mechanism 
models are derived for the considered plants, the real mechanism models correspond to complex 
nonlinear equations or nonlinear systems, i.e. all the plants are nonlinear forms. Consider these 
nonlinear systems, i.e. all the plants are nonlinear terms. Consider these nonlinear equations, their 
analytical solutions cannot derive, only resorting to the numerical algorithms to get the approximated 
solutions. It makes very difficult to design controllers based on nonlinear systems. As the process data 
contains rich information of the considered plant or process, the model of the process can be directly 
extracted from the process data. This idea of modeling method is named as system identification. 
The essence of system identification is to select a model from the model classes according to one 
certain criterion, so that it can best fit the dynamic characteristics of the actual plant. The main steps 
of system identification include optimal input signal design, model structure selection, parameter 
identification and model validation. Therefore, from the point of view of system identification, it 
is not necessary to obtain a process model such as mechanism model whose parameters have clear 
physical meaning, but only a model that describes the global dynamic behavior of the process is 
required for the application purpose.



International Journal of Service Science, Management, Engineering, and Technology
Volume 14 • Issue 1

3

To satisfy the requirements of the modeling nonlinear or parameter varying process, researchers 
proposed many model structures, for example, linear parameter varying system considered in this 
paper, orthonormal basis functions, Hammerstein-Wiener model Gaussian process regression, neural 
networks, support vector machine. Among above mentioned model structures, linear parameter 
varying system has attracted extensive attention of researchers because of its linear structure and 
ability to accurately approximate complex nonlinear or time varying property. Linear parameter 
varying system was originally proposed by Shamma and Athans in their work on gain scheduling 
controller design. Specifically, linear parameter varying system has a linear structure and its model 
parameters are expressed as functions of one or more measurable or computable time varying signal. 
This time varying signal here is the scheduling parameter or scheduling variable, which reflects the 
working model of the process, so the dynamics of linear parameter varying system depends on the 
time varying scheduling variable. When the value of the scheduling variable is fixed, the dynamical 
system is also determined to be one linear time invariant system. Linear parameter varying system 
is regarded as a tradeoff between the linear system and nonlinear system. It has not only a simple 
linear structure, but also the ability to accurately describe the nonlinear or time varying parameters 
due to its time varying model parameters. At present research on linear parameter varying system 
concentrate on controller design, filtering, fault detection and other combinations with information 
fusion. This interesting research is widely applied in industrial practices, for example, wind turbines, 
inverse heat exchangers, aircraft, robot, servo system, magnetic bearing system and super-cavitating 
vehicle, etc. Although great progress has been achieved in the research fields of linear parameter 
varying system for industrial application, the study on the identification and control design have been 
seriously lacked for our considered linear parameter varying system.

Subspace data driven control is one novel direct data driven control strategy, being from the 
subspace system identification for state space forms. Specifically, subspace system identification is 
to apply the past and future input-output data sequence to identify each system matrix, existing in 
the original state space form, i.e. the singular value decomposition corresponding to the data matrix 
is implemented to obtain each system matrix. It is well known that subspace data driven control 
combines the common properties between direct data driven control strategy and subspace system 
identification, so that the one sequence of output predictions at different time instants are constructed 
based on the collected past and future input-output data sequence. After comparing these output 
predictions and their expected or desired output values, a cost function is established within the 
framework of data driven idea. Consider this cost function with equality or inequality constraints 
as one constrain optimization problem, the future control input sequence is yielded through some 
minimization operations, and then the first element from this future control input sequence is chosen 
as the start point for the next minimization operation. This iterative process is called as the roll horizon 
process, which is more widely studied and applied in some practice. As subspace data driven data 
control strategy applies the past input-output observed data sequence to construct the future output 
predictions at some different future time instants directly without modeling all the system matrices 
for the original state space form, so this nice subspace data driven control simplifies the three main 
steps for the classical linear Gaussian regulator, i.e. identification, filtering and control, and this is the 
main reason why in recent years, lots of research concern on this direct data driven control strategy.

