SUBSPACE GAUSSIAN MIXTURE MODELS FOR SPEECH RECOGNITION

Daniel Povey *

Microsoft, One Microsoft Way
Redmond, WA, USA

dpovey@ri crosoft.com

ABSTRACT

This technical report contains the details of an acoustideting
approach based on subspace adaptation of a shared Gaussian
ture Model. This refers to adaptation to a particular spestate;
it is not a speaker adaptation technique, although we do iate
troduce a speaker adaptation technique that it tied to #niscplar

framework. Our model is a large shared GMM whose parameter:

vary in a subspace of relatively low dimension (e.g. 50)steach
state is described by a vector of low dimension which costtbé
GMM’s means and mixture weights in a manner determined hy-glo
ally shared parameters. In addition we generalize to hagamh
speech state be a mixture of substates, each with a diffessnt
tor. Only the mathematical details are provided here; empsrtal
results are being published separately.

Index Terms— Speech Recognition, Universal Background
Model, Factor Analysis

1. INTRODUCTION

We have previously [1] applied the Universal Background Klod
(UBM) to speech recognition. In that paper, a shared mixtdiici-

agonal Gaussians was adapted via a tree-based form of MAR (Ma
imum a Posteriori) estimation, to each speech state. We mlemo

strated substantial improvements in an ML trained systesn\{ith-
out discriminative training). However, due to the very Ergumber
of parameters in the UBM based system we anticipated diffésul
training those models discriminatively. Therefore, irsthaper we
introduce a very different UBM based approach that has fewaer
rameters, and we show that it can be discriminatively tichiaed
still provide a performance improvement under ML trainingigar

to our previous UBM based approach. What we are introduogmng h
is a subspace approach, in which a vector of low dimensian (e.
50) controls all the mean and weight parameters of the spetati

specific mixture model. We also generalize to have a mixtdre o

substates in each state, i.e. each state’s distributioonisatled by
a number of these 50-dimensional vectors each with its ovxtung
weight. In addition we introduce a “speaker vector,” whiolro-
duces an offset to the means (or equivalently, features)gld@pen-
dent on the speaker, and exists in a different subspace afdidel.

We note that the difference between the work we describe her

and our previous work [1] mirrors a difference that existshin
the speaker recognition community, where a Maximum A Poster
ori (MAP) based approach [2] coexists with an approach sintd
our subspace approach that goes by the name factor an&Jysihg
reason for the name is that in that case there is an addisobapace
that models the session variability, and therefore the tadamodel

*This work was funded by DARPA contract HR0011-06-2-0001

varies due to both speaker and session specific factors.rloase
we also introduce a method that uses two factors; the factoter-

st is the speech-state factor, and the factor to be nomdatiat is
he (speaker plus session) factor.

Section 2 introduces the model we are using. Section 3.2 ex-
plains the methods we use to quickly evaluate likelihoodsrgihis
model. Section 4 explains the training procedure. Sectigerter-
dlizes the training procedure to the case where speakerrdaate
used. Section 6 discusses adaptation in this context. dBettex-
plains the techniques used for discriminative training.

Note that this document has not been very thoroughly checked
and may contain errors. A different document is being preghar
which will be clearer and more thoroughly checked, with more
derivations.

2. SUBSPACE MIXTURE MODEL

2.1. Basic model

In this section we describe the Subspace Mixture Model.t Ries
describe the basic model without substates. We use the ihdex

1 < I to represent the Gaussians in the UBM (elg= 750 Gaus-
sians), and the indek < j < J to represent the clustered phonetic
states (e.gJ = 8000 for a typical large vocabulary system). Let the
feature dimension be < d < D, e.g.D = 40, and let the subspace
dimension bel < s < S, e.g. S = 50. The subspace dimension
can take any value; it represents the number of differemtctions

in which we allow the phonetic states to differ from each othe

For each statg, the probability modeb(x|j) is:

I
p(xlj) = > wiiN (x; i, i) @
=1
pji = Miv} v
+
exXpw; V.,
Wi J ¥ (3)

Thus, each state has a shared number of mixtures (e:g.,750).
The means vary linearly with the state-specific vestpfwe denote
by vj' the same vector, extended with a 1, to handle constant effset

he log weights prior to normalization also vary linearlythvi ;.

he parameters of the system are the mean-projection esivig,
the weight-projection vectores;, the variance:;, and the state-
specific vectorsy;. To give the reader a feel for the number of pa-
rameters involved, for the values 6fJ, D and.S mentioned above
the total number of parameters would be, in reverse ordeizef s
mean-projections] D.S = 750 x 40 x (50 + 1) = 1.53 x 10°; vari-
ancesgID(D+1) = 004l — 0,615%10°; state-specific vec-
tors,JD = 0.4 x 10°, weight-projections] S = 750 x (50 +1) =

38.25 x 10%. Thus the total number of parametergis8 x 10°, and 3. FAST EVALUATION OF SUBSPACE MODELS

most of the parameters are shared, not state-specific. feoenee, a

typical mixture-of-Gaussians system might have 100000s§ians 3.1. Pruning using the UBM

in total, each with a 40-dimensional mean and variance, lnives The Universal Background Model (UBM) is a global mixture of