Although lots of research on direct data driven control strategy exist in recent years, but few 
references are seen about our considered subspace data driven control, which only is suited for state 
space forms. For example, reference (Brett & Hakan, 2005) constructs the basic and important 
output prediction value from the point of subspace system identification, and the constructed output 
prediction value is compared with the other output prediction value within the iterative correlation 
control strategy in (Cristian, 2010). Reference (Erik & Campi, 2017) proposes the Bayesian framework 
for the subspace data driven control strategy, then the ellipsoidal optimization algorithm is proposed 
to solve that cost function for the subspace data driven control strategy, whose optimization problem 
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corresponds to one uncertain optimization problem in (Hakan,2011). Furthermore, the level set 
from convex analysis theory is applied to construct the original ellipsoid for the above-mentioned 
ellipsoidal optimization algorithm. Consider the realization problem for this subspace data driven 
control strategy, reference (Hakan, 2005) applies it in vibration suppression of active noise, which 
effectively suppresses the flutter of small helicopters in the hovering state. Reference (Jakob,2011) 
uses a fast gradient algorithm to estimate faults under the constraints of upper and lower fault limits. 
The overall framework of subspace data driven control is shown in Figure 1, where the controller is 
designed using subspace data driven control.

The models that appear in nature and industrial mass production are all nonlinear models. Due 
to the complexity of nonlinear models and their unknown forms, nonlinear system identification 
and nonlinear control are still under investigation. A common method for nonlinear model analysis 
is to use Taylor series method to expand the original nonlinear system at a certain operating point 
or equilibrium stable point, and to approximately replace the original nonlinear system with a linear 
model that ignores high-order terms. The disadvantage of this linearization method is that when a 
certain operating point is changing, the linearization model is also changing all the time. In order to 
make up for the shortcomings of the linearization method, a compromise model is sought between the 
nonlinear model and the linear model. Although this compromise model is a nonlinear model, it also 
has the characteristics of a linear model. In the process of modeling a certain motor, it is found that a 
time-varying scheduling parameter sequence needs to be introduced to reflect the time-varying matrix 
of the linear state space system. The time-varying model is called a linear parameter changing system 
in controller design. Reference (Bravo, Alamo, &Vasallo, 2017) proposes a variety of identification 
strategies for the identification of linear parameter change systems. The identification method is 
designed based on the given form of the linear parameter change system, such as state space equation 
form or transfer function form. However, the closed-loop controller design of this system is still in 
the traditional linear quadratic Gaussian control, and it is still realized by the three major processes 
of first identification, then filter design and then controller parameter selection.

Based on above mentioned references or contributions on linear parameter varying system, 
this new paper continues to study the data driven strategy for linear parameter varying system 
identification and linear parameter varying controller design simultaneously, i.e., the unknown 
system and controller are all linear parameter varying forms. Roughly the mission of data driven 
strategy is to extract some important knowledge from data, being collected or measured by sensors. 
It means the knowledge are included in this data record, then our task is to apply some methods to 
extract this useful knowledge successfully. To be different with other contributions, the considered 
closed loop system has one unknown system or plant and the other controller, which are all linear 
parameter varying forms. Due to the final goal is to design that linear parameter varying controller, 
data driven idea and system identification are combined to achieve our goal. More specifically, the 
input-output data record or sequence are used to get the linear parameter varying system and linear 
parameter varying controller through using the power spectral theory. To give a complete analysis, 

Figure 1. Structure of subspace data driven control
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iterative identification method is proposed to generate two kinds of parameter estimations, existing 
in those two linear parameterized system and controller well. For the sake of completeness, optimal 
input signal is designed for linear parameter varying system, while making the error signal between 
the real closed loop output and its parameterized closed loop output be zero as small as possible. 
All mathematical derivations are related with matrix theory, power spectral, numerical optimization 
and variation analysis, so the optimal input spectral is derived though our calculation. As our above 
contributions concern on linear parameter varying controller and linear parameter varying system 
through the data driven and system identification, i.e., the linear parameter varying system and linear 
parameter varying controller are all needed. It is the reason about why iterative method is used to 
yield them simultaneously. Moreover, to avoid the modeling process for that linear parameter varying 
system, data driven idea is also improved to design the linear parameter varying controller without 
any knowledge of the linear parameter varying system. From the theoretical perspective, this paper 
reviews some existed theories, such as classical model reference design and numerical optimization.