6 . .
us8 x 10" parameters total, more than twice .thls subsp_ace GMNbaussians that is used to initialize the subspace mixturéemo
system. Note that the quantity of state-specific paramenetise think of it as an “unadapted” version of the mixture modelt the
subspace GMM syst.em is less than one tenth of that i_n the rhorr_nellJBM have meang:; and (full) variances,. We use equal mixture
Sll:gl\sﬂci‘yssfjigéreosr this reason, we extend the model to include mi wei_ghts. Note that the variancés; are different from the _shared
’ variancesX; in the model. We can think dE; as a “total variance”
and X; as a “within-class” variance; a similar distinction exists
)) where UBMs are used for speaker identification, e.g., see \\&]
2.2. Subspace mixture model with substates prune using the UBM on each frame as follows. First we evaluat
. .)) all of the UBM Gaussians using only the diagonal of the varéan
The subspace mixture model with substates is the same asiax EqQ Then we take e.g. 20 of the most likely Gaussians and evalhate
tions 1 to 3 except each state is now like a mixture of sta@eh e |ixelihood using the full covariance matrix. Of these wedakay the
statej has substates < m Shyj with associated vectors;, and (55 p — 5 most likely Gaussians and only perform the summations
mixture weightsc;», with >~ 7 ¢;» = 1, we can write out the over, using the topP indices. This is done during both training

model as: and test, and we found that it is best to train and test usiagdéme
value of P.
M; I
P(X13) = cim D wimiN (X frjmi, i) (4) 3.2. Fastcomputation of Gaussian likelihoods
m=1 i=1
Mt ©) The other issue we have, apart from the very large number 0§Ga

gmi = LV jm sians, is the fact that the naive Gaussian liklelihood cdatfmn
exp w;-‘rv;rm without caching Gaussian means (which is impossible duegimm

o= m’ ©) ory constraints), would take tim@(D? + SD) for each Gaussian.
=1 voam We show below that we can reduce this@9S) by doing appro-
) i) . priate precomputations on each frame. Note that typicélignd
Itis useful to think about the substates as correspondi@@tessians 1 gre similar so this is about twice as fast as evaluating aodialg
in a mixture of Gaussians, and in fact as we describe lateuse@ Gayssian likelihood which i©(2D). However we are still evalu-
similar mixing up procedure to increase the number of stalé$s 4ting more Gaussians in each state in our subspace systerintha
model is in effect a mixture of mixtures of Gaussians, witdthtal o, paseline: the number BM,, rather than\; in a mixture-of-
number of Gaussians in each state being equélig. Clearly this Gayssians system, and the subspace system might have alfout h
large size could lead to efficiency problems. In fact, conmgeach the A7, of our baseline, so the number of floating point operations is
mean would involve a matrix multiply taking tim@(S D), and since a0yt P times our baseline. We find that the total compute time for
the variance&:; are not diagonal the actual likelihood computation decoding using subspace models is about two or three tiroe®sl
would be O(D?). In the next section we show that despite this, than 4 standard system, given our current setup (the differsight
likelhoods given this model can be computed in a time sinda e |ess if we were not using Gaussian clustering to compugeaon
normal diagonal mixture of Gaussians. subset of Gaussians in each state in our baseline system).
Using p(x; j, m, i) to denote the contribution to the likelihood
of x given statej from UBM index: and mixture indexn, we have:
2.3. Subspace mixture model with speaker vectors
p(x;4,m,1) = cjmwimiexp —0.5 (log | det 3;| + D log(2m)
Another useful extension to the basic subspace GMM framkeisar +(ptjmi — X) T2 (gmi — x)) (8)
technique that introduces speaker vectors, where eackespeaill
described by a speaker vectar of dimensionT (in experiments We can decompose this into a mixture-specific normalizer;, a
here we usd’ = 50, the same as the subspace dimengignThe feature and UBM index-specific normalizes(x) and a cross term:
speaker subspace of dimensibris analogous to the previously in-
troduced speech-state subspace of dimenSiothe projected mean — log p(x;j,m,i) = Njmi 4+ ni(x) + X" ;' fjmi

now becomes: = Mymi +ni(x) +x B, Miv),

(s) _ T)
Himi = MiVjn + Novs, ™ = i+ (%) + (M D79V (9)
soN; v, becomes a speaker-specific offset to the mean. We do not Njmi = logcjm +1og wim: — 0.5(log | det ;|

make the mixture weights dependent on the speaker facieiistior T -1,
efficiency reasons, as it enables the speaker adaptatianitogbe- +D10g(2m) + prjmi i phimi) (10)
mented as a feature-space offset (for each GaussianindExe use ni(x) = —05x"%;'x (11)

of separate subspaces for the speech state and the speakelois (12)
gous to the “factor analysis” approach used in speaker ifitent

tion [3] of having separate subspaces for the speaker anchte Thus, the precomputation we must do on every frame involoes c
nel. Because the number of parameters to be estimated pdeespe puting the normalizers;(x) and the vectorMiTEi‘lx, which can

is so small, in practice we actually estimate these vectar@dch be done in timePD? and PSD respectively, which is acceptable.
utterance. The main cost of this approach is the need to store in memery th

normalizersn;.;, which will typically be several times the size of ~;;(t) up to the current point in the current parallel job is lessitha

the actual parameters of the model, e.g. for our examplesyst a thresholdr (we have used values from 0.1 to 2 depending on

it had 30000 total mixtures and using floats, it would take ®td system size). The statistics we accumulate are nafgdfor the

store, versus 15.5 MB for the model. first order statistics and; for the scatter to emphasize that they are
If we are using speaker vectors, this form of adaptation @n baccumulated using the pruned counts. So we have:

implemented efficiently in the above scheme by replacingrall

stances ok in Equations 9 to 11 witlix — N;v).

T
vi o= Y (b (14)
4. SUBSPACE MODEL TRAINING t=1
T
The subspace model training proceeds as follows. Firstlinitial- Yii = Z i (t) (15)
ize the UBM, which is a mixture of full-covariance Gaussiahnat t=1
models all speech data regardless of speech state or spébder T
we do a first pass of accumulation and update, using a presimis m;; = Z&ji(t)x(t) (16)
tem to align speech states to frames. In this first pass ofidetion t=1
and update, we are essentially estimating the basic subspiature T J
model of Section 2.1, without substates or speaker vectoriater S, = Z Z A (t)x(t)x(t)" a7
passes over the data, we accumulate different kinds o$statand t=1 j=1
the update equations have a different form.
4.1. UBM initialization 4.3. First pass of training: update

The method we use for initialization of the UBM parameterand The first pass of update is an iterative one in which we firsigilize

$; may not be optimal as we have not experimented with this. Wéhe vectors to random values (e.g. Gaussian noise), inéidhe

take an already-trained conventional diagonal Gaussisteisyand ~ Projections to zero and the variances to the UBM variandesn t

cluster the Gaussians intbclusters (e.g. 750). This is done by iteratively optimize in turn each of the four types of paraens: the

considering all the Gaussians as one large mixture modeig(as ~ Weight-projection vectorss;, the mean-projection matricéd;, the

weights the weights within each state, divided by the totahber ~ variancesy; and the state-specific vectors (at this point we have

of states), and then computing the mixture/ddaussians that max- No substates). This is done for about ten iterations.

imizes the auxiliary function likelihood. The algorithm wse to

compute this is like a form of k-means except with pruningvoie . o

excessive compute (this involves a notion of neighboringters), ~ 4-3-1. \Weight-projection vector update

starting from a random assignment to clusters. The var@aace

thus initialized to diagonal. From that point we do 3 itevas of E-

M over a subset (e.g. 1/10) of the training data, updatingribans

and (full) variances but leaving the mixture weights unificio en-

courage even distribution of data. Q(.) = Y. wilogws 18)
3 J

The update of the weight-projection vectoss is based on maxi-
mizing the auxiliary function:

4.2. First pass of training: accumulation

I
Z Vi (wiTv;' —log Z exp wirij'> (29)
2%

/=1

The first pass of training involves getting mean statistasdach
state; and UBM indexi, and using this to initialize the param-
eters with a single vector per state. By storing statistica dif-
ferent form for the first iteration of update than for laterétions,
we can avoid making unnecessary passes over the data. Howe
to store the mean statistics requires a lot of memory andgeor
e.g. for our example system using floats, it would takg D = 7 T4
4 x 750 x 8000 x 40 bytes of memory, or 0.96 GB. To reduce this, Q(..)= Z ZW” wlvt D=1 EXPWir V) (20)
we avoid storing statistics with very small counts, as wecdbe — £ 7 vt Zf_l expwhvl ’
below. Our state posteriorg;(¢) are zero-one posteriors based on ! B !
Viterbi alignments obtained using a baseline (mixture=efussians) I L
; To maximize the above we use a second order approximatidreto t
system. On each frame we also compute UBM Gaussian posteri- . : . . i
] . - exponential function, but then in certain cases we take aigt&u
orsv;(t) (with pruning to the top 5 as described above). We then . . N
computte initial posteriors: overestimate of th_e negated second gr_adlent,_ f<_)r safas’,lethd_s
to themax(-) function below (without this heuristic we would just
v5i(t) = v; ()7 (t). (13) have its first term). The update procedure is as follows. t s
compute all the un-normalized log weights, let us call thegn =
The statistics we accumulate are count statistics (sumseqgidste- WiTVf, and the normalizers; = log), exp z;;; these are used to
riors) and state-specific mean statistics, and also a sdatteach ~ compute the weights);; = exp(z;; — x;) during the computation.
UBM Gaussian index which we will use to compute within-class ~ We also compute the total counts per state= . v;:. Then for
variance;. There is a slight complication in that we want to avoid each UBM Gaussian indexwe compute the first order terg and
accumulating mean statistics where the count is very sriiéiére- negated second order tefl; in a quadratic approximation to the
fore we define the “pruned” count;;(¢) to be zero if the sum of auxiliary function inw; — w@;, i.e. around the current point. These

We can use the inequality — (z/z) < —log(z/Z) (which is an
equality atr =), to maximize instead the following auxiliary func-
Vfion, wherew; is the pre-update value of;:

are computed as:

g = > (vi—vwp)v, (21)
J
T
H: =) max(ywi,5i)v) Vi (22)
i

After updating eachwv;, we update the affected;; and thex; before

updating the next so we can continue with up to date values of
wj;. The value of the auxiliary function should be checked as we

cannot prove that this procedure will converge, althoughhaee
never observed it not converging. In case of nonconvergeecean
continue with a slowed-down version of Equation 23.

4.3.2. Mean-projection matrix update

The update for the mean-projection matridds (which have size
D x S + 1) is as follows. For a particulat, we first make a co-
ordinate change so that the variai¥eis unit. We use the transform
T = 3;°%, and project to gevI; = TM,; in the new co-ordinates.
Then the computation is as follows: for each of @srows m;,; we
will compute a linear terng;q of the auxiliary function as a function
of the change in that row, and a negated quadratic #snwhich is
shared for alld.

8id = Z (Tiﬁlji - ’NinM;'V;—)d V;_ (24)
J

Hi = Z ﬁjiVjVjT (25)
J

mi; = mig+H; g (26)

The auxiliary function improvement i8.5g2 H 'g,. We project
back to getM; := T; ' M.