In this paper, subspace data driven control is applied to the controller design for linear parameter 
varying system with the scheduling parameters. The input-output observation data matrix is used 
to identify Markov parameters in the form of state space forms, and only the data matrix is used to 
represent the output prediction value at the future different time instants. Then the output prediction 
value is applied to the cost function in data driven control. For this quadratic cost function, a parallel 
distribution algorithm is used to solve its optimal control input value, and the iterative convergence 
of the parallel distribution algorithm is analyzed in detail.

2. LINEAR PARAMETER VARYING SYSTEM

Consider the following linear parameter varying system with the scheduling parameter:
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Then equation (1) is reduced to the following linear time invariant system:
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According to some related definitions from subspace system identification theory, the following 
time varying matrices are set as:
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Innovation signal e k( )  existing in output equation (1) is rewritten as:

e k y k Cx k( ) = ( )− ( ) 	 (4)

substituting equation (4) into state equation (1), we have:
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Based on the existed notation from subspace system identification, set the stable observation 
matrix φ

k
 as that:
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Combining equation (1), (5) and (6), the closed form for that formal linear parameter varying 
system is changed as follows:

ˆ ˆ

ˆ

x k x k B u k K y k

y k Cx k e k
k k k

+( ) = ( )+ ( )+ ( )
( ) = ( )+ ( )








1 φ
	 (7)

It is different with the mathematical derivations from subspace data driven control for linear 
time invariant system, that here the state transition matrix is one time varying form, denoting as that:
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3. SUBSPACE DATA DRIVEN CONTROL STRATEGY

During the following system identification and controller design process, s  and f  are the number 
of past data and future data, N  is the number of all observed data, t  is the time instant for the 
identification problem. In order to use equation (7), we combine some observed data as one vector 
form, i.e. define the following some vector forms as:
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where y
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Applying the time varying Markov parameters, and iterating the above equation (7), the future 
output predictions at future time instants are described as follows:
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where Markov parameter is defined as follows, for i f= −0 1,� , it holds that:
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Then recursively compute to yield that:
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Using our constructed all vectors and matrices, the time varying Markov parameter in equation 
(9) is rewritten as the following explicit form with the scheduling parameter vector:
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
1 1, /

, 	 (12)

The purpose of subspace system identification for linear parameter varying time with scheduling 
parameters is to estimate the Markov parameters in (9), so we collect the past input-output observation 
data sequence and scheduling parameter to establish the following information matrix:

z N z N z N
k s
k f

k s
s

k s k k s
s

k s k k f−
+ −

− − ) − + − + +
 ) += 


2 2

1 1 1 2, ,
, ,� −− − + − − + −

 )

s

s

k f s k f
z
1 2 1 2 1,

	 (13)

where matrix N
k s i
s
− +  is defined as that:

N

P

P

P

k s i
s

s k i s
z

s k i s
z

k i
z

− +

+ −

− + − +

+ −

=

























/

/

/

1 1

1 1

�
	

Based on equation (9), the future output prediction data sequence at future time instant is 
represented as that:

y E z e
k k f k s

k f

k k f, ,+
 ) −

+ −
+

 )= +
0
2 2 	 (14)

when matrix z
k s
k f
−
+ −2 2  is a full row rank matrix, the least squares solution of Markov parameters 

is that:

ˆ
,

E y z CL CL
k k f k s

k f
s0

2 2
1

= ( ) =  
+

 ) −
+ −

+
� 	 (15)

where z
k s
k f
−
+ −

+( )2 2  in above equation is the pseudo-inverse operation.