4.3.3. Variance updates
The update for the variancé&s; is very simple:

o o
CSi 3T s — g+ i

Sy i

Ei :) (27)

wherep;; = (Mivj). If we use3:; to represent the post-update

We use the notatiox™ to mean the vectox without its last ele-
ment; for matrices the notatioNl~ means removing the last row
and column.

I

g = > (ui—vwi)w,
=1
I —
+> (M?zzl(mji - ’inMiV;-r)) (28)
=1
— T
H, = > max(y,vw)w; w,
i=1
I —
+ > (M=) (29)
i=1
vj = v;+Hj'g; (30)

The matrices only dependent arin the last line of Equation 29
should be precomputed.

4.4. Later iterations of training: accumulation

The method of accumulation differs in later iterations @fiing,
versus the first iteration. We store statistics in a more nrgrafi-
cient way, without pruning. This enables a more exact oggtidn,
and also allows us to have more mixtures without increagiagize
of the statistics too much. The size of the statistics areidated by
the need to store data counts for eacl andm. For these later it-
erations we assume that we already have a “substate” modéfiiw
tialize this by having a single substate per state as estiratiove,
and using unit weight. The state posteriors are, as befere;ane
posteriors based on Viterbi alignment using a previousesyst

4.4.1. Discretized posteriors

The within-state posteriorg;;(t) are computed by evaluating the
likelihoods as described in Section 3.2. However, we aladoaly
discretize the posteriors into steps of typically= 0.05. This re-
duces compute time by getting rid of most very small posteriand
also allows us to compress the posteriors in memory and énirdis
a variable length coding scheme in which coupts; typically take
only one byte to store. The discretized posteripys; (t) consist of
the part ofy;m:(t) that can be expressed in whole increments,of
plus with probability equal to the remaining part divided &yone
extra increment 0. The random element of the discretization pro-
cess is necessary to preserve expectations. All statesticstored

variance andZ; is the pre-update variance, the auxiliary function using the discretized posteriors.

improvement is given by-0.5 (ijl &ji) (log | det 33| — log | det X

+tr((B7 - Ei‘l)ﬁi)). We recommend inspecting all auxiliary
function improvements for diagonstic purposes and to cHeck

convergence.

4.3.4. Vector updates

The update for the state-specific vectersinvolves incorporating
a quadratic auxiliary function for the means, and our presip
described quadratic approximation to the auxiliary fumctfor the
weights. Again we accumulate a linear tegm and a negated
quadratic tern¥; which describe how the auxiliary function varies

with a change in v;. In the expressions below, the top line in each

expression refers to the weights and the bottom line to thenme

4.4.2. Satistics

The weight statistics are straightforward:

T
Vimi = Y Ajmi(t) (31)

The statistics we store in order to update the vectgys are the first
order term in the quadratic auxiliary function written imrtes of the
v;m directly (i.e. not in terms of offsets from the current vglue
Again,x~ is x without its last dimension. So we have:

T I —
Xim = D> Ami(t) (MIZx(1)) (32)
t=1 i=1

The statistics we store in order to update the mean projeaotiatri-
cesM; are of a similar nature:

T

Yimi(t) (55 %)) v}, (33)

The statistics we store in order to update the variancesrapgysthe
variance of the data around the current model means, forléBth
Gaussian index:

Si= Y Fjmi(H)(x(t) — Myvi,) (x(t) - Miv},)" (34)

t,g,m
4.5. Later iterations of training: update

The update for later iterations of training is somewhat batd jus-
tify than the update for the first iteration. The reason is thare are

the vector. We make use of the summed coupts = >1_, Yjmi.
The update is:

- T
HY = > max(yime, Yimwjmi) W, W; (38)
=1
I
HY = 3 s (MI3M) (39)
=1
I
gim = O (Yimi = YimWimi)W;
=1
+xjm — (HEV) (40)
H;,, = HY +H?" (41)
Vim = Vjm+ Hj_',igjrrb (42)

Again we precompute the quantiy; X' M;. The auxiliary func-

updates which we do at the same time (for the variance, thengec tion improvement is given b§.5g7,, H; . gjm.

and the mean projections) which cannot easily be provedrtesrge
unless they are done on separate iterations. However, weoafie
dent that these parameter types are sufficiently orthogbagthis is
not a problem, and in practice we find that our approach cgesger

4.5.4. Variance update

The variance update is trivial:

Note that when any the updates below refer to other types -of pa

rameters (e.g. if the update ftv; refers tov;,,), this means the
pre-update versions of those parameters. This is impdoecdause
the stored statistics are a function of the other parametacsusing
the newly updated versions can lead to inconsistency.

4.5.1. Weight-projection vector update

The update for the weight projection vectors is the same ati
scribed in Section 4.3.1, except that we have to replace amg s
over j with sums over botly andm. We do the update for up to
4 iterations given the stored statistics, or until the aarjl function
improvement per frame is small (e.g. less than 0.0001).

4.5.2. Mean-projection matrix update

The update for the mean-projection matrix is similar to giaen in
Section 4.3.2 except we formulate the quadratic auxiliancfion in
terms of the transformed matrix roma; rather than the offset from
its current value. Again we use the data transfa@m= ;%" to
make the variances unit, 3, = T;M,.

g4 = transposed d’th row of T;X; (35)
- T
Hi = Y AimiVimVim (36)
J
m,; = H;'ga. (37)

The auxiliary function improvement far d is given byggi(rﬁ’id -
m’;d) — 0.5 (th;aHithis — m{;H;m,q), wherem,, are the pre-
update rows. Again, we project back to @éft; := T; ' M.

4.5.3. Vector update

In the vector update as follows, we split the second gradieninto
two parts that relate to the weights and the means resplgctare

use the second oridf) in our computation of the gradient to con-

vert from a formulation in terms of the vectet,,, to the change in

. S,

Yi=e—. 43
Zj,m Yimi 43)

The auxiliary function improvement can be computed as desdr
in Section 4.3.3.

45,5, Qubstate weight

We now have a new parameter to estimate: the weight of sekstat
This is given by:
2 Yimi
Cim = t - (44)
! sz Yimi

4.5.6. Mixing up

Here we describe how we increase the number of substate$niT he
tial model has one substate per state. We have a target totdder

of mixtures per state, e.gM = 50,000 and we allocate mixture
components to states based on a power rule with a default expo
nent of 0.2. Thus, if a state has total coupt= 3" . 7;m, the

target number of mixture componeri$ is the closest integer to
0.2

My
Ej 'Y?'Q

{2,4,6,8,10,12). On each iteration and for each stgfehe number

of mixture components to split shall be the difference betwthe

targetT; and the current number of mixture componenfs; but

no more than the current/;. If it is less than that, we split those

with the largest counts. In addition, we enforce a minimuranto

for mixtures to be split, which is 200 by default. For eachstate

vectorv ., that is selected to be split, we compute the negated sec-

ond gradientH ;,,, as used in section 4.5.3, and then compute the

—0.5

scaleS = % , which provides a scale to the vector (think

of S like a standard deviation). We then compute a random vector

r whose elements are drawn from zero-mean Gaussian digrbut

with variance 0.1, and our perturbed vectors shaV-hg + Sr. We

assign half of the old mixture weight to each of the two newtomi

components. Mixing up is done after all other phases of wpdee

complete (i.e., starting from the already updated vectors)

We do mixing up on a subset of iterations (currently

4.5.7. Updating the UBM

The UBM parametergi; and 3; which are used for pruning are
also updated in our training setup. This is done by accunmgjat
zeroth, first and second order statistics for eaahd doing the nor-
mal Gaussian update. The posteriors used are the sum owataub
J, m of the posteriorsy;:(t). Because of the discrete nature of the
pruning operation it is not easy to say very much theordyicddout
how these parameters should be trained, in fact it might ssdar

to leave them fixed. Experiments have failed to show any rdiffee
between training and not training these parameters.

5. SPEAKER FACTORS

We introduced in section 2.3 the notion of speaker vectotschwv
capture the main variation between speakers. During trginie
need to compute the projectiods; which project from the speaker
subspace e.gI" = 50, to the feature dimension e.gD = 40.
There are various issues involved here: initializing thejgutions
N,, computing speaker vectoss, for each training speaker, and
updating the projections on each iteration. Note that aljhowe
use the term “speaker”, in fact we compute the speaker \&etor
for each utterance.

5.1. Initializing the projections

During the first iteration of accumulation and update, a<idesd

in Sections 4.2 and 4.3, there is no notion of speaker fackirthe
end of the first pass of update, we initialize the speakereptigns
N, to be D by T matrix with ones on the diagonal; if our target
speaker subspace dimensi®nis greater thanD then we initially
limitit to be the same a®. On subsequent iterations, after updating
the projectionsN; we can if needed increase the dimensiBrin
increments oD of less by appending columns from the unit matrix,
e.g.[1,0,...]%,[0,1,0,...]7, etc.

5.2. Computing the speaker vectors

We compute the speaker vectors during training where thegan-
puted on the fly, on all iterations except the first, and alsondu
test time. The computation of the speaker vestofor a particular
speaker (or, in practice, a particular utterance) is donfl&svs.
The statistics consist of the linear tegn in the objective function
in terms of the change iw, plus the county;s per Gaussian in
the UBM (so the statistics per speaker are very small, of dgios

T + I). The statistics and the update are as follows, where the su
over time is understood to only cover the speaker or utteramc
guestion. Note that the following is an iterative update rehee
always start fromv, = 0; one or two iterations suffice to get a good

estimate.
Yis = Z Yimi(t) (45)
t,j,m
g = > i) (NS — Nive = 1yme)) (46)
t,i,5,m
H, = > o (M7 (47)
vs = v.+gH;, (48)
wherevis = 37, .. vimi(t) is the total count for speaker and
Gaussian index. Wherev; appears above, this is the pre-update

value of vs which on the first iteration would be zero; we see a
small improvement from doing two iterations of the updatsirfg
the same word sequence but different posteriors). The xriatmin

in parentheses in Equation 47 should be precomputed anedéus
all speakers.

5.3. Updating the speaker projections

The speaker projection matric®§; are updated as follows. The ac-
cumulation phase takes place alongside the other formscohac
lation described in Section 4.4.2. We accumuldtg which is the
linear term in the auxiliary function in terms of a changéNp, and
Q;, which is the weighted outer product of the speaker vectdrs.

is the speaker active at timée.g. we could imaginethat=1...T
somehow spans all speakers and utterances):

> Aimi(t) (57 (ke = pgmi — Niva)) vaA9)

t,i,5,m
T
Vs(t)Vs(t)
t

For the update we again use a transfdfhhat makes the within-
class varianc&; unit, do the update in this space and convert back:

i

Qi (50)

T, = x;9° (51)

Y, = T;'Y; (52)

N, = Y.Q;! (53)

SN; = T;'N; (54)

N; = N, +0N; (55)

or : N; = N,;,+%Y:Q" (56)

The predicted criterion improvementisstr (Y7 X, Y:Q;).