On the basis of the above least squares estimation Ê
0

, we can construct the output prediction 
value at future time instant for our considered subspace data driven control strategy. After substituting 
the estimation in equation (15) into equation (9) and neglecting the biased term b

x
 or unknown 

innovative sequence e
k k f, +
 ) , we determine the deterministic future output prediction value at future 

time instant, i.e.:
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ˆ ˆ
, , , , , , ,
y H z u y
k k f s z k s k f u k k f f y k k f+
 ) − ) +

 ) +
 )≈ + +τ τ 	 (16)

Equation (9) is one closed observation form. As the unknown term ˆ
,
y
k k f+
 )  is included in both 

sides of equation (16), so we need rewrite the output prediction ˆ
,
y
k k f+
 )  as the other predictive form, 

being related with u
k k f, +
 )  and z

k s k− ), . Then the output prediction value for that linear parameter 
varying system with scheduling parameter is given as follows:

ˆ

ˆ

ˆ

ˆ

,
y

y k

y k

y k f

k k f+
 ) =

( )
+( )

+ −( )

























=
1

1

0

1

� �

Γ
Γ

ΓΓ

Λ
Λ Λ

Λ
f

k s k

f

z

−

− )

−

























+

1

1 1

2 1 2 2

0 0

0
,

,

, ,

�

�

� � � �

11 1 1 2 1 1

1

, , ,

,

,

Λ Λ

Γ
f f f

k k f

k s k

u

z
− − −

+ −
 )

−

























=

�

 ) + −
 )+ Λu
k k f, 1

	 (17)

where parameters Γ Λ
i i

i f j i, / ,= − ≤ <{ }1 1 1�  can be generated recursively to be:

Γ Γ Γ

Λ

i i i
y

i k
y

i

i j i j
u

i j

E CL P E

CL P

= + ( ) =

=

− − +
=

−

− + − +

∑ τ τ τ
τ

τ/

, /

,
0

1

0 0

1 1 kk j
u

i j
y

i j k j
y

i j

j j

i i

CL P

C

+ − − + − − + − + + −
=

−

+ −+ ( )
=

∑1 1 1 1
1

1τ τ τ
τ

τ/ ,

,

Λ

Λ LL Pu
k i
u

1 1 1/ + −











	 (18)

By comparison, it can be seen that the estimated value of the output prediction of the linear 
parameter varying system is more complicated than the estimated value of the output prediction of 
the linear time-invariant system. Equation (17) is abbreviated as:

ˆ
, , ,
y z u
k k f k s k k k f+
 ) − ) + −

 )= +Γ Λ
1

	 (19)

To establish the idea of subspace data driven control strategy, we assume the desired or expected 
output trajectory r  is known, i.e.:

r r k r k r k f
k k f

T T T
T

, +
 ) = ( ) +( ) + −( )



1 1� 	 (20)

The future control input sequence at future time instant is designed through minimizing the 
following quadratic cost function or performance function:

J u r y u
k k k f k k f k k f k k f

Q
k, , , ,

, ˆ
+ −

 ) + −
 ) +

 ) +
 )( ) = − +

1 1

2

µ ∆
,, ,k f

R
k k f

R
u

+ −
 ) + −

 )+
1

2

1

2

1 2

	 (21)
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where weighted matrices Q R R, ,
1 2

 are all positive matrices, and the second term is added in equation 
(21) to show the control input rate of change. The purpose is not to make large jumps in the control 
input sequence, and always maintain a smooth control input.

After expanding the second term to be that:

∆ ∆

∆

u S u S z

S

I

I I

I I

k k f k k f uz k s k

m

m m

m

, , ,+ −
 ) + −

 ) − )= −

=
−

−

1 1

� �

mm

uz

m

S

I
























=





















,

0 0

0 0 0

�
	 (22)

That cost function (21) satisfies the following hard constrain condition:

ˆ

ˆ

, , ,

, ,

y z u

u y

k k f k s k k k f

k k f k k f

+
 ) − ) + −

 )

+ −
 ) +

= +Γ Λ

Α

1

1  )





≤









b
	 (23)

Consider the optimization problem with the cost function (21) and the equality or inequality 
constrain condition (23), the following parallel distribution algorithm is applied to solve its 
optimal solution.