5.4. Effect of speaker vectors on other accumulators

If we are training with speaker vectors, the other accuredlguan-
tities need to be changed to reflect this. It is most converimnetiis
case to negate the terlN;v; and view it as an offset on the fea-
tures (specific to the UBM Gaussian ind@x Therefore, we replace
any instance ok(t) in Equations 32 to 34 witlx(t) — Niv)),
wheres(t) is the speaker active on tinte

5.5. Stabilizing the update with speaker vectors

In our training we update all parameters simultaneouslyereas
we can generally only prove that the update will convergéndyt
e updated one by one. When we update the speaker vectors in
addition to the other parameters, we observe signs of itlisgalin
particular, we see likelihood improvements which are masss than
the total predicted criterion improvements from all thegvaeters.
This is not surprising, since now there are three sets ofnpeter
updates which we expect to interact badly, namely thoséMgr

N; andv;,,, and three is more than two. The significance of this
is that there may now be directions in the parameter spaceewhe
the learning rate exceeds the “ideal” learning rate by mbeaa ta
factor of two, and this is the precondition for instabilityhen the
objective function is well approximated by a quadratic.(ckse to
convergence). In some experiments we prevent this inigabi,
after a certain iteration, introducing a factor of 2/3 in fferameter
changes of the three named types of parameters. This isienffio
prevent the instability, and we do it only in later iteraosince this

is when the instability seems to get started. The effect daron
and WER is small.

6. ADAPTATION We have presented a simplified version of the computatiardites
not allow sign changes, i.éW ™ is constrained to be positive def-
We can perform both fMLLR (Constrained MLLR) and MLLR inite. We have previously found that this makes no diffeeeitc
adaptation in the UBM framework. Computing the fMLLR and practice.
MLLR transforms is different but not problematic in the UBN/le
of system; we give the equations below. Applying the featpace
transformation for fMLLR is of course trivial. Applying théLLR

transform is difficult in Conjunction with the fast evaluati frame- The prob|em is that we need to recompute the norma”ﬂm for

work described in Section 3.2, but it can still be done, asri®sd each speaker, which is a significant burden, especiallyeifetiare
in Section 6.2. The estimation of fMLLR and MLLR transforms many short speakers_ An alternative is to use the unadamd S

in the UBM framework described here is described below, but item to compute the likelihood Contributiot@p(x; j,m, ’L) within

is acceptable to use transforms estimated using a normgbm 3 particular statg from each mixturen and each retained Gaussian

system; any differences in WER arising from this are verylsma indexi, and then only do the MLLR computation for those Gaussians
within a particular beam (e.g. 4). However, this is stillréfgcantly

6.1. Constrained MLLR/fMLLR estimation slower than not applying MLLR at all.

For convenience, we do not use a regression tree

6.2. MLLR estimation

In fMLLR adaptation, we are estimating a transfok¥i such that:

“ — +
x = Wx", (7 63 MLLR

wherex are the adapted features. The statistics we store are: Currently our subspace mixture model system is trained asiéd
N = Z Yimi () (58) using VTLN warp factors and fMLLR/CMLLR transforms obtathe
using our baseline. Thus we avoid having to implement thiege a

rithms within the UBM framework. We have implemented MLLR

J.m,t

K = > %mi(t) (Eflﬂﬁii) x(t)*" (59) adaptation in the UBM framework, which sometimes seemswe gi
3ymi,t slightly better results than using a (single) MLLR transfioob-
T i H .
Q = Z yimi (O)x(®) T x() T (60) tained from a baseline system. MLLR also appears to give most

of its normal improvement even after using the speaker vecs
described above, which is somewhat surprising as the tggbsiare
K is the linear term in the objective function afy will be used to quite similar. Since the UBM is in effect a full covariance det
work out the quadratic term. See Equation 7 for the adapteahme e had to modify our algorithms, and in fact the accumulagibase
ME‘Z‘E” The update of the fMLLR matri®V starts from the default is now quicker than in the baseline. The statistics we storesist
matrix, i.e. whereW is ad by d + 1 matrix with ones along the of i) statistics the same size as the MLLR transform, whicki-ba
diagonal. We then do an iterative update as follows, for 8igera- cally contain the linear term of the objective function asuadtion
tions. First we precompute the matrid8s, and their inverses; these of the transform parameters and ii) a set of full-covariastais-
correspond to matrices used in the normal fMLLR computatéind tics, one for each UBM Gaussian index, which consist of wieidh

Jrmt

represent the quadratic term for ralv outer products of [extended] mean vectors, including a tdomn
. each UBM Gaussian index. The MLLR computation given these
Gy = Z (2;1)dd Q. 61) statistics is an iterative row-by-row computation. A siamischeme

would be possible for fMLLR, in which the full-covarianceati-

.) tics would be over [extended] data vectors rather than me&he
Then as we iteratively update each row, we compute the loedig general approach is described in [5], although note thaetteean

ent of the objective function with respect to the transfosn a error in Section 3.1 (missing data counts). We use a singlession
I class as the improvement we get from using multiple classesry

OF =D=K-— Z EleQi (62) small. Decoding using MLLR is very slow due to the need to nreco

oW i—1 pute the normalizers;,,; and gives very little improvement on top

of the speaker factor approach described below, so it issstrgial

to include. In addition, the WER difference between estingathe

MLLR transform using the UBM framework directly versus simp
inheriting it from a conventional system is small if it exdsit all.