4. PARALLEL DISTRIBUTION ALGORITHM

Expanding the cost function (21) and neglecting those constant terms without control input, we have:

J u u Q S R S R u r z Q S z
k

T T T

uz

T
,µ( ) = + +



 + −( ) −( )








Λ Λ Γ Λ∆ ∆1 2
2 uu

u u u bT T= −
1

2 1 1
Λ

	 (24)

where during the above mathematical derivations, the first equality condition in equation (23) is used, 
then we rewrite the second inequality condition in equation (23) as that:

Α Α
Γ Λ1 2





 +
















≤

u

z u
b 	

i.e.:

Α Α Λ Α Γ
1 2 2
+( ) ≤ −u b z 	

Simplifying it to be that:
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Α
3
u c≤ 	 (25)

Combining equation (24) and (25) to be one quadratic programming problem, which is formulated 
to be that:

min

. .
u

T Tu u u b

s t u c

1

2 1 1

3

Λ

Α

−

≤
	 (26)

The dual function of equation (26) is that:

q u u u b u c
u

T T Tλ λ( ) = − − −( )











inf
1

2 1 1 3
Λ Α 	

That decision variable λ  in above dual function is named as the Lagrange multiply, and the dual 
function is minimized in case of u b= −( )−Λ Α

1
1

1 3
λ . After substituting this optimal value u  into 

that dual function, we have:

q c b b bT Tλ λ λ λ( ) = − − − −− − −1

2

1

23 1
1
3 3 1

1
1 1 1

1
1

Α Λ Α Α Λ Λ 	 (27)

Through some basic variation transformations, the dual function for that quadratic programming 
problem is deem as that:

min

. . , ,
λ
λ λ λ

λ

1

2
0

3 1
1
3 3 1

1
1

T TM d

s t M d c b

+

≥ = = −− −Α Λ Α Α Λ
	 (28)

We see that if the optimal solution λ*  for that dual function is obtained, then the optimal solution 
for that original quadratic programming problem is that:

u b* *= −( )−Λ Α
1
1

1 3
λ 	 (29)

The parallel distribution algorithm is proposed to solve that dual problem here. Set a
j
 as the j

th column for matrix Α
3

, and all elements of a
j
 is not zero. If a

j
= 0 , it is no senseless due to 

constrain condition a u c
j
≤ . As weighted matrix Q  is positive and definite, so the j th diagonal 

element of matrix M  is that M a a
jj j j
= ′ −Λ

1
1 , and it is positive too. It means that for each j , the dual 

cost function is strictly convex along the j th coordinate.
Taking the first-order partial derivative with respect to λ

j
 for that dual cost function, it 

holds that:
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d M
j jk

k

m

k
+

=
∑
1

λ 	 (30)

where M
jk

 and d
j
 are elements coming from matrix M  and vector d  respectively.

Set that above partial derivative be zero, the process of unconstrained minimization of the dual 
cost function from the initial point λ  to reach �λ

j
 along the j th coordinate is that:

�λ λ λ λ
j

jj
j jk

k j
k j

jj
j jk k

k

m

M
d M

M
d M= − +










= − +






≠ =
∑ ∑1 1

1







	 (31)

Due to nonnegative constraint λ
j
≥ 0 , the iterative form with the j th coordinate is updated 

is follows:

λ λ λ λ
j j j

jj
j jk k

k

m

M
d M= { } = − +















 =

∑max , max ,0 0
1

1

�









	 (32)

Based on the first-order partial derivative (30) of the dual cost function with respect to λ
j
, 

equation (32) can be adjusted as:

λ λ
η

λ
j j

jj
j jk k

k

m

t t
M

d M t+( ) = ( )− + ( )















 =

∑1 0
1

max ,









	 (33)

where η > 0  is the step size, and this recursive form is suited for parallel distribution algorithm.
From the numerical optimization theory, we see that in order to ensure that the iterative process 

of (33) can converge to its global minimum, the step size parameter η  should be selected to be 

sufficiently small, that is, the convergence can be achieved for the special case, i.e. η = 1

m
.