The rest of the fMLLR computation for a particular row is as de
scribed in [4], which we summarize hbelow. Let; be the trans-
posedd’th row of W and the gradiend; be the transposedith row

of D. Then computd; = dq + Gawq be the linear term in the
auxiliary function inw, the auxiliary function being:

F=wilyg—0.5w] Gawa + flog|det W, (63)
whereW ~ meanswW without the last column, and = Zle i is 7.1. Model-space discriminative training: overview and acu-

the total time. We let, be thed'th column ofoil, which is pro- mulation
portional to the cofactor used in [4], and the rest of the cat@ion The discriminative training experiments reported heredaree with

7. DISCRIMINATIVE TRAINING

is: boosted MMI [6], although we could also use MPE or normal MMI.
[a,b,c] = [ﬁchglcd, lgG;Cm —1] (64) _Because the final auxili_ary fun_ctions that we optimize le.nin_ain-
. ing are mostly quadratic functions of the parameter, it issue

k= —b+ Vb — dac (65) to formulate an Extended Baum-Welch like update as a very sim
2a ple rule, which says: take the difference of the linear tegna the

wa = G (144 Bkey). (66) numerator and denominator auxiliary functions, but the siirthe

quadratic term&I. First, we must make sure that the auxiliary func- the pre-update values. This update it not iterative, bepdied only
tion is formulated in terms of the change in parameter, rafen once during each update phase.

the parameter itself; this ensures that the auxiliary flenctormu-

lated as described has the correct gradient. In additioret@speed 7.22. Mean-projection matrix update

parametes for each of the parameter types, esg, for the weight o)) o
parameters, etc., and divide the quadratic term in theianxilunc- ~ For the mean-projection matrix update, again we use theailtzimg

tion by this speed. transformT; = £7°°, and project to geM = T; M.

In discriminative training, s_inqe we start from an I_/IL-traiil g?}f — transposed d'th row of T;X; (75)
system we only need the non-initial style of accumulatiod ap- o mum. 4 4 T
date. The accumulation is quite a simple modification of the M H; = Z%mi VimVim (76)
accumulation as described in Section 4.4. On each frame we ha J
both denominator. and numerator occupatiorl probabilitﬁg‘(t) Hi = Z ~§‘5L'?memeT)
and 'yff,{;(t), obtained (for boosted MMI training) after forward- ;
backward alignment of numerator and denominator lattioelscan- abs um dens 1
celing of statistics on each frame as described in [6]. Thelom- gia = gia — (H —H)mig (78)
ized discretization d(_escribed in Sec_:tion 441 |s _applnetjdth nu- H = (H?um + H?en) (79)
merator and denominator occupation probabilities. Theneoi |- .
smoothing or equivalent, so we have no ML statistics. Weidafs m'y = mig+ smH; g (80)

our count statistics into numerator and denominator cobuitsstore

SOHES . The auxiliary function improvement is given ly5sng-H: 'g;q.
the other statistics in combined form: y P g 055 iaH, " gia

Again we transform back by settifgl; := T; ' M.

T
T = Y Ami () (67) 7.2.3. Vector update
; In the discriminati\I/e vector update we precompute summexchtso
fonnz _ de,{i (68) such asy;,,™ = >, _; Yjm: - The update is:
t=1 num num - -T
o Hﬁr)b = Zmax(%’mi > Vim Wimi) W; W;
num ~den Ts—1 N i=1
Xjm = Z V]mz — Vjmi (t)) (M’L Ez X(t)) (69) en den _T
t=1 i=1 + ma‘x(’}/;imw ’ng w]’ml)w Ww; (81)
Xi = D Gimr(®) = Fomi(0) (B7'%(®) vin (70 -
’Y] - ()) (i X()) Vv (70) H;i,znum) _ Z ;171;31 (MTEi—lMi) (82)
i=1
s, = Z T () — Foen (1)) :
HES = i (M=) (83)
(x(t) = Mivjm) (x(t) = Mivjm) " (72) =1
I
7.2. Model-space discriminative training: update gim = Z Yjmi — YVimWimi)W
As with the Maximum Likelihood update described above, itis 2)num 2)den
- : 3jm — (EHEDM gy T (84)
portant that the update equations for each parameter typiglitv Jm jm Vim
projections, mean-projections, etc.) “see” only the ppelate values 1 o (2)num — 2)den —
of the other parameter types. We have avoided making thiécéxp Hjm = — (Hjm + Hj, + H{})) (85)
with iteration indices as this would clutter the equations. N _
q Vim = Vim+Hj gim. (86)
7.2.1. Weight-parameter update Again we cache the quantityl; = 'M;. The auxiliary function

L . . improvement is given b9.5gJTmH;,,11gjm.
The discriminative weight parameter update is as followsfwlled

by speed panr‘?mmete[% e.g.g‘iﬂm: 1.0. We use the total per-mixture 7.2.4. \ariance update
counts e.99 " =D i1 Vimi -

For the discriminative variance update,¢t'™ = Zj’m ~ims and

g = Z((’Y%T — Ygs) = (V™ = g wimi)V (72) similarly for the denominator counts. We gét= 2.0/s,, to trans-
jm late from the “speed” notation to the notation of ExtendedilBa
H = Y, (max (Ve w;ma, Vo) + max (Yt wjmi, vien)) Welch updates. For eadhwe setD; = E~{", and the update
++7T ' .
viv; (73) 5, — S;: +D; X . 87)