5. SIMULATION EXAMPLE

Our considered subspace data driven control of linear parameter varying system with scheduling 
parameter vector is applied to the modeling and controller design of DC motor. The DC motor can 
be approximated by a linear model while ignoring a variety of external factors. However, when the 
consideration of the mass distribution is added to the rotating disk, a nonlinear model is required to 
characterize it. The reconsideration graph of the DC motor mass is shown in Figure 2.

The mass distribution on a homogeneous disk will become inhomogeneous. The mathematical 
description of the DC motor can be divided into two parts: the motor part and the mechanical part. 
Some calibration parameters in the DC motor are shown in Table 1. Firstly, we use Kirchhoff’s 
voltage law to get:

L I t v t K t R I t
m i m
� ( ) = ( )− ( )− ( )ω 	 (34)
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where I t( )  is current intensity, v t( )  is control input voltage, and ω t( )  is rotation velocity.
The variable relationship between the motor part and the mechanical part is that:

J t K I t b t Mgl t

t t
i

�
� �

ω ω θ

θ ω
( ) = ( )− ( )+ ( )( )
( ) = ( )








sin
	 (35)

Figure 2. Structure of DC motor

Table 1. Nominal parameters in DC motor

Parameters Number value

Motor torque constant K Nm A
i
= × −53 6 10 3. /

resistance R
m
= Ω9 5.

damping L H
m
= × −0 84 10 3.

Disc inertia J Nm= × −2 2 10 4 2.

friction coefficient b Nms rad= × −6 6 10 5. /

extra quality M kg= 0 07.

Mass distribution at the center of the disk l m= 0 042.
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where θ t( ) is rotation angle.
When an appropriate observation parameter is chosen to replace the nonlinear term, equation 

(35) will become a linear parameter varying system.
Set the scheduling parameter as that:

µ
θ

θ
t

t

t
( ) =

( )( )
( )

sin
	

When the rotation angle is measurable, the scheduling parameters can be estimated. Select the 
following state variables as that:

x t t t I t
T

( ) = ( ) ( ) ( )



θ ω 	

The state space form of continuous time linear parameter change can be obtained, i.e.:
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	 (36)

Neglecting the fast motor system, then equation (36) is reduced to be a second order system:
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For formula (37), the discretization method in linear system theory is used. According to the 
discretization process of continuous linear time-invariant system, h  is taken as the period of discrete 
use. The corresponding relationship between each system matrix between the continuous system and 
the discrete system is as follows:
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The exponential matrix in the above formula is expanded according to the existing calculation 
method in the linear system theory, and the linear parameter variation system such as equation (1) 
can be obtained. This complex expansion process can directly call the matrix calculation program 
in MATLAB. A pseudo-real-time simulation environment is established for the DC motor. The 
software driver of the motor is established under the real-time Microsoft Windows XP using the 
real-time MATLAB/Simulink environment. The communication protocol is realized through the 
USB interface, and the sampling frequency in the pseudo-real-time condition is set to 20HZ. A 
series of observation data sets are collected for the DC motor module, and a reference trajectory is 
selected based on the given scheduling parameters to construct a calibration parameter sequence. The 
subspace data driven control method is used to realize the tracking of the position and speed of the 
DC motor. The entire closed-loop control experiment is initiated using data acquisition and offline 
physical parameter identification.