=y D,

N o _ As an additional check, we make sure that the updﬁlge'd; positive
The auxiliary function improvement &.5s.,g,H; 'g;*. Note that definite when computed as above but withat half its value. If not,
the values ofw;.,; we use in this discriminative update are always we increaseD; in increments until this condition holds. The total

- . i auxiliary function improvement isy_, —0.5 (y}"™ — ;" + E)
1This formula assumes that we apply, at the auxiliary function level, L .
to the second gradiett;. (log |det 32| — log | det ;| 4 tr((X7! — =7)Ei)).

w; = W;+ SuwH; gi. (74)

7.2.5. SQubstate weight and UBM parameter updates.

We do not bother updating the substate weights discrinvielsfi
since we anticipate that the effect of this will be small. Wsoa
do not update the UBM parametgisand3:;.

7.2.6. Limiting parameter changes

The discriminative update as described so far seems to e poo
instability. This is apparent in various ways: we the objecfunc-
tion starting to fall after climbing for a few iterations, dthe word
error rate starting to degrade. This can be somewhat imgrbye
decreasing most of the speedfrom their default values of 1, e.g.
we favor the settings,, = 0.5, s, = 0.5, s¢ = 0.5, s, = 2. How-
ever the word error rate still degrades substantially aéeching its
optimim in about four iterations, and if we look at the aueili func-
tion improvements for different UBM Gaussian indidese see that
for some values of these improvements rise with iteration number
and reach very high values, indicating likely divergenceoider to
ameliorate this problem we introduced limits on the maxinaun-
iliary function improvement per frame, for the four diffetekinds
of parameters. The number of frames in this case is defineldeas t
total numerator plus denominator count, @™ + ~de" where
jum Zj’m Yimi » €tc. We define a maximum auxiliary function
improvement per frame for different parameter classesgthee ob-
tained from viewing a scatter plot the measured auxiliancfion
improvements per frame for these parameter classes feretiff:
against the counts for the sarjeand looking at the maximum of
the bulk of the distribution as the counts become reasorlabje.
These limits are: 0.01 for weight projections, 0.01 for aades,
0.04 for mean projections, and 0.1 for vectors. If for a paitr
the measured auxiliary function improvement per frame edséehis
by a certain factoyf, we scale the parameter changelby. In the
case of the vectors this statement must be applied for acplati
substatej, m. The effect on WER on the best iteration of this lim-
iting operation is minimal, but it does slow the pace of thergual
degradation.

7.2.7. Feature-space discriminative training

Feature-space discriminative training, introduced irbfjusing the
recipe from [8] which is significantly better, is an importgart of
our baseline system, e.g. see [6] for typical improvements wari-
ety of setups. We find that feature space discriminativaitrgigives
less improvement in the subspace mixture model system tlithn w
our baseline system; in fact, the gains of feature-space mphdel-
space versus model-space only training are very marginal b&/
lieve there are two possible reasons for this. One is thabthessian
mixture model used for fMPE/fMMI is very similar to the Gaiss
mixture model used for the UBM (in fact they are obtained in ba
sically the same way), and the two techniques may be expipiti
similar kinds of phenomena. Another is that since we are fiecef
using full covariance models, any linear transformatiohthe fea-
ture space that fMPE/fMMI might be doing will have no effee-b
cause the models will simply move to compensate. In Seétfone
do give results with feature space discriminative trairbogsince it
appears to be a poor combination we will only describe thérzut
of our implementation.

Computation of the “direct differential” is very simple. &Hin-
direct differential” involves some choices, and rathemtlagtempt
to justify them we will simply state our approach: we compitite
indirect differential via only the within-class varianc®s and the
mean-projection matricedI;. This can be done starting from the

same statistics that we use for normal discriminative inginWhen
updating the model with ML on each iteration, we only update t
within-class variances and mean-projection matrices. nEoéher
aspect of the computation is the same as in our baseline fiXRE/
computation.

8. REFERENCES

[1] ChuS. M. Povey D. and B. Varadarajan, “Universal Backurh
Model Based Speech Recognition,” l@GASSP, 2008.

Reynolds D. A, Quatieri T. F and Dunn R. , “Speaker verifi-
cation using adapted Gaussian mixture moddigital Sgnal
Processing, vol. 10, no. 1-3, pp. 19-41, 2000.

Dehak N. Kenny P., Ouellet P. and Gupta V., “A study of hste
peaker Variability in Speaker VerificationlEEE Trans. on Au-
dio, Speech and Language Processing, vol. 16, no. 5, pp. 980—
987, 2008.

M.J.F Gales, “Maximum likelihood linear transformati for
hmm-based speech recognitionComputer Speech and Lan-
guage, vol. 12, 1998.

[5] Saon G. Povey D., “Feature and model space speaker didapta
with full covariance Gaussians,” imterspeech/ICSLP, 2006.

(2]

(3]

(4]

[6] Povey D., Kanevsky D., Kingsbury B., Ramabhadran B.,rSao
G. and Visweswariah K., “Boosted MMI for Feature and Model

Space Discriminative Training,” ilCASSP, 2008.

Povey D., Kingsbury B., Mangu L., Saon G., Soltau H., and
Zweig G., “fMPE: Discriminatively trained features for sumh
recognition,” inlCASSP, 2005.

Povey D., “Improvements to fMPE for discriminative tnéig
of features,” inlnterspeech, 2005.

(7]

(8]