The least squares algorithm is applied to identify Markov parameter, and at this time, some 
physical parameters are chosen as N T s

s
= =2000 0 05, . . When exciting the scheduling parameter, 

it must satisfy that:

lim
θ
µ

→
( ) =

0 1 2
0t A 	

If the above equation is not satisfied, the original system will lose nonlinear performance. The 
reference selection of the rotational speed should ensure that the scheduling parameters µ t( )  are 
excited sufficiently continuously. Based on the idea of data driven for future output prediction estimates 
(19) and possible hard constraints (23), the cost function is minimized with respect to the future 
control input sequence. The rolling time domain strategy is used for the obtained control input 
sequence, i.e., only the first element is selected each time as the construction basis of the predicted 
value in the next optimization process. For the optimization problem at each sampling instant, the 
fu ture  t ime-domain level  i s  chosen as  f = 3 ,  and each weighted matr ix  are 
Q I R I R I= = =100 0 01 0 1

1 2
, . , . . That hard constraint about the control input is − ≤ ≤7 7V v V .

The simulation results using subspace data driven control for this DC motor are shown in Figures 
3-5. Figure 3 shows the position tracking curve of the DC motor under the action of the subspace 

Figure 3. Position tracking curves for DC motor
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data driven controller, where the blue curve is the given reference trajectory, and the red is the actual 
controller output curve. It can be seen from Figure 3 that there is a large deviation between the two 
curves at the initial moment, and as time goes on, the deviation between the two curves will gradually 
decrease, and an approximate effect can be achieved. Figure 4 shows the corresponding DC motor 
position tracking error curve, which can also better explain the fitting effect of Figure 3. Figure 5 
shows the rotation speed response curve of the DC motor, which is a continuous smooth curve, then 
it indicates that the speed of the DC motor is completely determined by the designed subspace data 
driven controller.

The DC motor shown in Figure 2 is placed in the servo closed-loop control loop of the flight 
simulation turntable. Flight simulation is a follow-up servo mechanism, which can simulate various 
flight attitudes of the aircraft in the air. The servo control loop of the flight simulation turntable, as 
a high-precision servo device, puts forward high requirements for the position follow-up control: on 

Figure 4. Position tracking error for DC motor

Figure 5. Velocity response for DC motor
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the one hand, it is expected that the position tracking should not have overshoot, and the dynamic 
response process should be fast and smooth; on the other hand, to ensure the tracking accuracy 
requires position tracking with a small steady-state error. In the servo control loop used to control 
the rotation of the flight simulation turntable, the DC motor uses the subspace predictive control 
strategy to control the rotation of the flight simulation turntable through the position signal fed back 
by the photoelectric encoder or the code disc.

In order to test the subspace predictive controller of the DC motor using the linear parameter 
change system, the unit step signal is selected as the input signal of the entire flight simulation 
turntable system, and the output of the system is simulated. The physical parameters of the DC motor 
still use the values in Table 1. We select the unit step signal with the input signal r t t( ) ( )= 1  in the 
upper computer, and simulate the system output and error. The simulation results are displayed in 
the lower computer. The simulation graph is shown in Figure 6. It can be seen from the input signal 
response curve that when the system input is a unit step signal, the adjustment time of the system is 
less than 0 2. s , the output has no overshoot, and the steady-state error is less than 0 05. , which is in 
line with the time domain index of the position system.

6. CONCLUSION

Because the linear parameter varying system is a transition model of nonlinear system and linear 
system, it has both common properties and can approximately describe the real system. The 
subspace data driven control is applied to a linear parameter varying system with a scheduling 
parameter vector. According to the structural characteristics of the linear parameter varying 
system, the whole derivation process of the subspace data driven control are given, while 
introducing the vector product operator to simplify the derivation. A parallel distribution algorithm 
is used to solve the optimal control input value for the established cost function under the idea of 
data driven control. A linear parameter varying system considering the mass distribution factor 
is added to the DC motor, and the subspace prediction is applied to the control example of the 
DC motor. Because the system in this paper does not take into account the fault, the subspace 
data driven control of the linear parameter varying system under the existence of the fault can 
be regarded as the next research subject.

Figure 6. Unit step response and error simulation curve
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